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V. ROTATIONAL (MICROWAVE) SPECTROSCOPY 

 

Cleeton and Williams (1934) observed absorptions at microwave frequencies by the NH3 

molecule, this marked the beginning of MW spectroscopy. During World War II the 

military needed developments related to microwave technology, resulting in improved 

radar (RADAR, radio detection and ranging) capabilities. The microwave spectrum of H2O 

was discovered when the US Navy found that unusually high attenuation of radar signals 

occurred at certain frequencies due to atmospheric water vapor (another development after 

Fourier’s observations related to the greenhouse effect on Earth). 

Microwave (MW) region of the electromagnetic (EM) spectrum (MW oven: 2.45 GHz): 

wavelength:   (0.1, 100) cm 

wavenumber: ~   (0.01, 10) cm–1 

frequency:   (0.3, 300) GHz 

Terahertz (THz) region: principally above 1 THz, up to 3-4 THz 
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In these regions of the EM spectrum pure rotational transitions dominate.  

Nevertheless, there are alternate causes of absorption in the microwave region: 

 Tunneling splitting of the inversion (vibrational) mode of NH3 (at 24 GHz  0.80 

cm–1) 

 Nuclear hyperfine splitting of the 2S state of the H atom (0.0475 cm-1), leading to MW 

emission from outer space 

 Splitting of degenerate electronic states due to the interaction of electronic orbital 

angular momentum and molecular rotation: Λ-doubling of the Π1/2
2  state of the OH 

radical for J = ½ (0.0556 cm–1) 
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Hallmarks of rotational spectroscopy 

A) Data of the highest precision 

Wavenumbers and frequencies of some measured rotational transitions of CO 

~ (cm-1) J   J   (GHz) 1
 J

J (GHz) 

3.845 033 19 0 1 115.271 195 115.271 195 

7.689 919 07 1 2 230.537 974 115.266 779 

11.534 509 6 2 3 345.795 900 115.257 926 

B) Determination of geometrical structures 

High precision rotational constants (A0,B0,C0) 

for parent molecule and isotopologues 

 

 

moments 

of inertia  

 

 

accurate bond lengths 

and bond angles 

[Useful reading in Hungarian – Nemes László: A molekulageometria meghatározása 

forgási spektroszkópiával (Kémia Újabb Eredményei, 51. kötet, 1981)] 
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C) Determination of permanent dipole moments 

In the Stark effect, discovered by Hughes and Wilson in 1947, an external electric 

field is applied in the absorption cell. This effect increases sensitivity and also causes 

splitting of rotational energy levels in accordance with the magnitude of the dipole 

moment. 

D) Radiofrequency astronomy 

Detection and identification of molecules in interstellar space from emission and 

absorption spectroscopy. Background energy densities characteristic of a black body at 2.7 

K. Background radiation in the university is supposedly left over from the Big Bang. 

Uniqueness of high precision transition frequencies is complicated by the Doppler effect. 

Many rotational lines from interstellar space remain to be characterized. A challenging 

question: are there molecules characteristic of life on Earth (e.g., amino acids and sugars) 

in space? 
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Lot more than 100 unique neutral molecules, as well as several cations and a few anions, 

have been observed via their microwave and millimeterwave (emission) spectra. Some of 

these chemical species are as follows (  0 is a requirement, so the most important 

molecule leading the gas-phase chemistry of cold places, H3
+, has only been identified 

recently, its properties could be investigated only in the laboratory): 

diatomics: OH, CO, CN, CS, SiO, SiS, NO, NS, CH, CH+ 

triatomics: H2O, HCN, HNC, OCS, H2S, N2H+, SO2, HNO, C2H, etc. 

10-atoms: NH2–CH2–COOH(?) 

13-atoms: NC–CC–CC–CC–CC–CC–H 
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Classical mechanics of rigid rotation 

 

Principal reference: H. Goldstein et al., Classical Mechanics, 3rd ed., 2001 

Assume that we have a rigid body which is freely rotating in space, i.e, its motion is 

unconstrained and no torque is applied to it. Such is the model for the rotations of 

polyatomic molecules, and the model is called rigid rotor. We have the following equations 

of motion: 

L = I  = const.    (conservation of angular momentum) 

 
LILIωω

1

2
1

2
1 TTT  const.  (conservation of energy) 

where 

L is the rotational angular momentum (a constant vector in the lab-fixed frame) 

 is the angular velocity of rotation, directed along the instantaneous axis of rotation 

(a time-dependent vector in the lab-fixed frame) 

I is the inertia tensor (a 3  3 time-dependent matrix in the lab-fixed frame) 

T is the kinetic energy of the rotation (a constant since energy is conserved and there 

is no potential energy involved) 



 

J:\Attila\Osszesitett\Projects\Oktatas\Eloadasok\ElméletiKémiaI-Angol\Week2.docx Created by Császár Attila 

7 

Analogies between translation and rotation 

Translational motion along the x axis  Rotational motion around rotational axis z  

coordinate: x  angle (angular distortion):  

velocity: 
td

xd
vx   

 
angular velocity of rotation: 

td

d
z


   

acceleration: 
2

2

td

xd

td

vd
a x

x   
 

angular acceleration: 
2

2

td

d

td

d z
z


   

mass: m  moment of inertia: 
i

iimI 2  

equation of motion: 
2

2

td

xd
mFx   

 
equation of motion: 

2

2

td

d
IM z


  

(linear) momentum: xx mvp    angular momentum: zz IL   

kinetic energy: 
2

2
1

xmvT    kinetic energy: 
2

2
1

zIT   

 



 

J:\Attila\Osszesitett\Projects\Oktatas\Eloadasok\ElméletiKémiaI-Angol\Week2.docx Created by Császár Attila 

8 

Lab-fixed and molecule-fixed axis systems 
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In each instant in time one can find a unitary matrix U(t) which relates the body-fixed (x, 

y, z) coordinate system to the lab-fixed (X, Y, Z) system. The equations of motion in the 

body-fixed frame are 

)()( tt ωIL        and       )()(
2
1 ttT T

ωIω constant , 

where LUL )()( tt   (L constant), )()()( ttt ωUω  , and Tttt )()()( UIUI  . 

The convenience of choosing the body-fixed frame is that I is a constant with respect to 

time. 
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Equations for the moment of inertia tensor 

 

 

For a freely rotating object, the origin of the body-fixed frame is the center of mass 

(abbreviated as CM or sometimes COM). For a rigid body consisting of N particles with 

masses mk, elements of the moments of inertia are as follows (coming from the definition 

of the angular momentum as 𝐉 = ∑ 𝑚𝑘(𝐫𝑘 × 𝐯𝑘)
𝑁
𝑘=1 = ∑ 𝑚𝑘[𝐫𝑘 × (𝝎 × 𝐫𝑘)]

𝑁
𝑘=1 ): 
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moments of inertia:      



N

k
kkkxx zymII

1

22
11 )(  





N

k
kkkyy zxmII

1

22
22 )(  





N

k
kkkzz yxmII

1

22
33 )(  

products of inertia:     



N

k
kkkyz zymIII

1
3223  

  



N

k
kkkxy yxmIII

1
1221  

 



N

k
kkkxz zxmIII

1
1331  
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To visualize the inertia tensor we can do the following. For every possible axis  through 

the COM compute the moment of inertia  


N

k kkrmI
1

2
  (rk is the perpendicular distance 

from the particle of mass mk to the axis ). Lay off on each side of the center of mass a 

distance numerically equal to I /1 . The resulting surface in three dimensions is the 

ellipsoid of inertia.  
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By choosing the body-fixed frame (embedding) appropriately, we can make I diagonal: 










































c

b

a

zzzyzx

yzyyyx

xzxyxx

I

I

I

III

III

III

00

00

00

I  

In this case, the kinetic energy expression grossly simplifies, 

)(

)(
2

1
)()(

2

1 222

zyyzzxxzyxxy

zzzyyyxxx
T

III

IIIttT







 ωIω
 

becomes 

222

2

1

2

1

2

1
ccbbaa IIIT   . 

The axes which diagonalize the inertia tensor in this manner are called the principal axes 

of rotation. The resulting Ia, Ib, and Ic values are the principal moments of inertia. 
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Algorithm to determine the principal axes and principal moments 

(1) Attach an arbitrary coordinate system to the (rigid) body and compute the coordinates 

of the center of mass: 





N

k
kkm

M 1
COM

1
rR  

(2) Translate the coordinate system to places the COM at the origin. Recompute all 

coordinates of the particles in this reference frame. 

(3) Compute the inertia tensor I  in this body-fixed, COM reference frame. 

(4) Find the eigenvalues and eigenvectors of I : 

c,b,a,   vvI I  

The v are the principal axes and the I are the principal moments. 
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Facts which aid the rapid determination of the principal axes: 

(1) The principal axes are mutually orthogonal. (The inertia tensor is symmetric.) 

(2) Any plane of symmetry contains two principal axes and is perpendicular to a third 

principal axis. 

(3) Any axis of rotation is a principal axis. If it is a Cn axis for n > 2, the plane perpendicular 

to the axis is a principal plane corresponding to degenerate moments of inertia. 

Examples: 

1. H2O placed in the yz plane 

 yz symmetry plane  x must be a principal axis (based on (2)) 

 xz symmetry plane  y is than also a principal axis (based on (2)) 

 (x,y) principal axes  z is a principal axis (based on (1)) 

2. Ammonia 

 Cn(z)  z is a principal axis (based on (3)) 

 n = 3  (x,y) principal plane. Then any two orthogonal vectors of the (x,y) planecan 

be chosen as principal axes. Axes x and y is one of the possible choices. 
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Spectroscopic rotational constants and principal moments of inertia 

It is a generally accepted convention that the principal moments of inertia 

corresponding to (a,b,c) must satisfy the following relationship: 

Ic  Ib  Ia 

The rotational constants, which will be used to help to interpret rotational spectra, are 

defined according to the same convention as: 

 














aIhc
A

2

1~
2

 

 














bIhc
B

2

1~
2

 CBA
~~~

  

 














cIhc
C

2

1~
2
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Example: Rotational constants of H2O (C2v, placed in the yz plane) 

O1: r1 = {0, 0, 0} (natural choice) 

H2: r2 = {0, r sin(/2), r cos(/2)} (r = rOH and  = HOH) 

H3: r3 = {0, –r sin(/2), r cos(/2)} 

Step 1: Based on 



N

k
kkm

M 1
tkp

1
rR  determine the COM: 

M, the total mass: M = mO + 2 mH  

)2/cos(2,0,0(
2

1
H

HO

COM rm
mm 

R  

Step 2: Introduce the new coordinates: 

O1: r1 = r {0, 0, )2/cos()/(2 H Mm }  

H2: r2 = r {0, sin(/2), (mO/M) cos(/2)} 

H3: r3 = r {0, –sin(/2), (mO/M) cos(/2)} 
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Step (3): Determination of the elements of the inertia tensor: 

yyI   =   
i i

iiiii zmzxm 222 )(  

= 
2

2
O

H
22

2

O
2
H22 )2/(cos2

4
)2/(cos

M

m
mr

M

mm
r   

= )2/(cos2)24(
)2/(cos 22OH2

OHO
2
H2

22




r
M

mm
mmmm

M

r
  

zzI   = )2/(sin2)( 22
H

222 rmymyxm
i i

iiiii    

xxI   =  
i

zzyyxxiii IIIzym )( 22 , which holds, as can be easily shown, for all 

planar molecules. 
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 
i

iiixy yxmI 0  and  
i

iiixz zxmI 0 , 

0)2/cos()/)(2/sin()2/cos()/)(2/sin(

0

OO 

 

 MmrMmr

zymI
i

iiiyz

 

Step (4): Note that the moment of inertia tensor is already diagonal, so the eigenvalues are 

just the diagonal elements and the eigenvectors are simply the vectors (1, 0, 0), (0, 1, 0) 

and (0, 0, 1). Therefore, the principal axes are (x, y, z), as deduced above using the rules 

(1)-(3) concerning principal axes. 

Recommendation: It is highly advisable to use Facts (1)-(3) concerning principal axes in 

setting up the initial coordinate system. If there is any point-group symmetry operation 

characterizing the molecule, an appropriate choice of the initial axis system simplifies the 

task of diagonalizing the inertia tensor. 
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We have the following data for the water molecule [1 u = m(12C)/12]: 

mO = 15.99491 u, mH = 1.007825 u, 

re(O–H) = 0.9572 Å, eHOH = 104.52 (not exactly the correct equilibrium 

structure of H2
16O, but close) 

Based on the relation just obtained: 

yyI   = 0.61446 u Å2 = 1.0203  10–47 kg m2 

zzI   = 1.15492 u Å2 = 1.9178  10–47 kg m2 

zzyyxx III  = 1.76938 u Å2 = 2.9382  10–47 kg m2 

Note the association y  a, z  b, x  c. 
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The associated equilibrium rotational constants (1 cm–1 = 2.997925104 MHz and  

1 MHz = 3.3356410–5 cm–1): 

e

~
A = 822 476 MHz = 27.4348 cm-1 

e

~
B = 437 588 MHz = 14.5964 cm-1 

e

~
C = 285 625 MHz = 9.5274 cm-1 

The equilibrium rotational constants e

~
A , e

~
B , and e

~
C  are to be distinguished from the 

(measurable) rotational constants 0

~
A , 0

~
B , and 0

~
C , which include zero-point vibrational 

effects and thus are slightly different from their equilibrium counterparts (quantum 

chemistry provides outstanding estimates for the small but significant differences). 
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Molecular Rotational Types 

(A) Linear molecules 

Ic = Ib  Ia = 0 

There exists only one unique rotational constant, which is labelled B and is equal to C. 

(B) Spherical tops 

Ic = Ib = Ia = I    A = B = C 

There exists only one unique rotational constant, which is labelled as B.  

Examples: CH4, SF6, basketball. 
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(C) Symmetric tops 

Case (1): Prolate symmetric top 

Ic = Ib  Ia  0    A  B = C 

There exists two unique rotational constants, A and B, where A  B. Examples: CH3I, 

CH3Cl, allene, American football.  

Case (2): Oblate symmetric top 

Ic  Ib = Ia  0    A = B  C 

There exists two unique rotational constants, B and C, where B  C. Examples: NH3, 

chloroform (CHCl3), benzene, frisbee. Planar oblate symmetric tops, if they are truly 

symmetric (thus possess at least one rotational axis Cn with n > 2) do not have a dipole 

moment and thus have no pure rotational spectra. 

(D) Asymmetric tops 

Ic  Ib  Ia  0    A  B  C 

There exist three unique rotational constants, A, B, and C, where A  B  C. Most 

molecules belong to this top type. Examples: H2O, H2CO, C2H4. If Ic  Ib  Ia, the molecule 

is a prolate near symmetric top (e.g., HNCO), while if Ic  Ib  Ia, the molecule is an oblate 

near symmetric top (e.g., furan, C4H4O). 
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Group theory and rotational types 

The character table for the point group of the molecule indicates whether it is an 

asymmetric top, a symmetric top, or a spherical top by showing how the (a, b, c) axes, 

which correspond to some choices of (x, y, z), transform.  

Asymmetric top: a, b, and c are unique and transform as a one-dimensional irreducible 

representation (e.g., H2O, H2CO). 

Symmetric top: (a, b) or (b, c) pair transforms as a two-dimensional irreducible 

representation. The other axis is unique and transforms as a one-dimensional irrep (e.g., 

C6H6, CH3Br).  

Spherical top: (a, b, c) triplet transforms as a three-dimensional irrep (e.g., CH4, SF6).  
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Quantum mechanics of rigid rotation 

 

Consider a molecule rotating in isotropic, field-free space with no applied torque. After 

invoking the Born–Oppenheimer (BO) approximation (without which electronic and nuc-

lear motions would be scrambled in complicated molecular Hamiltonians, and extensive 

numerical computations would be necessary to extract even the most qualitative features 

of vibrational and rotational structure) we wish to solve the nuclear Schrödinger equation: 

NNNN EH ˆ , 

where 

VTTTTHN  rot-vibvibrottrans
ˆˆˆˆˆ  . 

Vibrational motion is typically much faster than rotational motion. Thus, the vibration-

rotation interaction term, rot-vibT̂ , can be averaged over the given vibrational state, whence 

vv TTH rot-vibrotrot,
ˆˆˆ   
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is the rotational Hamiltonian for the given vibrational state (for rotational motion Vrot = 0). 

Consequently, 

vN rot,vibtrans    

and the time-independent Schrödinger equation for the rotational motion is 

vvvv EH rot,rot,rot,rot,
ˆ   , 

Classically, 

2

2
12

2
12

2
1

rot ccbbaa IIIT    

or 

c

c

b

b

a

a

I

J

I

J

I

J
T

222

222

rot   , 

where Ja,b,c are components of the rotational angular momentum in the body-fixed 

(molecule-fixed) frame of reference. 
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Use quantum mechanical operators: 

vc

c

vb

b

va

a
v

I

J

I

J

I

J
H

,

2

,

2

,

2

rot,
22

ˆ

2

ˆ
ˆ   , 

where the moments of inertia depend (slightly) on the vibrational state of concern 

characterized by the quantum number v. Understanding this dependence, we henceforth 

drop the subscript v. 

One could, in principle, use operators for the components of the angular momentum 

about the space-fixed (lab-fixed) axes XĴ , YĴ , és ZĴ . We know that 

2222222 ˆˆˆˆˆˆˆ
ZYXcba JJJJJJJ   . 

Note the differences in commutation relations: 

  ZYX JiJJ ˆˆ,ˆ     cba JiJJ ˆˆ,ˆ   

  XZY JiJJ ˆˆ,ˆ     acb JiJJ ˆˆ,ˆ   

  YXZ JiJJ ˆˆ,ˆ     bac JiJJ ˆˆ,ˆ   
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Solutions to the rotational Schrödinger equation 

 

c

c

b

b

a

a

I

J

I

J

I

J
H

22

ˆ

2

ˆ
ˆ

222

rot   

Regardless of the values of Ia, Ib, and Ic, 

  0ˆ,ˆ 2
rot JH     and      0ˆ,ˆ

rot ZJH . 

Thus, rot  is also an eigenfunction of 2Ĵ  and ZĴ . 

We know from the theory of angular momenta (see also the outstanding textbook R. 

N. Zare: Angular Momentum, Wiley-Interscience: New York, 1988) that 

rotrotrotrot
ˆ  EH  , 

rot
2

rot
2
rot )1(ˆ  JJJ    and J = 0, 1, 2, 3, … , 

and 

rotrotZ
ˆ  MJ    and M = 0, 1, 2, …, J , 



 

J:\Attila\Osszesitett\Projects\Oktatas\Eloadasok\ElméletiKémiaI-Angol\Week2.docx Created by Császár Attila 

29 

where J is the quantum number for total rotational angular momentum, M is the quantum 

number for the projection of J on the space-fixed Z axis. 

Thus, for any rotor )exp(),(
2

1
rot 


iMF , 

where the three rotational coordinates are the three Eulerian angles (  ,, )  

(  20;0;20  ), defining the orientation of a rigid body in space. With 

the help of the Eulerian angles, and some algebra, the angular momentum operator can be 

expressed both in the space- and body-fixed frames: 
































 sincotcoscsccosˆ iJa  , 
































 coscotsincscsinˆ iJb  , 




 iJ c

ˆ  , 
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and 
































 sincsccoscotcosˆ iJ X  , 
































 coscscsincotsinˆ iJY  , 




 iJZ

ˆ  . 

It can also be shown that 


















































 cotcsccot2csccscˆ

2

22

2

2
2

2

2
222 J . 

In what follows let us investigate the different tops separately. 
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Linear molecules 

We learned the following about rigid linear molecules (“pencils”): 

Ic = Ib  Ia = 0, 

thus, there is only one rotational constant, the convention is to call it B and its value 

coincides with C. 

The Hamiltonian depends only on the Eulerian angles ( , ) but not on . Thus, 

bI

J
H

2

ˆ
ˆ

2

rot   , 

2

2

2

2

2

22 cot
sin

1ˆ



 




















 J  , 

),()1(),(ˆ 22  JMJM YJJYJ    , 

and 

),(rot JMY  . 
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We get the following expression for the rotational energy levels of a linear molecule: 

bI

JJ
E

2

)1(2

rot





 , 

furthermore, 

,2,1,0J    and   JM  ,,2,1,0  . 

All rotational levels depend only on the quantum number J but not on M; thus, the levels 

are (2J + 1)-fold degenerate (M can take 2J + 1 values for each J).  

In spectroscopy, it is usual to talk about term values (unit: cm-1, the same as that of B
~

): 

)1(
~rot

rot  JJB
hc

E
F . 
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Spherical top 

We learned the following about rigid spherical tops (“footballs”): 

Ic = Ib = Ia = I      A = B = C , 

thus, there is only one rotational constant, usually denoted as B.  

The rotational Hamiltonian employed in the Schrödinger equation is thus 

I

J

I

J

I

J

I

J
H cba

2

ˆ

2

ˆ

2

ˆ

2

ˆ
ˆ

2222

rot    

and the time-independent Schrödinger equation becomes 

rotrot
2ˆ)2/1(  EJI . 

The eigenfunctions can be written as 

  )exp()cos(rot  iMPM
J  , 

where  )cos(M
JP  are associated Legendre polynomials. 

The corresponding eigenvalues are 

I

JJ
E

2

)1(2

rot





 ,    ,2,1,0J  . 
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While the rotational Hamiltonian does not generally commute with aĴ ; for spherical tops 

  0ˆ,ˆ
rot aJH . The eigenvalues of aĴ  are K , with JK  ,,2,1,0  . The quantum 

number K gives the rotational angular-momentum component along a molecule-fixed axis 

of the spherical top. Naturally, the corresponding eigenfunctions have the form 

  )exp(21  iK . Hence the overall spherical-top eigenfunctions have the form 

)exp()exp(
2

1
)( 


 iKiMH JKM 








 . 

There are three quantum numbers characterizing this top: J, K, and M. According to 

the definition of the quantum numbers (in the present case JM  ,,2,1,0  ), each 

rotational level is 2)12( J -fold degenerate.  

The rotational term values are 

)1(
~rot

rot  JJB
hc

E
F  . 
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Symmetric top molecules 

Case 1: Prolate symmetric top 

Ic = Ib  Ia  0    A  B = C 

There are two unique rotational constants, A and B, and according to ur convention 

A  B. Examples: CH3I, CH3Cl, allene, american football.  

















ba

a

bb

a

a

a

b

cb

a

a

II

J

I

J

I

JJ

I

J

I

JJ

I

J
H

11

2

ˆ

2

ˆ

2

ˆˆ

2

ˆ

2

ˆˆ

2

ˆ
ˆ

22222222

rot  

The latter form was chosen so that we can take advantage of the following commutation 

relations during solution of the Schrödinger equation:   0ˆ,ˆ 2
rot JH  and   0ˆ,ˆ

rot aJH . 

Based on our knowledge we can write 

rotrotrotrot
ˆ  EH  

rot
2

rot
2 )1(ˆ  JJJ   

rotrot
ˆ  KJa      ,2,1,0 K  

rotrot
ˆ  MJZ      ,2,1,0 M  
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The time-independent Schrödinger equation is  





































 22

2

rotrot

22

rotrot

11

2

1

2

)1(11

2

ˆ

2

ˆ
ˆ K

III

JJ

II

J

I

J
H

babba

a

b




. 

Thus, we obtain the following equation for the energy levels of a prolate symmetric top: 














bab II

K

I

JJ
E

11

22

)1( 222

rot


. 

The corresponding term value expression is 

2rot
rot )

~~
()1(

~

hc
KBAJJB

E
F   . 
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Case 2: Oblate symmetric top 

Ic  Ib = Ia  0    A = B  C 

There are two unique rotational constants, B and C, according to the usual convention 

B  C. 

Following a small and trivial modification of the formulas we learned for prolate 

symmetric tops, we obtain 

2rot
rot )

~~
()1(

~
KBCJJB

hc

E
F   . 

Rotational wavefunctions of symmetric tops: 




 iKiM
JKMJKM eeG )(

2

1
),,(rot   

Based on the definition of the Eulerian angles,  describes the rotation about the 

space-fixed Z axis (thus, M is associated with the projection of J on Z), while  is a rotation 

about a body-fixed axis (K is associated with the projection of J on molecule-fixed z, which 

is identical, in the case of a prolate symmetric top, to a, the at least three-fold principal 

axis). 
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Degeneracy of Erot(J,K): 

K = 0 (2J+1)-fold degeneracy in M 

K  0 2(2J+1)-fold degeneracy in M, 2-fold in K 

The degeneracy in M can be lifted if an external electric field is applied on the 

molecule. 

Finally, it is noted parenthetically that the time-independent Schrödinger equation of 

rigid rotors can be solved analytically for symmetric top molecules, as well as for linear 

and spherical-top molecules. The analytical solutions for the rotational wavefunctions 

contain the three-dimensional Wigner rotation matrices, generalization of the one-

dimensional orthogonal polynomials and the two-dimensional spherical harmonics. 
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Asymmetric top molecules 

Ic  Ib  Ia  0    A  B  C 

There are three unique rotational constants, A, B, and C, with A  B  C.  

c

c

b

b

a

a

I

J

I

J

I

J
H

2

ˆ

2

ˆ

2

ˆ
ˆ

22

rot   

  0ˆ,ˆ 2
rot JH  rot

2
rot

2 )1(ˆ  JJJ   

  0ˆ,ˆ
rot ZJH  rotrot

ˆ  MJZ   

  0ˆ,ˆ
rot aJH  K is not a good quantum number 

Only the J and M quantum numbers remain good quantum numbers.  

The time-independent Schrödinger equation for an asymmetric top cannot be solved 

in closed form for arbitrary values of J. Analytic solutions can be obtained for low J values, 

however, and a prescription for obtaining numerical results for arbitrary J is 

straightforward. 
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Without further elaboration, the final results, in the two limiting cases, are: 

prolate symmetric top limit 

2)
~

()1(
),(

),( KBAJJB
hc

KJE
KJF   

)
~~

(
2
1 CBB   

oblate symmetric top limit 

2)
~

()1(
),(

),( KBCJJB
hc

KJE
KJF   

)
~~

(
2
1 BAB   
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Selection rules for polyatomic rotations 

Transition dipole matrix elements: 

 dR mn
nm

 ˆ*  

where 
i

iiq r̂  is the dipole moment operator (sum runs over electrons and nuclei). 

For pure rotational transitions 

),,,;(),,;(),,( elvib,rot QrQ  emm  , 

),,,;(),,;(),,( elvib,rot QrQ  enn  . 

Final result: 

  rot,rotvibee
*
e

*
vib

*
,rot ˆ  dddR mn

nm
Q  

  rot,rotvib
*
vib

*
,rot )()(ˆ)(  ddR mn

nm
 QQQQ  

The integral in the bracket is the expectation value of the dipole moment. To conclude, 

the transition dipole integral will be zero unless the molecule possesses a permanent dipole 

moment 0. Thus, only polar molecule exhibit pure rotational spectra. 
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Linear molecules 

Selection rules: 

J = 1, M = 0, 1, and 0  0. 

The transition with J = +1 corresponds to absorption, the transition with J = –1 

corresponds to emission (here and later on). 

Symmetric top 

Selection rules: 

J = 1, K = 0, M = 0, 1 and 0  0. 

The K = 0 restriction arises from the fact that the molecule has no component of 

electric dipole moment perpendicular to its symmetry axis  no torque by the field. In 

other words, quantum number K determines the speed of rotation around the principal axis 

and this does not have an effect on the permanent dipole. 
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Spherical top 

A special case of the symmetric top; thus, the same selection rules pertain. However, 

by symmetry 0 = 0 holds for spherical tops. Therefore, pure rotational spectra cannot be 

observed for (rigid) spherical tops. In practice, extremely weak transitions may be observed 

due to centrifugal distortion effects (deviations from a rigid body). 

Asymmetric top 

Selection rules: 

J = 0, 1, M = 0, 1, and 0  0. 

Because K is not a good quantum number, there is no general restriction on K. 

Consider the dipole moment in the molecule-fixed axis system:  = (a, b, c). For 

molecules of certain symmetry not all the dipole components have a non-zero value. Based 

on these values, we can talk about a-type (a  0), b-type (b  0), and c-type (c  0) 

transitions. For example, for the main water isotopologue H2
16O only b-type transitions can 

be observed. 
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Appearance of rotational spectra 

When we substitute the selection rules into the energy expressions governing rotations 

of rigid rotors, we can obtain the transitions which can be observed. For example, for the  

J + 1  J transition and based on the energy expression Erot = B J(J + 1)  

)1(2)1()2)(1(  JBJBJJJBE  

or 

)1(2~  JB . 

If we also take centrifugal distortion into account 

3)1(4)1(2~  JDJB J  . 

The spectroscopic constant DJ (called quartic centrifugal distortion constant) is about 

1-2 orders of magnitude smaller than the rotational constant B; thus, its contribution is 

minuscule for small J values. Thus, in the rigid-rotor approximation rotational spectra 

contain lines separated by 2B. 
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Example: rotational spectrum of NH3  

For ammonia B = 9.977 cm-1; thus, for the J + 1  J transitions: 

J = 0 1 2 3 

~  / cm-1 19.95 39.91 59.86 79.82 

Thus, measured rotational lines are uniformly separated by about 19.95 cm-1. 
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Intensity of rotational lines 

We know that the observed absorption is the difference of stimulated absorption and 

stimulated emission. Intensity of the lines corresponding to the given transitions thus 

basically depend upon the relative population of the two levels. According to the 

Boltzmann distribution population of the rotational states decreases exponentially when J 

increases. However, as we learned from the rotational energy expressions, almost all 

rotational levels are degenerate and the degree of degeneracy increases as J increases. Due 

to this degeneracy and the small difference between the rotational energies it is not the 

level with the smallest J which will have the largest population. 

Intensity of absorption lines (assuming thermal equilibrium and the validity of the 

Boltzmann distribution) is determined by 

)/)1(exp()12()/exp( kTJhcBJJkTEq JJ  , 

where J is the quantum number of the lower (absorbing) state. 

For typical molecules at room temperature the Jmax quantum number with maximum 

population can reach Jmax  20.  
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Applications of rotational spectroscopy 

A) Structure determination 

Assignment of spectral lines to transitions between specific rotational levels  A0, 

B0, C0 rotational constants  moments of inertis. Not enough data to determine complete 

structure (e.g., for a symmetric top we get only B0)  MW spectra of isotopically 

substituted species are examined. Isotopic substitution will cause a negligible change in the 

equilibrium geometric parameters (nuclear masses do not appear in the electronic 

Schrödinger equation, thus the usual Born-Oppenheimer PESs are isotope independent). 

Example: structure of PCl3 

PCl3: 3
35 ClP  + ClClP 37

2
35

 + 2
3735 ClClP  + 3

37 ClP   31P=100%, 35Cl=75%. 

 symm. top        asymm. top   symm. top 

 B0 = 2617.1 MHz B0 = 2487.5 MHz 
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Two rotational constants are sufficient to determine the structure: 

r(P–Cl) = 2.04 Å és Cl–P–Cl = 100. 

The largest source of error in structure determinations based on microwave 

spectroscopy is related to zero-point vibrations. For example, for the linear OCS molecule 

if we choose four different pairs of rotational constants available for the different 

isotopologues, the CO distance will change between 1.155 and 1.165 Å, which is clearly 

unacceptable. 

B) Determination of dipole moment (Stark effect) 
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