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ABSTRACT: Experimental and computational results about the
structure, dynamics, and rovibrational spectra of protonated
methane have challenged a considerable number of traditional
chemical concepts. Hereby theoretical and computational results
are provided about the dynamical structure of CH5

+. It is shown
that the ground vibrational state investigated thus far by
computations, forbidden by nuclear-spin statistics, has a structure
similar to the first allowed vibrational state and, in fact, the
structures of all vibrational states significantly below 200 cm−1 are
highly similar. Spatial delocalization of the nuclei, determined by
nuclear densities computed from accurate variational vibrational
wave functions, turns out to be limited when viewed in the body-
fixed frame, confirming that the effective structure of CH5

+ is well
described as a CH3

+ tripod with a H2 unit on top of it. The interesting and unusual qualitative aspects of the sophisticated state-
dependent variational results receive full explanation via simple quantum-graph models.

1. INTRODUCTION
Protonated methane, that is the CH5

+ molecular cation, is one
of the founding parents of the family of quasistructural
molecules.1 The unusual structure,2−6 stability,7 and nuclear
dynamics,2,8 as well as the congested high-resolution
spectra9−14 of CH5

+, and its (deuterated) isotopologues, have
been interrogated not only experimentally but also via a
number of computational techniques, such as ab initio path
integral molecular dynamics (PIMD),2 diffusion quantum
Monte Carlo (DQMC),8,15−19 (multilayer) multiconfigura-
tional time-dependent Hartree (MCTDH),20 and nearly exact
variational solutions11,21−23 of the time-independent nuclear
Schrödinger equation.

The three most important stationary points (SP)24 on the
ground-electronic-state potential energy surface (PES) of CH5

+

are given in Figure 1. Not only the electronic energies but also
the rotational constants of these SPs are very similar. The
equilibrium structure of the global minimum, here called
MINCs, has Cs point-group symmetry. As it stands, MINCs is a
reflection of a static picture of the structure of CH5

+, and it can
be clearly described as a H2 unit residing on top of a pyramidal
CH3

+ unit, with H2 aligned with and slightly tilted toward one
of the CH bonds of the CH3

+ unit.
The almost unhindered permutation of the H atoms,

resulting in the dynamical structure of CH5
+, is governed by

two internal motions:24,25 the periodic (60°) “internal
rotation” of the H2 top, and the “flip” motion, whereby
hydrogens are exchanged between the H2 and CH3 units. The
transition state (TS) of the internal rotation of the H2 unit also

has Cs point-group symmetry and it is denoted here as TSrot.
The third SP of high distinction, denoted as TSflip, is the TS
structure, of C2v point-group symmetry, corresponding to the
flip motion. All high-level electronic-structure computa-
tions24,25 agree that the potential energy barriers hindering
these motions are very low; therefore, complete scrambling
(permutation) of the hydrogens happens during the nuclear
dynamics even in the ground vibrational state. Thus, one may
legitimately wonder, as has been done before us,4,6 whether
CH5

+ has a “structure” at all.
The low-energy quantum-dynamical behavior of CH5

+ is
governed by the internal rotation and flip motions. Thus, we
decided to interrogate the structural preferences of the ion by
asking what are the probabilities of finding the structure
around the MINCs, the TSrot, and the TSflip stationary points.
Earlier computational studies2,4,8,15−23 seem to agree that,
despite the complete scrambling of the Hs, their motion is
highly correlated in the sense that we can always identify a H2
and a CH3

+ unit within the actual structure.
Quantum mechanics dictates that the rovibrational eigen-

states of CH5
+ must transform according to the irreducible
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representations (irreps) of the S5* molecular symmetry (MS)
group,26 that the Pauli-allowed irreps of S5* are23 A2

±, G2
±, and

H2
± (this is the result of the permutation of five identical

fermions), and that there are 120 versions26,27 of the single
equilibrium structure of CH5

+. The PIMD and DQMC
computational structural studies2,8,15−17 neglected the effect
of nuclear spins and thus have dealt with the totally symmetric
(A1

+) ground vibrational state, which is a state disallowed by the
Pauli exclusion principle. The first allowed state, the lowest
odd-parity state, LOPS, of CH5

+ has G2
− symmetry, and it has a

relative energy of ≈10 cm−1.21−23 Thus, one must investigate
the fundamental question whether there are significant
differences between the effective structure of the forbidden
A1

+ ground state and that of the G2
− LOPS.

To understand the quantum nature of the (temperature-
dependent) dynamical structure of CH5

+, the extent of the
delocalization of the nuclei must also be considered.
Delocalization of electrons is a well-established concept in
chemistry but nuclei are often considered to be stationary
(starting with the notion that they are “fixed” within the Born−
Oppenheimer approximation). We investigate the delocaliza-
tion of the nuclei via the computation of nuclear densities
(conceptually they are similar to electron densities). Nuclear
density shows the spatial distribution28 of the nuclei in a body-
fixed Cartesian-coordinate system. Hereby we calculate the
nuclear densities from seven-dimensional (7D) bending-only
vibrational wave functions obtained variationally, which allows
the detailed study of structural preferences and the extent of
nuclear delocalization, as well. It is important to emphasize
that nuclear densities depend on the choice of the body-fixed
frame. Introduction of a body-fixed frame is mandatory, as the
vibrational wave function of an N-atomic molecule is (3N−6)-
dimensional, and we need to specify the remaining six
coordinates, describing the overall translation and rotation,
to calculate the body-fixed Cartesian coordinates. In this study
we principally use the Eckart embedding29 and, as dictated by
our tasks, the reference structures employed are either the
MINCs, TSrot, or TSflip ones. The nuclear-density plots
computed this way help reveal “structural preferences”, i.e.,
how similar the dynamical structure is to the chosen Eckart
reference structure. (Note that Figure 6 of ref 8 is somewhat
similar to the nuclear-density plots we present here.)

It is always enlightening to understand sophisticated
variational (VAR) results via much simpler models. It is fair
to say that among the models30−39 put forward to understand

qualitatively the structure, dynamics, and spectra of CH5
+,

models based on the mathematical concept of quantum graphs
(QG)40 proved to be the most successful. QGs allow to set up
simple models30,31,39 for the calculation of the lowest-energy
rovibrational states of CH5

+. Briefly, see the original
publications and the Supporting Information for details, QGs
are metric graphs whose vertices represent versions corre-
sponding to a given structure with distinct numbering of the
atoms, while the edges have lengths and refer to collective
nuclear motions which transform the versions into each other.
The QG models of CH5

+ investigated thus far are Γ120
30,39 and

Γ60.
31 In the case of the Γ120 model, there are 120 vertices, all

representing versions of MINCs; furthermore, there are 120
edges for the internal-rotation and 60 edges for the flip
motions. The edge length of the flip motion turned out to be
significantly shorter than that of the internal-rotation motion,

=L m a61.2rot
e 0 and =L m a1.0flip

e 0, respectively.30,31 The
QG of the Γ60 model contains 60 vertices, all corresponding to
versions of TSflip, and its 120 edges refer to the internal
rotation. The success of the Γ60 model31 in representing the
low-energy quantum dynamics of CH5

+ suggests, somewhat
surprisingly, that one is allowed to neglect the flip motion
during the study of the low-energy dynamics of CH5

+ (at the
expense of redefining the vertices). The QG construction
allows the mapping of the complex vibrational quantum
dynamics of CH5

+ onto the one-dimensional motion of a
particle that can move along the edges of the quantum graph.
The vibrational energy levels and wave functions are obtained
by solving the one-dimensional time-independent Schrödinger
equation on the QG. In the QG models of CH5

+, the potential
is assumed to be zero (the topology of the PES, that is the
interconversion of versions, is included in the model through
the connectivity of the graph). The QG energy levels are
quantized by imposing appropriate boundary conditions on the
plane-wave-like eigenstates of the free particle confined in the
QG.

We employ the wave functions of the vibrational QG
model30,31 to calculate probability densities along the internal
rotation and flip coordinates and to determine structural
preferences this way, as well. This is also our way to answer the
question whether the structural information extracted from
sophisticated first-principles variational computations could be
obtained from simple and even analytically solvable model(s),
in this case the quantum-graph model. Whether the approach
is VAR or QG, we focus on the A1

+-symmetry ground state and

Figure 1. Structures corresponding to the three most important stationary points on the ground electronic state potential energy surface of the CH5
+

molecular cation. The atom−atom distances, displayed in Å, are taken from ref 17. MINCs, equilibrium structure of the global minimum; TSrot,
transition-state structure corresponding to the (60°) “internal rotation” of the H2 unit; TSflip, transition state structure corresponding to the flip
internal motion (see text for details). Atoms of the H2 subunit, i.e., the closest H−H pair, are denoted by dashed circles for MINCs and TSrot.
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those low-energy vibrational states whose symmetry is allowed
by the Pauli exclusion principle (see Table 1, vide inf ra).

2. ALGORITHMIC DETAILS
First, we describe the algorithm how the body-fixed nuclear
densities from vibrational (J = 0, where J is the quantum
number corresponding to the overall rotation of the molecule)
nuclear wave functions can be computed within the discrete
variable representation (DVR)41−43 of the nuclear Hamil-
tonian. Then, the way to determine probability densities along
the internal rotation and flip coordinates, within the QG
model, is reported.

2.1. Nuclear Density from DVR-Based Vibrational
Eigenvectors. (Ro)vibrational wave functions contain all the
information about effective molecular structures, but the direct
analysis of multivariate wave functions is a complex task, not
least because different sets of internal coordinates may
correspond, when permutations of identical atoms are taken
into account, to the same molecular structure. One way
forward is to calculate the nuclear density, which shows the
spatial distribution of the nuclei in a body-fixed Cartesian-
coordinate frame (embedding). The computation of nuclear
densities helps the understanding and visualization of the
dynamical structure of molecules, including the (de)-
localization of the nuclei. The body-fixed nuclear density can
be defined the following way: if the number of nuclei of a given
type in the (x − Δx/2, x + Δx/2] ∧ (y − Δy/2, y + Δy/2] ∧
(z − Δz/2, z + Δz/2] domain is

=P x y z x y z x y z( , , ) ( , , ) (1)

then ϱ(x, y, z) is the body-fixed nuclear density and x, y, and z
are Cartesian coordinates. It is important to use an embedding
because we must separate the overall rotation and translation
as we are interested in structural changes. There can be many
different physically sensible embeddings for a given system,
which result in different nuclear-density plots. In principle, the
structural information obtained from the different embeddings
should not be contradictory but complementary. Nevertheless,
it is important to appreciate that nuclear density plots strongly
depend on the chosen embedding. For example, if we plot the
nuclear density of H2O in the bisector embedding (with the
HOH bisector on the z axis), the densities of the two Hs will
be “symmetric” (with respect to z), while if we use an OH
embedding, then one hydrogen is restricted to the z axis, and
the other will be delocalized in the molecular plane.

In this study, probability densities of different structures are
extracted from reduced-dimensional vibrational wave functions
of CH5

+ (see ref 23 for further details, where the seven-
dimensional (7D) bending-only vibrational states have also
been computed with the in-house code GENIUSH23,44,45).
The vibrational basis in GENIUSH is the direct product of
χn dk

(qk) one-dimensional discrete variable representation
(DVR) basis functions, where χn dk

(qk) is the nkth DVR basis
function for the qk (k = 1, ..., D) coordinate and D ≤ 3N − 6 is
the number of active internal coordinates (the remaining 3N −
6 − D coordinates are fixed). The vibrational wave function is
then written as

=
= =

q q c q( , ..., ) ( )D
n n

N N

n n
k

D

n k
int

1
,..., 1

,...,

, ...,
1D

D

D k

1

1

1
(2)

where Nk is the number of basis functions used for the qk
coordinate and cn d1, ..., n dD

are expansion coefficients. We can
calculate the integral of the absolute square of the wave
function utilizing the DVR quadrature rules:

= ··· | |

= | |
=

q q q q

q q w w

1 ( , ..., ) d ... d

( , ..., ) ... ,

D D

n n

N N

n D n n D n

min

max

min

max
int

1
2

1

,..., 1

,...,
int

1, ,
2

1, ,

D

D

D

D

D D

1

1

1

1

1 1
(3)

where mink and maxk are the lower and upper boundaries of
coordinate qk, respectively, qk,n dk

is the nkth DVR quadrature
point of the qk coordinate, and wk,ndk

is the corresponding DVR
weight. The ith DVR function is nonzero only at the ith grid
point and zero at all the other grid points (discrete Dirac-delta
property):

=q w( )k i k j ij k i, , ,
1/2

(4)

Therefore, the wave function at a given grid point becomes

=
=

q q c w( , ..., )n D n n n
k

D

k n
int

1, , , ...,
1

,
1/2

D D k1 1
(5)

and

| | = | |
=

c q q w( , ..., )n n n D n
k

D

k n,...,
2 int

1, ,
2

1
,D D k1 1 (6)

From this and eq 3, we obtain

Table 1. Vibrational Energy Levels of CH5
+, with Energies

Given in cm−1a

Vibrational energy Structural preference

Γb EVAR EQG
Γ120 EQG

Γ60 MINCs TSrot TSflip

A1
+ 0.0 0.0 0.0 + + +

G2
− 9.8 11.4 11.6 + + +

H2
− 41.1 39.6 40.1 + + +

H2
+ 59.1 50.2 50.9 + + +

G2
− 112.3 100.9 104.1 + + +

H2
− 139.1 148.8 150.4 + + +

A2
− 197.8 284.5 289.2 + − +

H2
+ 268.8 283.6 289.2 − + −

G2
+ 370.4 275.5 289.2 − + −

H2
− 384.3 467.5 472.9 + + +

G2
+ 468.9 289.2 289.2 VAR + + −

QG − + −
G2

− 479.5 549.1 544.6 + + +
H2

+ 510.1 289.2 289.2 VAR + + −
QG − + −

A2
+ 635.6 289.2 289.2 − + −

aEVAR: 7D bending-only variational energy levels, reproduced from ref
23. EQG

Γ120 and EQG
Γ60 : quantum-graph energy levels from refs 30 and 31,

respectively. The “Structural preference” columns show whether the
dynamical structure is similar to the given stationary-point structures
(see Figure 1). The ± signs in the last three columns indicate whether
there is (+) or there is no (−) structural preference for the stationary-
point structure indicated in the column heading. When the structural
preferences extracted from the variational (VAR) or from the
quantum-graph (QG) model do not agree, the two sets of results
are given in separate rows. bSymmetry label corresponding to the S5*
MS group. With the exception of the A1

+ ground state, only states
allowed by the Pauli exclusion principle are listed.
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q q q q

c
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n n

N N

n n

min
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min

max
int

1
2

1

,..., 1

,...,

,...,
2

D

D

D

D

D

1

1

1

1

1
(7)

This shows that the probability of finding the molecular
structure in the proximity of (q1,nd1

, ..., qD,ndD
) is |cn d1,···,n dD

|2, where
“proximity” can be defined as a region with a volume element
w1,nd1

...wD,ndD
[cf. eqs 6 and 3].

In order to calculate the nuclear density, we have to
transform the internal coordinates to body-fixed Cartesian
coordinates. The actual values of the q1, ..., qD active
coordinates, the values of the qD+1, ..., q3N−6 fixed coordinates,
and the chosen embedding determine the x1,y1,z1, ..., xN,yN,zN
Cartesian coordinates of the nuclei. During the calculation of
the nuclear density, we set up a three-dimensional Cartesian
grid with Δx, Δy, and Δz step sizes. The probability of finding
the ith nucleus with coordinates (xi, yi, zi) in the “box”
corresponding to the Cartesian grid point (x, y, z) is

p x y z c( , , )i
n n S

n n
,...,

,...,
2

D i

D

1

1

(8)

where Si denotes those n1, ..., nD index sets of the DVR grid for
which xi ∈ (x − Δx/2, x + Δx/2], yi ∈ (y − Δy/2, y + Δy/2],
and zi ∈ (z − Δz/2, z + Δz/2]. Therefore, the number of
nuclei of a given type in this region is

=
=

P x y z p x y z( , , ) ( , , )
j

M

i
i
j

1 (9)

where i denotes the nucleus of the given type, while j stands for
the components of a multiply degenerate state that transforms
as a M-dimensional irrep of the molecular symmetry (MS)
group, and pi

j is calculated from the cn d1,···,n dD

j DVR-coefficients of
the jth component of the multiply degenerate state according
to eq 8. Then, the nuclear density at the Cartesian grid point
(x,y,z) is calculated as

=x y z
c

x y z
( , , )

j
M

i n n S n n
j

1 ,..., ,...,
2

D i D1 1

(10)

In this study, we chose to use the Eckart embedding and the
reference structures employed include the MINCs and the TSrot
and TSflip transition-state structures. We used the method of
ref 46 to rotate the molecular structure to the Eckart frame.
The nuclear-density plots computed this way convey
information about “structural preferences,” i.e., how similar
the dynamical structure is to the given Eckart reference
structure. Permutation of the Hs needs to be taken into
account during the calculation of the nuclear density, because
the result of the Eckart rotation is sensitive to the order of the
H atoms, since we rotate the ith atom of the actual distorted
structure to the ith atom of the reference. In the wave function,
the different versions of a given structure correspond to
different sets of internal coordinates, but they should have the
same body-fixed Cartesian coordinates in the nuclear-density
plot. The reference structure corresponds to a single version,
but when we sum the density contributions of the distorted
structures, each distorted structure appears many times with
different numberings of the atoms, so in each case we

renumber the hydrogen atoms to get the best agreement with
the reference structure after the Eckart rotation.

2.2. Probability Density along the Permutational
Coordinates, Calculated from the Quantum-Graph
Model. We have calculated the probability density of the
structures along the internal rotation or the flip permutational
coordinates (edges of the QG) from the Γ120

30 and Γ60
31 QG

wave functions. The probability density of finding the particle
at position x on edge e of the QG is |Ψe(x)|2, where Ψe(x) is a
QG eigenfunction along e. If we define a reaction path
corresponding to the permutation of the Hs, we can map this
point of the QG to a unique structure of CH5

+, whereby the
numbering of the atoms is determined by the versions at the
two vertices connected by e. If the length of the edge is L, then
the x = 0 and x = L positions are mapped to versions of the
structure at the vertices, while x = L/2 is mapped to versions of
the transition-state structure of the given internal motion.
However, if we do not consider the numbering of the atoms,
there will be other points of the graph which correspond to the
same structure as x on edge e. These symmetry-equivalent
points can be obtained via acting by the elements of S5
(symmetric group of degree five) on point x of edge e, when
a point on a given type of edge (internal rotation or flip) is
mapped onto an edge of the same type. Note that we use S5
and not the full MS group S5*. This is done because the
inversion operator may transform the molecule to a structure
that is not superimposable with the original one using
rotations, even if we do not consider the numbering of the
atoms.

Therefore, the probability density of the internal rotation or
flip coordinate is

= | |

= | |

=

=

p x
M

gx

M
g x

( )
1

( )

1
( )

i

M

g S

i

i

M

g S

i

rot/flip
1

rot/flip
2

1

1
rot/flip

2

5

5 (11)

where i denotes components of a multiply degenerate state
transforming as an M-dimensional irrep, and “rot/flip” denotes
a selected internal rotation or flip edge. We will use the last
expression of eq 11 to calculate the probability density. The
effect of g on the wave function can be obtained by employing
a U unitary matrix of dimension M × M:

=
=

g x U x( ) ( )e
i

j

M

ij e
j

1 (12)

Using the properties of the unitary matrix, we obtain

| | = | |
= =

g x x( ) ( )
i

M

e
i

i

M

e
i

1

2

1

2

(13)

for any g ∈ S5. Therefore,

=
=

p x
M

x( )
120

( )
i

M
i

rot/flip
1

rot/flip
2

(14)

where we used the fact that S5 has 120 elements.
Therefore, the probability density of the internal rotation

coordinate is
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= | | = | |
= =

p x
M

x
M

x( )
120

( )
1

( )
i

M
i

i

M

r
r
i

rot
1

rot
2

1 rot

2

(15)

with x ∈ [0, Lrot) and

= =
= =

p x
M

x
M

x( )
120

( )
2

( )
i

M
i

i

M

f
f
i

flip
1

flip
2

1 flip

2

(16)

where the factor 2 for pflip(x) is needed because there are only
60 flip edges, and the r and f indices denote all internal rotation
and flip edges, respectively. In the case of pflip(x), the range of x
is either [0, Lflip/2] or [Lflip/2, Lflip], though the former is more
natural, because in Γ120 the x and the Lflip − x positions on a
flip edge are mapped to the same structure if we do not
consider the numbering of the atoms.

The norm of the QG wave function is calculated as

= |

= +x x x x

1

( ) d ( ) d

i i

r

L

r
i

f

L

f
i

rot 0

2

flip 0

2
rot flip

(17)

Combining eq 17 with eqs 15 and 16, and using pflip(x) =
pflip(Lflip − x), we obtain that the sum of the integrals of pflip(x)
and prot(x) is 1, as expected,

+ =p x x p x x( ) d ( ) d 1
L L

0

/2

flip 0 rot

flip rot

(18)

3. RESULTS AND DISCUSSION
3.1. Nuclear Density from Variational Wave Func-

tions. Figure 2 shows the body-fixed nuclear density for four
selected vibrational states, calculated from VAR wave
functions, while the nuclear density for the other states can
be found in the Supporting Information. As already discussed,
nuclear densities are always specified in a certain body-fixed
frame and the body-fixed coordinate axes applied in this study
follow the internal rotation and flip motions of CH5

+. In
addition, probabilities of finding identical nuclei (H atoms in
this case) are summed up and evaluated in a three-dimensional
Cartesian grid. The orange color of Figure 2 indicates the
region of space in which the H atoms can be found with about
85% probability.

The nuclear-density plots clearly show the structural
preferences of the vibrational states. For all four states
shown, the H atoms are localized near the reference positions,

Figure 2. Body-fixed nuclear density for four selected vibrational states of CH5
+ (four columns), calculated from variational wave functions (see

Supporting Information for the figures corresponding to other states). The body-fixed frame chosen is the Eckart frame, where the reference
structure is either MINCs (first row), TSrot (second row), or TSflip (third row). The orange-colored regions correspond to about 85% probability,
while the reference structures are shown in wireframe, where the H atoms of the H2 unit are red and the H atoms of the CH3

+ unit are blue. Note
that there is no large-scale spatial nuclear delocalization. The plots also show the structural preference, i.e., if there is a high probability of finding
the molecular structure in the given reference structure. For example, the nuclear density for the 197.8 cm−1 (A2

−) state is large around the MINCs
and TSflip reference structures, so these structures are preferred, while it is zero in the TSrot reference structure, so this structure is avoided.
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which implies that the difference of the equilibrium and TS
structures is comparable to the extent of nuclear delocalization
(see the Supporting Information on how to quantify the
similarity of molecular structures). When the orange regions of
the plot form circular spots around the reference nuclear
positions, we may say that the dynamical structure is similar to
the given reference structure, or, in other words, the wave
function has large amplitude around the given reference
structure. Note that the structural preference is not “exclusive”
in the sense that there can be preference for multiple
structures. For example, the vibrational wave functions of the
(Pauli-forbidden) A1

+ ground state and the G2
− LOPS state, the

latter at a relative energy of 10 cm−1, have significant amplitude
at the MINCs, TSrot, and TSflip structures. The nuclear densities
of the A1

+ ground state and the LOPS are very similar. This is
related to the fact that the energy of the LOPS is close to that
of the ground state. A more conclusive rationalization will be
outlined in the section where the QG results are presented (see
also the Supporting Information). In summary, the results
obtained for the LOPS support the earlier picture established
for the Pauli-forbidden A1

+-symmetry ground state: despite the
pronounced scrambling of the H atoms, the local dynamical
structure of CH5

+ is a well-defined CH3
+ tripod with a H2 unit

on top, with surprisingly modest delocalization of the nuclei.
Note, finally, that we can safely assume that at the temperature
of the spectroscopic experiments, 4−10 K,10,13 only the LOPS
state has a significant population, as the next Pauli-allowed
state is the J = 1 G2

+ state at 23 cm−1 above the Pauli-forbidden
ground state.22

In some cases the nuclear density is zero or very small at the
reference position of certain H atoms (in such cases the shape
of the orange spots is similar to the numeral 8). Then we can
say that the dynamical structure is not similar to the chosen
reference structure. This is the case for the 268.8 cm−1 (H2

+)
state and the MINCs and TSflip reference structures, and, as
dictated by symmetry, the 197.8 cm−1 (A2

−) state and the TSrot
reference structure.

Figure 2 shows only four selected states; the structural
preferences of other Pauli-allowed states are summarized in
Table 1, where the ± signs in the last three columns indicate
whether there is (+) or there is no (−) structural preference
for the stationary-point structure indicated in the column
heading. Based on all these results one can conclude that the
nuclear density of the first six vibrational states, all significantly
below 200 cm−1, is very similar to that of the ground state; the
wave functions have large amplitude around all SP structures,
while there are certain higher-energy states which tend to avoid
certain SP structures. Even though the structural preferences of
the different vibrational states are not the same, the extent of
nuclear delocalization does not change significantly with the
energy. The somewhat complex explanation of these
observations will be given next, based on QG results.

3.2. Probability Densities along the Permutational
Coordinates, Calculated from the Quantum-Graph
Model. Panel a of Figure 3 shows the probability densities
prot(x) and pflip(x) along the internal rotation and flip edges,
respectively, calculated from QG wave functions. Here, the
permutational coordinate x denotes a point on the edge. This x
should not to be confused with Cartesian coordinate x used in
the nuclear density calculation. If we define a reaction path, we
can map point x of an edge to a unique structure of CH5

+ (see
the structures at the top of Figure 3a). Figure 3 displays results
calculated from the wave functions of the Γ120 QG model,30

while the highly similar figures obtained from the Γ60 model31

can be found in the Supporting Information. Figure 3 is based
on all vibrational states, including the Pauli-forbidden ones, up
to 500 cm−1 in relative energy (see the Supporting Information
for a full list of Γ120 and Γ60 QG vibrational energies).

The structural preferences given in Table 1 can be
ascertained from prot(x) and pflip(x) as follows. If the
probability density is large at a value x, corresponding to a
SP structure, we say that there is preference for the chosen SP
structure. First, let us discuss the probability density along the
internal rotation for the Γ120 model with EQG

Γ120 energies (see
Table 1). There are three qualitatively different densities: (i)
for all but one state with energies between 270 and 290 cm−1

(red dotted curves in Figure 3), prot(x) ≈ 2/Lrot sin2(xπ/Lrot),
which means that MINCs is avoided and TSrot is preferred; (ii)
in the case of the 284.5 cm−1 (A2

−) state (blue curve), prot(x) ≈
2/Lrot cos2(xπ/Lrot), which means that the structure is similar

Figure 3. (a) Probability density of the internal rotation and flip
permutational coordinates, calculated from the Γ120

30 quantum-graph
(QG) model. Here, the permutational coordinate x denotes a point
on the edge of the QG, not to be confused with the x Cartesian
coordinate used in the nuclear-density calculation. The x = 0 and x =
Lrot points correspond to MINCs, while x = Lrot/2 and x = Lflip/2
correspond to TSrot and TSflip, respectively (see structures at the top).
(b) Vibrational energy levels from the Γ120 model (see Table S1 of the
Supporting Information for the energy values). The color-coding of
panels (a) and (b) are the same; therefore, we see that shapes of the
probability densities are determined by the energy. If the energy is
between 270 and 290 cm−1, then prot ∝ sin2(xπ/Lrot) (several red
dotted curves), except for the 284.5 cm−1 (A2

−) state (single blue
curve), for which prot ∝ cos2(xπ/Lrot), while for other energies shown
here prot is constant (several orange dashed curves). If prot or pflip is
large for x values corresponding to MINCs, TSrot, or TSflip, then there
is a high probability of finding the molecular structure at the given
structure. For example, in the case of the 284.5 cm−1 (A2

−) state
(single blue curve), prot and pflip are large for points corresponding to
MINCs and TSflip, so there is a structural preference for these
structures, while prot is very small at Lrot/2 so TSrot is avoided.
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to MINCs but avoids TSrot; and (iii) for the other states studied
here (orange dashed curves), the prot(x) density is almost
constant, prot(x) ≈ 1/Lrot. The situation is very similar for the
Γ60 model, but states of the Γ120 model, where, in cm−1, 270 <
EQG

Γ120 < 290, become degenerate with an energy of 289.2 cm−1.
The observations made are fully supported by analytical

derivations, presented in the Supporting Information, possible
for the Γ60 QG model. If EQG

Γ60 = (nπ/Lrot)2/2, then the
probability density along the internal-rotation edge is prot(x) =
2/Lrot sin2(xnπ/Lrot) for all states except one, for which prot(x)
= 2/Lrot cos2(xnπ/Lrot), while for other energy values the
probability density is constant, prot(x) = 1/Lrot. The
conclusions are the same for Γ120, as Lflip ≪ Lrot, but the
sin2- and cos2-type probability densities are not restricted to
certain energy values but appear in regions close to EQG

Γ120 =
(nπ/Lrot)2/2.

For the Γ120 model, Figure 3 also shows the probability
densities along the flip edge. In this case x is limited to the
range of [0, Lflip/2] because the x and the Lflip−x positions on a
given edge are mapped to the same structure (not considering
the numbering of the atoms). The pflip(x) densities show
strong correlation with the densities along the internal rotation.
The densities along the flip edge are nearly constant for all
states studied here with pflip(x) ≈ prot(0). This means that for
the 284.5 cm−1 (A2

−) state and for states whose energy is not
between 270 and 290 cm−1, there is a high probability of
finding the structure at MINCs and TSflip, as well. For the other
states, whose energy is between 270 and 290 cm−1, the
probability density along the flip edge is almost zero; therefore,
the amplitude of the wave function is very small in MINCs and
TSflip. These results show that within the QG model the
probability density of the flip and the internal rotation is
determined by the energy of the state.

3.3. Comparison of the Structural Preferences
Obtained from Variational Wave Functions and the
Quantum-Graph Models. Table 1 shows the vibrational
energies, calculated with different methods, as well as the
“structural preferences” of each state. The QG and the VAR
energy levels were matched based on the symmetry and the
energy order. The two sets of energy levels show excellent
agreement below 150 cm−1, because the QG edge lengths were
fitted to these energies, while there are significant differences
for the higher-lying states. The structural information gained
from the VAR wave functions and the QG model agree for all
states, except for two high-energy cases, the 468.9 cm−1 (G2

+)
and the 510.1 cm−1 (H2

+) states. Note that we can observe
agreement in the structural preferences for most higher-lying
states, as well, even when the QG and the VAR energies are
very different. Therefore, the QG model is not only suitable to
predict the low-lying rovibrational energy levels of CH5

+, but it
also provides sensible structural information, and the analysis
of the probability densities along the edges corresponding to
the permutational coordinates is straightforward and supports
the not so obvious interpretation of the nuclear-density plots.

4. SUMMARY AND CONCLUSIONS
The dynamical structure of CH5

+, a molecular cation that
undergoes complex nuclear dynamics, has been studied.
Structural preference is defined by how similar the dynamical
structure is to the MINCs, TSrot, and TSflip stationary-point
structures (see Figure 1). Body-fixed nuclear-density plots
from variational vibrational wave functions and probability
densities of the internal rotation and flip coordinates from

wave functions of the quantum-graph (QG) model reveal the
same structural preferences. This holds even for higher-energy
states, where the variational and the quantum-graph energies
are rather different. Most states have a preference for multiple
stationary-point structures, suggesting that the difference of the
equilibrium and transition-state structures is comparable to the
extent of nuclear delocalization. However, the nuclear-density
plots show that the spatial delocalization is not large for the
states studied here and that it does not increase even for the
higher-lying states. One important result is that the dynamical
structures of the Pauli-forbidden A1

+ ground state and the
lowest Pauli-allowed state, at ≈10 cm−1 above the zero-point
energy,21−23 look identical. In fact, the dynamical structures of
the first six vibrational states are very similar. Another very
important result of the present study is that in the QG model
the probability densities of the permutational coordinates are
determined by state energies. We can rationalize different
shapes of the density by analytical derivations (see Supporting
Information): for certain energy values, when EQG

Γ60 =
(nπ/Lrot)2/2, the probability density along the internal rotation
is prot(x) ∝ sin2(xnπ/Lrot) for all states except one, for which
prot(x) ∝ cos2(xnπ/Lrot), while for other energy values prot(x)
is constant.
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