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VI. VIBRATIONS OF POLYATOMIC MOLECULES 
(INFRARED AND RAMAN SPECTROSCOPY) 

In 1800, Sir William Herschel found that if he placed a thermometer beyond the red 
region of the spectrum of the sun, the spectrum was obtained by dispersing the rays of the 
sun using a prism, the thermometer warmed up more than when it was placed in the visible 
region. With this observation, Herschel discovered infrared radiation. Study of the 
absorption of molecules in the infrared (i.r. or IR) region started at the beginning of the 
XXth century. 

Up until the 1940s, IR spectroscopy was used in just a few physics labs, principally 
to investigate the structure of molecules. Using spectrometers was a complex task requiring 
a lot of effort and time; for example, infrared spectra were recorded point by point. At the 
same time, spectrometers were extremely sensitive to even small fluctuations, for example 
that of the temperature of the measuring room. During WWII the need to use infrared 
radiation arose, which led to quick development of infrared detectors. The spectrometers 
built with the new sources and detectors were much less cumbersome, the simplicity and 
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speed of the measurements made IR spectrometers one of the most important analytical 
tools in the hands of chemists. 

 

The infrared region of the electromagnetic (EM) spectrum 

Region  / m ~  / cm–1 Molecular process 

far i.r. 25 – 400 25 – 400 large-amplitude, “floppy” vibrations
mid i.r. 2,5 – 25 400 – 4000 fundamental vibrations 
near i.r. 0,8 – 2,5 4000 – 12500 overtone vibrations 

NB: The distinctions ‘near’ and ‘far’ are defined with respect to the visible region. 
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Hallmarks of vibrational spectroscopy 

1) Observed transitions reveal the potential energy surface V(R) (PES, see the Born-
Oppenheimer (BO) separation of the motions of the electrons and the nuclei), where R 
denotes the set of nuclear coordinates. 

2) Quadratic, as well as cubic and quartic, force constants supply information about the 
PES and reflect certain chemical properties, such as bond strengths and dissociation 
energy. 

3) Geometrical structures can be obtained by analyzing the rotational contours, “rotational 
fine structure”, of the vibrational bands 

Branch P Q R O S 

J –1 0 +1 –2 2 
 

4) Local mode transitions are indicative of chemical groups within the molecule → useful 
for identification purposes. 
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 When the bond force constant (“spring constant”) of as moiety is quite different from 

that of other bonds in the molecule, a characteristic group frequency is observed. 

Example: C=O stretch in ketones (1710 – 1720 cm-1). 

 Even if the bond force constants in a molecule are all similar in magnitude, a 

characteristic group frequency arises if one group involves a large difference in masses. 

Example: C–H, C–Cl, C–Br stretches in organic moleclules. 
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Water on the Sun: molecules are everywhere 
(T. Oka, Science 277, 328, 1997) 

The surface temperature of our own star, the sun is 5800 K. At this elevated 
temperature polyatomic molecule, like water, “should” dissociate to its elementary parts 
(H2O  OH + H  O + 2H). Despite this expectation scientists observed in the infrared 
region of the emission spectrum of the sun spectroscopic lines characteristic of the 
spectrum of water. 

How to prove the existence of water: emission laboratory IR spectrum of hot water 
showed high similarity with the observed sun spectrum (Bernath et al., Science 268, 1155, 
1995). (Proving the existence of water lines in the emission spectrum of the sun was made 
difficult by the existence of water vapor in the earth’s atmosphere but this is “cold” water 
characterized by a very different spectrum.)  

Water does not exists everywhere on the sun, only in the cooler surface regions called 
sunspots, whose temperature is only T  3200 K. Note that on several other stars, including 
high luminosity red giants and a few dwarf stars, whose temperature is below 4000 K, it 
became possible to identify several molecules, mostly diatomic ones. Chemical modeling 
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studies show that under about T  1000 K on stellar bodies after H2 the molecules most 
abundant molecules are H2O, CH4, and NH3. Note that high-resolution spectroscopic 
experiments have such high accuracy that several molecules could be identified even just 
by the detection of one spectral line (transition). 

The final proof of the existence of water on our own star, the sun, arrived from highly 
accurate first-principles (ab initio) quantum chemical computations (Tennyson et al., 
Science 277, 346, 1997). 
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Classical mechanics of molecular vibrations 
 

Basic reference text: E. Bright Wilson, Jr., J. C. Decius, és Paul C. Cross, Molecular Vibr-
ations, The Theory of Infrared and Raman Vibrational Spectra, Dover: New York, 1980. 

Let’s investigate an N-atomic molecule. Affix a coordinate system to the molecule: (a) shift 
the origin to the center of mass (COM), and (b) direct the molecular axes along the principal 
axes of rotation (a, b, and c). 

Kinetic energy 

Define the Cartesian displacement coordinates as follows, where subscript 0 refers to the 
chosen reference (equilibrium) configuration: 

,0x a a    , ,0y b b    , ,0z c c     . 

The form of the kinetic energy is  
2 2 2

1
2

1

N d x d y d zT m
dt dt dt

  




              
       

  . 
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Define mass-weighted Cartesian coordinates: 
1 1 1 4 2 2 3 2

2 1 1 5 3 1

3 1 1 3

: : :

: : :

: :

N N N

N N N

N N N

q m x q m x q m x

q m y q q m y

q m z q m z





  

  

 




 

Now the form of the kinetic energy becomes simpler, 

 

1
23 3

221 1 1 1
1 2 32 2 2 2

1 1

3

N N
Ti

i N
i i

N

q
qd qT q q q q

dt
q

 

 
 

          
 
 

  q q




    



 . 

Potential energy 
If the molecule is s strongly-bound chemical system, then the nuclei are vibrating in a deep 
potential well. The lowest vibrational states can be investigated by expanding V(x) about 
the reference (equilibrium) position: 

2 33
1 1

0 2 6
1 0 0 0

( )
N

i i j i j k
i ij ijki i j i j k

V V VV V x x x x x x
x x x x x x

      
                      

  x  , 
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where we have re-indexed the Cartesian coordinates: 

1 1 1 2 2 1 2 3 4 3 1 3( ) ( )N N N N Nx y z x y x y z x x x x x x   . 

At equilibrium all forces are zero by definition: 

0

0i
i

Vf
x

 
     

 linear terms vanish.  

In the multidimensional harmonic oscillator approximation we neglect the cubic and 
higher-order terms (springs, assumed to exist between the atoms, obey Hooke’s law): 

3 3
1 1

0 02 2
1 1

( )
N N

T
ij i j

i j
V V H x x V

 

   x x H x , or 

 

1,1 1,2 1,3 1

2,1 2,2 21
0 1 2 32

3 ,1 3 ,2 3 ,3 3

( )

N

N

N N N N N

H H H x
H H x

V V x x x

H H H x

  
  
   
  
  

  

x





  

 , 

where 
2

0

:ij
i j

VH
x x

 
     

 is the Cartesian force constant matrix. 
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One must note that the Hij force constant matrix must be obtained by solving the electronic 
Schrödinger equation and differentiating the resulting PES. Hij can be determined 
numerically via ab initio electronic structure computations very efficiently and accurately. 

Convert V(x) to mass-weighted Cartesian coordinates: 

1
0 2( ) TV V q q Wq , where ij

ij
i j

H
W

m m
  . 

Now we are in the position to state the problem of vibrations of molecules very clearly: we 
wish to solve Newton’s equations of motion for a molecule with 

1
2

TT  q q     and   1
0 2( ) TV V q q Wq  

Naturally, during the solution of the vibrational problem we could use the V m  F a  
equation.  
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Let us apply, however, a more general formulation of Newton’s equations, the so-called 
Lagrange-formulation and Lagrange’s equations. 

The Lagrangian of the system: 
( , ; )L t T V q q  , 

Lagrange’s equations with generalized coordinates qi, i = 1, …, 3N: 

0
i i

d L L
dt q q
  

    
 

Since qi appear only in V, while their time derivatives appear only in T, we can write 

i
i i

L T q
q q

    
        


 

 

and 
3

1

N

ij j
ji i

L V W q
q q 

    
          

  
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Therefore, for harmonic motion the Lagrange equation has the following simple form: 

2 3

2
1

0
N

i
ij j

j

d q W q
dt 

 
  

 
  (i = 1, 2, …, 3N). 

This is a set of coupled differential equations which can be written in matrix form in a 

particularly elegant form: 

 q Wq 0 . 

To solve these coupled equations, we seek a unitary transformation ( T T U U UU I ) to 
a new set of coordinates which will be uncoupled: 

3

1

N

k ik i
i

Q U q


 , or TQ U q  and q UQ . 

Consequently, q UQ . 
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Then, the Lagrange equations  q Wq 0  of the harmonic oscillator problem becomes: 

 UQ WUQ 0     ( )T Q U WU Q 0  . 

If the U unitary matrix is chosen such that 

1

2

3

0 0 0
0 0 0
0 0 0
0 0 0

T

N






 
 
  
 
 
 

U WU Λ


 , 

then 

 Q ΛQ 0     
2

2 0k
k k

d Q Q
dt


 

  
 

 , k = 1, 2, …, 3N. 

These are uncoupled equations! 

The Qks are the normal coordinates of vibration representing the normal modes of the 
molecule. A normal mode of vibration is one in which all the nuclei undergo harmonic 
motions, have the same frequency of oscillation, and move in phase (pass through the 
extremes of their motion simultaneously) but generally with different amplitudes. 
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The vibrational frequency associated with normal mode k is 

2 2
kk

k


 

  , 

while the general form of the normal coordinate is 

sin( )k k k kQ c t   , k = 1, 2, 3, …, 3N – 6. 

The reason we have omitted the last six Qk’s is that the three coordinates corresponding to 
translations and the 3(2) coordinates corresponding to rotations are NOT harmonic 
motions, whence k = 0. For a linear molecule there is one less rotational coordinate, and 
thus 3N – 5 normal coordinates of vibration. In summary, the number of normal modes for 
a nonlinear(linear) molecule is 3N – 6(5). 
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Numbering of normal vibrations 

 

There is a well-established convention to number normal modes of molecules, 
established in R. S. Mulliken, J. Chem. Phys. 23, 1997 (1955). The essence of the 
convention: 

 Start with the completely symmetric wavenumbers, sort them from high to low, 
and this gives the numbering. Do the same with all the other wavenumbers 
belonging to the other irreducible representation of the molecule. 

 Non-degenerate normal modes should be numbered before the degenerate ones. 
Normal modes with the same wavenumber receive the same number. 

 A notable exception: the bending frequencies of linear triatomic molecules are 
always called 2. 
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Numbering of normal vibrations of ethylene (D2h) 
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Quantum mechanical treatment of molecular vibrations 

The vibrational Schrödinger-equation for an N-atomic molecule: 
2 23

1 32
1

1 ( , , ) ( ) ( )
2

N

N
i i i

V x x E
m x

  
        

 x x   

In complete analogy with the classical treatment, assume the molecule is in a deep potential 
well and expand V(x) about the equilibrium position: 

23 3
1

0 2
1 0 0

( )
N N

i i j
i iji i j

V VV V x x x
x x x

   
            

 x  

In the harmonic approximation 
3

1
0 2( )

N

ij i j
ij

V V H x x  x , 

where 2:ij i jH V x x     is the Cartesian force constant matrix. 
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Similarly to classical mechanics, using a unitary unitary transformation we can change our 
coordinate system from Cartesian (x) to mass-weighted Cartesian (q) to normal (Q) 
coordinates. Then 

kinetic energy operator: 
2 23

2
1

ˆ
2

N

k k

T
Q


 

  

potential energy operator: 
3

21 1 1
2 2 2

1

ˆ ( )
N

T T T
k k

k
V Q



   Q U WU Q Q ΛQ  

We are left with the following Schrödinger-equation written in normal coordinates: 

2 23 6 3 6
21

22
1 1

( ) ( )
2

N N

k k
k kk

Q E
Q


 

 

  
        

  Q Q  
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Note the following: 

(a) The sums have now been restricted to the internal, vibrational normal modes only, 
translations and rotations are thus separated from the problem. 
(b) The Hamiltonian is a sum of uncoupled harmonic-oscillator Hamiltonians: 

3 6

1

ˆ ˆ
N

k
k

H H




  , where 
2 2

2
2

1ˆ
2 2k k k

k

H Q
Q


  


  . 

(c) The vibrational wavefunction is a product of one-dimensional harmonic oscillator 
wavefunctions: 

3 6

,
1

( )
k

N

k v k
k

Q




  v  
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Solution of the one-dimensional harmonic oscillator problem 

The Schrödinger equation: 
2 2

2
2

1 ( ) ( )
2 2

d kx u x Eu x
m dx

 
   
 


 

It is well known from classical mechanics that 2 21
2 2k m  . To simplify the notation, 

introduce: 

: 2 /m         and     2: 2 /mE   . 
Then 

2
2 2

2 ( ) 0d x u x
dx

 
 

     
 

. 

Let : x  , from which (using the chain rule) 
du du d du
dx d dx d

 
 

      and    
2 2

2 2

( / )d u d du d d d u
dx d dx d

  
 

  , 

and thus 



 

Fiók\MyWord7.0 Documents\Elméleti kémia I\PartIII.docx 

21

2
2

2 ( ) 0d u
d

  
 

        
. 

The solutions u() must be continuous and must be finite (to allow normalization). Study 
the asymptotic form (i.e.,   ) of the solution.Then 2/   , and thus 

2( ) ( )u u    , 

for which the general solution is (as can be checked by substitution) 
2 2( ) exp( / 2) exp( / 2)u A B     . 

Since u() must remain finite for all values of , A = 0, and the asymptotic solution we 
searched for is 

2( ) exp( / 2)u B   . 
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Try a solution of the following form, different from the asymptotic solution by an unknown 
polynomial H(): 

2( ) ( )exp( / 2)u H    . 

The H() polynom must vary with  so that   , 2exp( / 2)  dominates, i.e., u()  
0 as   . 
Thus, our task is to find an equation for H(): 

2 2exp( / 2) exp( / 2)u H H        

 2 2 2 2 2/2 /2 /2 /2 /2u H e H e H e He He                  
 

 

 2 /2 2 2u e H H H H          

Substitute the framed equations into the original differential equation, 

2 2 22 exp( / 2) 0H H H H H H   


           
 

and then we arrive at the much studied Hermite differential equation (HDE): 

 2 1 0H H H        
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Well-behaved solutions of the HDE exist only for / - 1 = 2n, where n = 0, 1, 2, … (others 
diverge). Thus, a family of solutions denoted by Hn()are obtained: 

2/2( ) ( )n n nu N H e    , 

2 !n n
N

n



 

  
 

 is the normalization factor, 

Hn() are the so-called Hermite polynomials. 

Useful recursion relations for the Hermite polynomials: 

1 1( ) 2 ( ) 2 ( )n n nH H nH       
The first few Hermite polynomials: 
H0 = 1 H3 = 83 – 12 
H1 = 2 H4 = 12 – 482 + 164 
H2 = 42 – 2 H5 = 120 – 1603 + 325 
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The harmonic oscillator energy levels En can be obtained from the constraint / – 1 = 2n: 

2

2 2
2

mE E
m h


   
  




, 

1
2( )nE h n  , where n = 0, 1, 2, 3, 4, … 
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Summary of results from QM treatment of polyatomic vibrations 

(1) For molecules vibrating in deep potential wells, near equilibrium the total vibrational 
wavefunction is a product of one-dimensional, harmonic oscillator wavefunctions for 
the (classical) normal coordinates. The individual harmonic oscillator wavefunctions 
are products of orthogonal (Hermite) polynomials and Gaussian functions. 

(2) The total vibrational energy is the sum of the quantized vibrational energies for each 
normal mode which appears in the classical treatment. 

(3) Fundamental vibrational frequencies are obtained by diagonalizing the mass-
weighted Cartesian quadratic force constant matrix ( 2:ij i jH V q q    ). 

(4) Vibrations of a polyatomic molecule cannot stop even at T = 0 K, resulting in what 

is called zero-point vibrational energy (ZPVE), a particular consequence of the 

Heisenberg uncertainty principle: 
3 6

1
0 2

1

N

k
k

E 




   . 
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(5) Energies of excited vibrational levels in one dimension, at least in the harmonic 
oscillator approximation, follow each other in an equidistant fashion, there is a 
constant energy separation, as the energy expression of the harmonic oscillator is 
linear in the vibrational quantum number. 

(6) As H0 = 1, the wavefunction for the ground vibrational state has a Gaussian shape. 

Excited vibrational states have nodes, all vibrational wavefunctions have infinite 

spatial extension. 

(7) The gradual migration of probability of excited vibrational wavefunctions towards 

highr displacements is a general feature of a harmonic oscillator. The regions of 

greatest probability shift towards the turning points of classical motion (which is 

where, classically, the oscillator is most likely to be found). 
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Symmetry and normal coordinates 

Let R̂  be a symmetry operator for the point group of the molecule. The potential energy 
V(Q) of the system MUST be unchanged by the application of the symmetry operator: 

3 6 3 6
2 21 1

2 2
1 1

ˆ ˆ( ) ( ) ( )
N N

k k k k
k k

RV V Q RQ 
 

 

   Q Q  

Non-degenerate modes: ˆ
k kRQ Q  . 

Degenerate modes: ˆ
k km k

m
RQ r Q , where the sum runs over all normal modes with the 

degenerate eigenvalues k, rkm values are the corresponding coefficients. 

NB: The normal coordinates form a basis for an irreducible representation of the point 
group. 
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Problem: Which are the irreducible representations according to which the normal 
vibrations of the H2CO molecule transform? 

Answer: Place the molecule in the yz plane. Obtain a reducible representation on the basis 
of x, y, z coordinates placed on each atom: 

C2v E C2 v(xz) v(yz)  
A1 1 1 1 1 z 
A2 1 1 –1 –1 Rz 
B1 1 –1 1 –1 x, Ry 
B2 1 –1 –1 1 y, Rx 
red 12 –2 2 4  

Recall the rules to obtain characters of reducible representations: 
(1) Only those atoms which are unshifted by a symmetry operation give a contribution to 
the character. 
(2) ˆ( ) 3E N  . 
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(3)  ˆ( ) 1 2cos 2 /m
n

m
n C

C N m n     , for H2CO, m = 1 and n = 2, while N the number of 
unshifted atoms. 

(4) ˆ( ) N   . 

(5) ˆ( ) 3 ii N   . 

Reduction of the reducible representation is done via the equation 

( )

ˆ

1 ˆ ˆ( ) ( )
R

a R R
h

   
 . 

For example, 

 1
1( ) (1)(12) (1)( 2) (1)(2) (1)(4) 4
4

a A       . 

Similarly, a(A2) = 1, a(B1) = 3, and a(B2) = 4. 

Irreducible representations corresponding to translation and rotation: 

translation 1 1 2A B B        and    rotation 2 1 2A B B     
thus, 

vib 1 1 23 2A B B    . 



 

Fiók\MyWord7.0 Documents\Elméleti kémia I\PartIII.docx 

32

Symmetry of vibrational wavefunctions 
3 6

,
1

( )
k

N

k v k
k

Q




  v  

21/4
1/22

,
1( ) ( )

2 ( !)

k k

k kk

Q
k

k v k v k kv
k

Q e H Q
v

 


   
 

  and k
k

 


. 

Thus, 
21/4

2
,0 ( )

k kQ
k

k kQ e



   

 
, 

21/43
2

,1( )
4

k kQ
k

k k kQ Q e



 

  
 

, 

21/4
2 2

,2 ( ) (2 1)
4

k kQ
k

k k k kQ Q e
 


 

  
 

. 
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(1) Vibrational ground state: 1 2 3 6( , ,..., ) (0,0,...,0)Nn n n   , always fully symmetric. 

(2) Fundamentals: 1 2 3 6( , ,..., ,..., ) (0,0,...,1,...,0)k Nn n n n   , always transform according to 
[ ]kQ . 

(3) Vibrational overtones: 1 2 3 6( , ,..., ,..., ) (0,0,..., ,...,0)k N kn n n n L  , if Lk = 2, than the first 
overtone transforms as [ ] [ ]k kQ Q  , if Lk = 3, than the second overtone transforms as 

[ ] [ ] [ ]k k kQ Q Q   . 

(4) Combination vibrations: 1 2 3 6( , ,..., ,..., ) (0,0,..., ,..., ,...,0)k N k ln n n n L L  , if Lk = 1 and 
Ll = 1, the combination vibration transforms as [ ] [ ]k lQ Q  , if Lk = 2 and Ll = 1, the 
combination vibration transforms as [ ] [ ] [ ]k k lQ Q Q   . 

Example: H2O  v = (0, 0, 0)  A1; v = (0, 0, 1)  B2; v = (0, 0, 2)  2 2B B A1 és 

v = (0, 2, 1)  1 1 2A A B  B2. 
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Selection rules for infrared spectra 

Consider the rotational-vibrational transitions for the same electronic state: 

(rot , vib ,el) (rot , vib ,el)    . 

The transition dipole matrix element: 
* ˆnm
n md  R μ     and ˆ i i

i
qμ r  

Upper state rot vib el( ) ( ) ( ; , )n e     κ Q r Q κ  

Lower state rot vib el( ) ( ) ( ; , )m e     κ Q r Q κ  

The dipole moment operator is expressed in the space-fixed coordinate system. Switching 
to a molecule-fixed coordinate system: 

elˆ ˆ( ) ( ; )molUμ κ μ r Q  

Elements of the transition dipole metrix are as follows: 
*

rot vib rot vib mol vib( ) ( ) ( )nm d      R R r R Q Q Q  
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From the vanishing integral rule, arising from group theory, Rnm = 0 unless 

vib mol vib[ ] [ ] [ ]       contains the totally symmetric irrep of the point group. If vib   
is the ground vibrational state, then vib[ ]   is the totally symmetric irrep. Therefore, for a 
transition to be electric-dipole allowed, vib[ ]   must contain one of the same irreducible 
representations as mol[ ] . This is the gross selection rule for vibrational fundamentals. 
Example: ethylene (D2h) 

mol ( , , )x y z     transforms as (B3u, B2u, B1u) 

vib 1 1 2 2 33 2 2 2g u g u g u uA A B B B B B         

    (1–3) 4   (5,6) 7     8 (9,10) (11,12) 
Thus, we can conclude that only 7, 9, 10, 11, and 12 are IR active. 

The specific selection rule in i.r. spectroscopy is that within the harmonic oscillator 
approximation 1v   , due to the following property of Hermite polynomials: 

, 1 , 1
1

2 2m n m n
n nm x n  
  


   
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Thus, when the harmonic oscillator approximation is employed for a diatomic molecule, 
only a single line, the “vibrational fundamental” will appear in the spectrum. For 
polyatomic molecules the spectrum is still very simple: vk = 1, vj = 0, j  k, k=0, 1, 2, 
…, 3N–6. 

Furthermore, the intensity of an IR absorption depends on the magnitude of the dipole 
moment derivative along Qk squared. Fundamental bands, which are not allowed by 
symmetry have  e

0kQ   . 
3 6

mol e
1 e

( ) ...
N

k
k k

Q
Q





 
    

 μμ Q μ  

3 6

vib vib e vib
1 e

( ) ... ( )
N

k
k k

Q d
Q

 




          


μr Q μ Q Q  

3 6

vib vi vib
1 e

( ) ( )
N

b k
k k

Q d
Q

 




      
 

μr Q Q Q  
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Internal coordinates 

Changes in interatomic distances or in the angles between chemical bonds, or both, can be 
used to provide a set of 3N – 6(5) internal coordinates, i.e., coordinates which are 
unaffected by translations and rotations of the molecule as a whole. They provide the most 
physically significant set for use in describing the potential energy of the molecule. Usually 
they do not depend from the masses of tha atoms, thus they are geometrically defined. 
Note, however, that the kinetic energy is most easily set up in terms of Cartesian 
displacement coordinates. 

Basic types of internal coordinates: (bond) stretching (STRE), (valence angle) bending 
(BEND), out-of-plane bending (OUT), and torsion (TORS). 
Let ab b a r r r  a vector pointing from atom a to atom b, /ab ab abe r r  the corresponding 
unit vector. Than, for example: 
STRE ab abr  r      0 < rab <  

BEND  1cosabc bc ba  e e     0 < abc <  
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Anharmonicity of molecular vibrations 

 
  



 

Fiók\MyWord7.0 Documents\Elméleti kémia I\PartIII.docx 

44

 

MOLECULAR MECHANICS (MM) 

 

In the 1960s, while studying vibrational spectra and related potential energy 
hypersurfaces (PES), different so-called force field models were developed, like the central 
force fields, CFF: the PES is a sum of pair interaction potentials, or the valence force fields, 
VFF: the PES contains terms dependent upon bond lengths and angles. 
Spectroscopic VFFs formed an ideal starting point for so-called molecular mechanics 
models. Essence of MM models: they are not quantum chemical models, molecules are 
considered as if they were held together by deformable springs between the atoms, only 
the motions of the nuclei are investigated. Systems of the size of hundreds of thousand of 
atoms can be investigated on computers. 

MM energy function: 

total stre bend tors nonbondedE E E E E     
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Bond stretching contribution (Estre): 
2

stre stre 0( )E k l l   

  2
stre e 01 exp ( )E D l l       

Angle-bending contribution (Ebend): 
2

bend 0( )E k    

Dihedral angle-bending contribution (Etors): 

tors (1 cos )nE V s n   

Vn is the rotational barrier, n the rotational periodicity, 1 / 1s     (open/staggered). 
Nonbonding interaction contribution (Enonbonded): 

12 6
vdW ( / ) 2( / )m mE r r r r      

el /i j ijE q q Dr  
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Raman spectroscopy 

In 1923, Smekal, an Austrian physicist, predicts that radiation scattered from molecules 
contains not only photons with the incident frequency but also photons with a changed 
frequency. 

In 1928, Indian physicist Sir Chandrasekhara Venkata Raman (1888-1970) obtains the first 
positive confirmation from experiments on liquid benzene. The experiments were honored 
by a Nobel-prize in physics in 1930. 
Possible outcomes of radiation-matter interaction: 

(a) stimulated absorption or emission of photons 
(b) elastic scattering ( 0h h   ), Rayleigh scattering. 

(c) inelastic scattering ( 0h h   ), Raman scattering. 

The scattering law observed by Lord Rayleigh (John William Strutt Rayleigh, 1842–
1919) has no real spectroscopic significance. (Lord Rayleigh received the Nobel-prize in 
physics in 1904 for the discovery of argon.)  
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Raman scattering is the inelastic scattering of photons from molecules. Scattering of 
radiation takes place as an “immediate” (within 10-14 s) effect of the interaction of the 
photon and the molecule. Raman scattering is to be distinguished from nonresonant 
fluorescence, in which the incident photon is absorbed followed, within 10-8 s, by the 
emission of a second photon. Note that Raman scattering can occur even if h0 does not 
correspond to some energy-level difference in the molecule. 

During Raman scattering, the incident radiation is tipically in the visible, transfer of energy 
can be from the radation to the molecule, resulting in Stokes lines, as well from molecules 
to the radiation, resulting in anti-Stokes lines. Anti-Stokes lines are significalntly weaker 
than Stokes-lines because they must originate from excited energy levels, which are less 
populated than the ground state according to the Boltzmann distribution. Raman scattering 
is typically only (1/1000)th the intensity of Rayleigh scattering. 

Advent of lasers in the 1960s led to a revolution in Raman spectroscopy → sensitive 
technique. We can talk about rotational and vibrational Raman spectroscopy. 
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Hallmarks of vibrational Raman spectroscopy 

(1) Raman vibrational spectroscopy is complementary to IR spectroscopy: 
(a) covalent bonds tend to give strong Raman bands whereas ionic bonds tend to give 

strong IR bands; 
(b) homonuclear diatomics are invisible in IR but easily observed in Raman; 
(c) IR and Raman spectroscopy have different selection rules. Rule of mutual 

exclusion: if a molecule has a center of symmetry (i), Raman active vibrations are 
IR inactive, and vice versa. In highly symmetric molecules some bands may be 
neither Raman nor IR active. 

(2) Raman spectroscopy is ideal for the study of aqueous solutions, for which IR 
transmittance is poor → RS is highly useful to study physiological systems. 

(3) Unlike IR spectroscopy, a single Raman instrument can be used over the entire range 
of the vibrational spectrum. 

(4) Sample preparation is usually simple. Liquids in capillary tubes are common. 
(5) Disadvantage: fluorescence background from organic (or other) molecules can 

obscure the Raman spectrum. 
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Classical theory of the Raman effect 
Electric field (E) from radiation induces a dipole moment for a diatomic: 

,inducedz zz zE   

In the general 3-dimensional case one has a 3×3 polarizability tensor (with three 
independent elements, just like for the moment of inertia tensor): 

ind μ αE    or   
,ind

,ind

,ind

x xx xy xz x

y yx yy yz y

z zx zy zz z

E
E
E

   
   
   

    
        

        

 

Typical values of polarizabilities (Å3): 
 xx yy zz 
CO 1.62 1.62 2.60 
CO2 1.93 1.93 4.03 
CH4 2.62 2.62 2.62 
benzene 11.1 11.1 7.4 
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The magnitude of a typical induced dipole is very small (about 10–5 D). 

Electric field oscillation in time: 

0 0 ind 0 0sin(2 ) sin(2 )E E t E t      . 

However, the bond distance R oscillates in time as well: 

e sin(2 )eR R A t  . 

Accordingly, α is modulated in time: 

e e
e

( )R R
R
        

 

e e
e

sin(2 )A t
R
       

 

ind e 0 0 0 0 e
e

sin(2 ) sin(2 )sin(2 )E t AE t t
R
         

 
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Employing the trigonometric identity 2sin sin cos( ) cos( )A B A B A B    , the final 
result for the induced dipole: 

ind 0 0sin(2 )eE t           Rayleigh scattering 

 0
0 e

e

cos[2 ( ) ]
2

AE t
R
        

 Stokes lines (Raman) 

 0
0 e

e

cos[2 ( ) ]
2

AE t
R
        

 anti-Stokes lines (Raman) 

Summary: 

Vibrations of molecules cause a modulation in polarizability leading to emission of 
radiation from the induced dipole at shifted frequencies 0 – e  and 0 + e, where 0 is the 
incident frequency of radiation and e is the frequency of vibration. However, these 
Raman-scattered peaks only appear if ( kQ  )e  0, i.e., the polarizability must change 
in first order along the vibration for Raman scattering to occur. 
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Quantum mechanical results for Raman scattering – selection rules 

Unlike the spectroscopic techniques discussed thus far, Raman spectroscopy is 
fundamentally a two-photon process. The interaction between radiation and matter appears 
in the second-order terms in perturbation theory rather than the first-order terms. Thus, the 
theory of Raman scattering is more involved than that for the one-photon processes 
governed by  

* ˆnm
n md   R μ . 

Raman selection rules are obtained by computing 

( ) *r v r v
r v r v r vd d    
     A α , 

where r and v denote rotational and vibrational states and coordinates, respectively. 
 = (Q, ) is the 33 polarizability tensor, which depends on the normal coordinates Q 
of the molecule and the rotational coordinates , which specify the orientation of the 
molecule-fixed axis system in space. 
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Vibrational selection rules 

From the vanishing integral rule arising from group theory, the Raman “intensity” will 
be zero, unless 

     molv v    α  

contains the totally symmetric irrep of the point group. If v   is the ground vibrational state, 
than  v   is the totally symmetric irrep. Thus, for a transition to be Raman allowed, 
 v   must contain one of the same irreps as  mol α . Just as the components of mol 

transform as (x, y, z), the elements of mol transform as (x2, y2, z2, xy, xz, yz). Hence, the 
Raman-allowed bands can be determined from a character table which lists the irreps of 
this products of coordinates.  

*
vib e

e
v k v

k k

Q d
Q

  

  
        


αA α Q  

* *
vib e

e

( ) ( )v v v k v
k k

d Q d
Q

      

 
    

 
αA α Q Q Q Q  
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The first term on the rhs of the last equation is zero, while the second term is familiar from 
the study of IR selection rules.  

Conclusion: within the harmonic approximation, only the fundamental bands are Raman-
allowed. More explicitly: vk = 1, and vj = 0, if j  k. The “intensity” of a Raman 
absorption depends on the magnitude of the polarizability derivative along Qk squared. 
Fundamental bands which are not allowed by symmetry have ( kQ  )e = 0. 

Rotational selection rules 
J = 0, 1, or 2. 
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Depolarization in Raman scattering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

: I
I

   depolarization ratio 

The  depolarization ratio can be measured through use of a polarizer in the path of the 
scattered radiation before it reaches the detector. The value of  is indicative of the 
symmetry of the vibration which is excited. 
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Theoretical expression for the depolarization ratio: 
2

2 2

3( )
45( ) 4( )


 




 
 , 

where the primes denote derivatives with respect to Qk of the following quantities 
1
3 ( )xx yy zz      , mean polarizability 

2 2 2 2 2 2 21
2 ( ) ( ) ( ) 6( )xx yy yy zz zz xx xy xz yz                   , anisotropy of 

polarizability. 
Upon a thorough investigation of the related equations, for totally symmetric vibrations  

< 0.75, while for all other vibrations  = 0.75. 
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Depolarization ratios: 

        
H2O 1 0,03 (a1) NH3 1 0,027 (a1) 
 2 0,74 (a1)  2 0,650 (a1) 
 3 0,75 (b2)  3 0,750 (e) 
     4 0,750 (e) 

 
1: symmetric O–H stretch           1: symm. N–H stretch

 

A specialized situation called resonance Raman scattering arises, leading to resonance 
Raman spectroscopy, when the laser frequency is tuned close to resonance with one of the 
molecular eigenstates, when the transition probability becomes anomalously large. The 
ordinary Raman selection rules are not applicable in this case. 


