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ABSTRACT: Following the full realization of the importance of noncovalent interactions,
finding and characterizing stationary points (SP), of various order, for weakly bound
oligomers have become important tasks for computational chemists. An efficient algorithm
and an associated computer code, called oligoCGO, are described, facilitating constrained
geometry optimization of oligomers of arbitrary structure and complexity and normal-mode
vibrational analysis at nonstationary geometries. To minimize the adverse effects of nonzero
forces on harmonic vibrational analyses at constrained stationary points (cSP), two residual
gradient correction (RGC) schemes are proposed. RGC1, for which a rigorous justification is
given, is based on ignoring the remaining forces in internal-coordinate space. RGC2 modifies
the geometry of the cSP in a single Newton step and recalculates the Cartesian Hessian at this
updated geometry. As demonstrated by 10 examples related to the water−water, water−
methane, and methane−methane dimers as well as the methane trimer, without RGC the
harmonic analysis of cSPs may result in even qualitatively incorrect results when compared to reference values obtained at the nearby
unconstrained SPs (uSP). Both RGC protocols work exceedingly well, and the corrected harmonic wavenumbers of the cSPs are
very close to their uSP counterparts.

1. INTRODUCTION
One of the most powerful applications of quantum chemistry
in molecular sciences concerns the determination of potential
energy surfaces (PESs) and the exploration of the related
nuclear dynamics.1−8 PESs, arising within the Born−
Oppenheimer approximation,9,10 are functions representing
the total energy of the system with respect to some or all
nuclear degrees of freedom. High-quality PESs have been
generated not only for molecules connected by covalent
bonds11 but also for (weakly bound) oligomers, assemblies of
molecules held together by secondary chemical forces,
whereby it is reasonable to assume that the monomers retain
most of their individual structural and dynamical character-
istics.
After the generation of PESs, it is usual to search for minima

on them and characterize these stationary points (SPs) by
computing the corresponding vibrational normal modes via the
standard GF formalism.12,13 Nevertheless, PESs may have
many more higher-order SPs than minima, most often there
are only one or a few minima on a given PES, and these SPs
are often responsible for interesting and important dynamical
behavior.
It is customary to look for SPs, usually minima and first-

order saddle points, via electronic-structure techniques without
the desire to generate a complete surface. In fact, this is what
most researchers do on a regular basis when utilizing the vast
number of standard electronic-structure codes developed to
produce reaction profiles. Determination and characterization
of SPs of various order has a vast literature; see, for example,

refs 14−21. Nevertheless, it appears that there are still not fully
explored issues related to the geometry optimization and
characterization of constrained (reduced-dimensional) molec-
ular models, as seen below.
A variety of so-called noncovalent interactions (NCIs),22

hydrogen bonds,23 dihydrogen (H:H) bonds,24−26 CH···π,27

π···π stacking,28 halogen bonding,29,30 chalcogen bonding,31

salt bridges (ion pairing),32 agostic and anagostic interac-
tions,33 as well as perpendicular/coplanar cation−π (CP⊥/
CP∥) and anion−π (AP⊥/AP∥) interactions,

34−36 play a crucial
role in many fields of chemistry. Intermolecular NCIs37 are
indispensable to understand materials science and important
biochemical phenomena, such as protein folding, molecular
recognition, and amyloid formation.
In order to minimize the computational effort, PESs of

oligomers, held together by NCIs, are most often determined
within the chemically intuitive rigid-monomer approximation
(RMA, see ref 7 and references therein). Within the RMA, the
dynamics of a dimer is at most a six-dimensional (6D) one,
irrespective of the size of the monomers. These RMA-based
model PESs give rise to constrained SPs (cSPs), which differ
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only slightly from their “nearby” unconstrained SP (uSP)
counterparts on the corresponding full-dimensional PES.
There are several reports21,38−45 about algorithms and codes

capable of performing geometry optimizations with chemically
guided structural constraints. Constrained geometry optimiza-
tion is often employed in various areas of chemistry:
computation of deformation energies, preliminary exploration
of reaction paths and SPs, finding crossing points between two
PESs, assessing ring-puckering distortions, etc. Nevertheless, to
the best of our knowledge, issues related to nonzero forces
associated with the harmonic vibrational analysis at cSPs have
not been considered by the developers of constrained
optimization techniques.
Due to the presence of unoptimized nuclear degrees of

freedom (DOF), there are remaining forces at cSPs along some
of the nuclear DOFs. This becomes an issue when a harmonic
(normal-mode) vibrational analysis is performed at a cSP, as
the standard GF method12,13 assumes that there are no forces
present at the reference geometry.
In general, the nonzero-force dilemma46 appears when force

constants, that is, the derivatives of the total energy with
respect to geometric variables,47 are evaluated at nonstationary
reference geometries, leading to ambiguities during the
determination of harmonic13 as well as anharmonic47,48

vibrational wavenumbers. Nonetheless, as demonstrated in
previous studies,1,46,49−51 and here once again, if the Cartesian
Hessian is corrected with the nonzero gradient via appropriate
procedures, the adverse effects of nonzero forces can be
minimized.
One of the principal results of this study is the code

oligoCGO, applicable for finding and characterizing cSPs of
oligomers. The methodology utilized in oligoCGO is briefly
outlined in section 2, while the technical details are provided in
the extensive Supporting Information (SI). In section 2.4, two
residual gradient correction (RGC) protocols are proposed for
the effective computation of meaningful normal modes at cSPs.
The RGC1 method, which is based on the elimination of
remaining forces in internal-coordinate space, is supported
with a rigorous derivation in the Appendix. RGC2 improves the
cSP geometry in a single Newton step and re-evaluates the
Cartesian Hessian at this modified geometry. The performance
of the oligoCGO code is tested on 10 examples: the global
minimum of the water dimer, two SPs of the water−methane
dimer, five SPs of the methane dimer, and two SPs of the
methane trimer. The numerical results, discussed in section 5,
clearly demonstrate the utility of the oligoCGO code to find
cSPs and to obtain physically correct normal modes in the
presence of remaining forces.

2. METHODOLOGICAL CONSIDERATIONS
2.1. Representation of Oligomer Geometries. To

describe the structural characteristics of oligomers, various
coordinate specifications can be adopted. A possible choice is
to define redundant internal coordinates,17,18,52,53 which are
based on the bonding information on the monomers and the
use of intermolecular coordinates. Another feasible representa-
tion relies on the separation of the inter- and intramolecular
variables. This formalism considers the intermolecular motions
similar to translations and rotations,54 and applies carefully
selected internal coordinates for the intramolecular motions.
In the approach chosen, the monomer geometries are

described via internal coordinates. For each monomer, three
virtual sites are specified, and the intramonomer coordinates

are related to them. In this case, a monomer structure can be
rotated/translated by modifying the positions of its virtual
sites. As a result, the internal coordinates describing the virtual-
site positions represent the intermolecular degrees of freedom
of the oligomer. The technical details of this approach are
presented in sections S1−S4 of the SI. Our approach provides
a general scheme to treat oligomers of arbitrary monomers
(atomic, linear, and nonlinear), and it helps to avoid
singularities due to 0/180° half (“bond”) angles via a careful
and dynamically adjusted choice of internal coordinates.

2.2. Derivative Relations. Let the (rectilinear) Cartesian
and the (curvilinear) internal coordinates of an oligomer be
collected into the vectors = { }X X XX , , ...,1 2

T and

= { }q q qq , , ...,1 2
T, respectively, where and designate

the number of Cartesian and internal coordinates, respectively.
The internal coordinates are assumed to form a complete, but
not necessarily nonredundant, set, describing all kinds of
feasible motions of the oligomer.
It is well known1,46,55 that partial derivatives of the total

energy E, with respect to nuclear DOFs, have the following
relations:

=g Bgint Cart (1)

= +H BH B B gint Cart
T (2)

Cart (2)

where B = {∂Xi/∂qk} denotes the El’yashevich−Wilson B
matrix,12,13 gint = {∂E/∂qk} and gCart = {∂E/∂Xi} are internal
and Cartesian gradients, respectively, B(2) = {∂2Xi/∂qk ∂ql},
while Hint = {∂2E/∂qk ∂ql} and HCart = {∂2E/∂Xi ∂Xj} indicate
the internal and Cartesian Hessians, respectively. By employing
the tensors A = {∂qk/∂Xi} and A(2) = {∂2qk/∂Xi ∂Xj}, eqs 1 and
2 can be inverted,1,55

=g AgCart int (3)

= +H AH A A gCart int
T (2)

int (4)

Combining eq 1 and 3 into gCart = Agint = ABgCart suggests
that = ×AB I for a general gCart, where

×I is the ×
identity matrix. To show that A(2) is dependent on B(2), let us
substitute eqs 1 and 2 into eq 4 leading to,

= + +

= + [ + ]

H ABH B A AB g A A Bg

H C A B g

Cart Cart
T T (2)

Cart
T (2)

Cart

Cart
(2)

Cart (5)

where the C tensor is defined to satisfy AB(2)gCart A
T = CgCart.

As gCart is arbitrary, eq 5 implies C = −A(2)B. For further
details about derivative relations, see section S5 and, for higher
orders in particular, ref 55.

2.3. Finding Constrained Stationary Points of
Oligomers. A number of sophisticated procedures have
been suggested14,18,21,38,40,41,44,56,57 to facilitate the determi-
nation of constrained and unconstrained SPs on multivariable
PESs. The majority of these algorithms are built upon the use
of quasi-Newton methods and redundant internal coordinates.
However, the geometry optimization of weakly bound
oligomers may need second-order partial derivatives (or
beyond) to ensure better convergence.
In the present study, the oligomer geometries are optimized,

with respect to an internal-coordinate subspace, via the
traditional Newton−Raphson (NR) scheme, which does not
need a guess for the order of the yet-to-be-identified cSP.
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While the NR method provided fast convergence in our test
cases, the use of Hessian update formulas (e.g., that in eqs 19
and 20 of ref 58) cannot be avoided for larger oligomers. For
further details on finding cSPs, see section S6 of the SI.
2.4. Normal-Mode Analysis at Constrained Stationary

Points. Geometry optimizations are often followed by a
normal-mode vibrational analysis of the SP. These computa-
tions help (a) the characterization of the SPs identified
through the analysis of the Hessian eigenvalues (usually called
“second-derivative tests”) and (b) the qualitative under-
standing of the internal motions around the SPs. Normal
coordinates also form the basis of deriving higher-order
(ro)vibrational corrections.48

Standard harmonic vibrational analysis12,13 is designed for
uSPs, where gCart, or, equivalently, gint, is a zero vector. At a
cSP, the norm of gCart is small but not zero, which must be
accounted for. Based on refs 46 and 59, possible ways to treat
the residual gradient of cSPs are outlined. The schemes
proposed are variants of what we call residual gradient
corrections (RGC). The principal role of RGCs is to make

the normal modes of a cSP as close to their unconstrained
(uSP) counterparts as feasible.
Suppose that there is a uSP close to the cSP examined and

denote the Cartesian coordinate vectors of this (cSP, uSP) pair
with (X, X*). Similarly, let the Cartesian gradient and Hessian
matrix at X* be distinguished from those at X with an asterisk.
Clearly, gCart* = 0, while HCart* can be estimated with what we
call the RGC0 scheme:

* ≈ + * − ≈ − −H H T X X H T H g( )Cart Cart Cart Cart Cart Cart
1

Cart
(6)

where TCart is the tensor including the third-order Cartesian
partial derivatives of E at X, and X* − X is approximated with
the Newton correction, −HCart

−1 gCart. From the estimated HCart*
matrix, the normal-mode vibrational wavenumbers of the cSP
studied can be derived, as detailed, for example, in ref 60. Note
that, during the construction of the inertia tensor and the
projection matrix, one can apply the entries of X, estimating
the components of the unknown vector X*.

Figure 1. Stationary points of oligomers examined in the present study. WW = water dimer, WM = water−methane dimer, MM = methane dimer,
MMM = methane trimer. The point groups and the number of imaginary modes (NImag) are given in parentheses. The distances between certain
atoms connected by a dotted line are given in Å.
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As shown in the Appendix, the following approximation can
be employed to TCart:

≈T A BHCart
(2)

Cart (7)

This approximation results in what we call the RGC1 scheme:

* ≈ − = − =H H A Bg H A g AH ACart Cart
(2)

Cart Cart
(2)

int int
T

(8)

In fact, RGC1 reflects the recommendation1,46 that to handle
the nonzero-force dilemma the second term of eq 4 must be
omitted. The numerical results of ref 46 and this study, vide
infra, demonstrate that RGC1 indeed provides a good estimate
of HCart* when the internal coordinates are chosen reasonably.
Another scheme, called RGC2, can also be specified. RGC2 is

based on the construction of the Cartesian Hessian, HCart
⊙ , at

the point X⊙ = X − HCart
−1 gCart. This X

⊙ point mimics X* well if
X lies in the quadratic region of X* on the PES. While RGC2 is
more expensive than RGC1, due to the need to compute the
Hessian twice, RGC2 has the advantage that it can be easily
implemented in standard electronic-structure codes. In the rest
of this paper, the RGC1 and RGC2 schemes are utilized to
correct HCart and approximate HCart* .

3. THE OLIGOCGO CODE

Based on the background information outlined in section 2 and
in more detail in sections S1−S6 of the SI, a special-purpose
code called oligoCGO, standing for Constrained Geometry
Optimization for oligomers, has been developed. Some special
features of oligoCGO are as follows: (a) it can redefine the
half angles when they approach 0/180° during the
optimizations (see Secs. S4 and S6 of the SI), (b) it
determines the order of the cSP by analyzing the eigenvalues
of the reduced-dimensional internal Hessian, and (c) it
corrects the vibrational fundamentals via the RGC1 and
RGC2 protocols. At present, the oligoCGO code supports
only local optimizations. Nevertheless, we plan to implement a
global optimization scheme, like the one in ref 54, for PESs
which can be evaluated at a reasonable cost.
During this study, the electronic-structure computations

required by oligoCGO have been accomplished with the
Gaussian16 code61 but oligoCGO could also be employed
with any other packages. The Cartesian gradients and Hessians
are determined analytically and extracted automatically from
the formatted checkpoint file. During the optimization steps,
the option ‘sym=None’ is used, ensuring that the input
orientation is preserved.
Upon termination of the constrained geometry optimization,

the point-group symmetry of the cSP is identified with the

Table 1. Comparison of Selected Quantum-Chemical Quantities Characterizing the Global Minimum, WW1, of the Water
Dimer, Obtained via Different Approachesab

quantity noRGC(c) RGC1 RGC2 noRGC(u)

ΔEinter −1798.942
see noRGC(c)

−1811.998 −1812.011

GRMSD 5.81
see noRGC(c)

1.10 0.00

mode #1 (a″) 152.285 [0.765]
126.741 [1.000]

127.524 [0.998] 126.980

mode #2 (a″) −135.844 [0.761]
145.345 [1.000]

147.165 [0.998] 147.081

mode #3 (a′) 92.585 [0.866]
153.295 [1.000]

154.849 [1.000] 154.915

mode #4 (a′) 173.529 [0.876]
181.455 [1.000]

184.110 [1.000] 184.164

mode #5 (a′) 317.598 [0.982]
355.534 [1.000]

359.962 [1.000] 360.379

mode #6 (a″) 549.487 [0.995]
625.170 [1.000]

628.621 [1.000] 630.336

mode #7 (a′) 1630.392 [0.996]
1636.701 [0.999]

1629.392 [1.000] 1629.307

mode #8 (a′) 1645.860 [0.996]
1661.585 [0.999]

1650.025 [1.000] 1650.269

mode #9 (a′) 3796.397 [0.956]
3796.385 [0.956]

3720.772 [1.000] 3718.730

mode #10 (a′) 3828.381 [0.988]
3828.355 [0.988]

3813.693 [1.000] 3813.925

mode #11 (a′) 3921.950 [0.963]
3921.813 [0.963]

3915.037 [1.000] 3915.150

mode #12 (a″) 3945.934 [1.000]
3945.786 [1.000]

3935.000 [1.000] 3935.281

anoRGC(c) = Hessian computed at the constrained optimum without residual gradient correction (RGC); RGC1 = RGC1-corrected Hessian;
RGC2 = RGC2-corrected geometry and Hessian; noRGC(u) = Hessian at the unconstrained optimum without RGC. The interaction energies,
ΔEinter, in cm−1, correspond to the geometries of the different schemes. GRMSDs, in mÅ, are the geometric root-mean square deviations67 of the
various oligomer structures with respect to the unconstrained optimum, calculated at optimal alignments and atomic orderings, called here “best
orientations”. bThe last 12 rows contain normal-mode vibrational wavenumbers, in cm−1, computed with the four schemes and ordered according
to the increasing absolute values of the last column. Negative wavenumbers are imaginary values. The vibrational symmetry labels are displayed in
the first column in parentheses. Utilizing the best orientations, the normal modes derived via the noRGC(c), RGC1, and RGC2 protocols were
matched with their noRGC(u) counterparts, based on the overlaps between the normal-mode eigenvectors. These overlaps are indicated in square
brackets in columns 2−4.
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SYVA (SYmmetry analyzer using Vector Algebra63)62 code in
an automated way (the distortion tolerance parameter62,63 is
set to 2 mÅ). After recognition of the highest point group, the
analyzed geometry is symmetrized by SYVA and replaces that
obtained by oligoCGO. Following the computation of the
Cartesian gradients and Hessians at a cSP, the SYVA-based
geometry is transformed into the standard orientation utilized
by Gaussian16. At cSPs, both uncorrected and RGC-corrected
normal modes are computed by the oligoCGO code.

4. COMPUTATIONAL DETAILS
As test cases, the numerical part of the present study employs
the oligomers WW, WM, MM, and MMM (see Figure 1). The
initial structures of the SPs investigated were taken from the
rigid-monomer PESs reported in ref 64 for WW, WM, and
MM or constructed manually in the case of MMM. The
intramolecular internal coordinates of the monomers were set
to the equilibrium values related to the frozen-core Møller
Plesset (MP2)65 level, utilizing the aug-cc-pVTZ66 basis set.
The aug-cc-pVTZ MP2 optimizations have been performed for
the isolated monomers with the Gaussian16 code.61

All of the constrained geometry optimizations and RGC
analyses of this study utilized the code oligoCGO. The total
energies necessary for geometry optimizations and harmonic
vibrational analyses have been obtained at the aug-cc-pVTZ
MP2 level, without consideration of the basis-set-superposition
error.68,69

The oligomer structures examined were also subject to
unconstrained optimization through separate execution of
Gaussian16,61 applying the directive ‘opt = VeryTight’. The
uSPs identified were then read in by oligoCGO to determine
their Cartesian Hessians and calculate the normal modes.
These wavenumbers serve as reference values to be compared
with their RGC1 and RGC2 siblings. At the end of the
oligoCGO output file, a table is given reporting the
vibrational fundamentals yielded by the different methods.
These output files, together with a description of the file
contents in Sec. S7, form part of the SI.

5. RESULTS AND DISCUSSION
For the 10 structures shown in Figure 1, the most important
quantum-chemical quantities of the present study, that is, the
interaction energies (ΔEinter), the geometric root-mean square

deviations (GRMSDs), and the normal-mode vibrational
fundamentals, are calculated at the respective cSPs and uSPs
as well as at the RGC2-corrected geometries. In what follows,
the computational results obtained for cSPs and uSPs are
referenced with tags “noRGC(c)” and “noRGC(u)”, respec-
tively, while the data computed with the RGC1 and RGC2
schemes are labeled “RGC1” and “RGC2”, respectively. The
noRGC(c), RGC1, and RGC2 normal modes are matched with
their noRGC(u) counterparts by finding the maximum
overlaps (unsigned dot products) between the associated
normal-mode eigenvectors.

5.1. Water Dimer, WW. Of the 13 SPs identified on the
WW19 PES of ref 64, only the lowest-energy SP, designated
here as WW1 (see Figure 1a), is investigated. WW1 is the only
minimum on the PES and it is characterized by a relatively
strong H-bond with large intermolecular wavenumbers (see
Table 1).
Alarmingly, if the residual Cartesian gradient is not

considered at the cSP of WW1, optimized within the rigid-
monomer approximation, a spurious imaginary fundamental,
around 136 i cm−1 (mode #2), is obtained, with a poor overlap
of just 0.76 between the appropriate noRGC(c) and
noRGC(u) normal-mode eigenvectors.
When RGC1 is employed, the imaginary wavenumber of

mode #2 becomes real and the intermolecular fundamentals
computed are all very close to their counterparts determined at
the uSP, with fairly high overlaps between the eigenvectors. It
is an important observation that the RGC1 protocol does not
improve the intramolecular modes, or even contaminates some
of them with an extra error of 1−7 cm−1.
The fourth column of Table 1 clearly shows that RGC2 (see

the last paragraph of section 2.4) almost completely remedies
the inaccuracy of the intramolecular modes while further
reducing the error in the intermolecular fundamentals. The
improvements appear to be connected to the GRMSDs, as the
RGC2 method is characterized by a GRMSD value that is an
order of magnitude smaller than that of noRGC(c). Obviously,
the RGC2 method must work well if the cSP is in the quadratic
regime of the PES. This is seemingly the case for WW1, where
RGC2 brings the interaction energy as close as 0.01 cm−1 to
the noRGC(u) reference value.
An alternative route to decrease the discrepancy observed

for mode #9 (i.e., the O1′−H2′ stretch fundamental; see Figure

Table 2. Comparison of Selected Quantum-Chemical Quantities, Obtained for the Global Minimum of the Water Dimer,
WW1, by Relaxing the Interacting (donor) O1′−H2′ Stretch Coordinatea

quantity noRGC(c) RGC1 RGC2 noRGC(u)

ΔEinter −1809.770 see noRGC(c) −1812.010 −1812.011
GRMSD 2.97 see noRGC(c) 0.41 0.00
mode #1 (a″) 147.686 [0.709] 127.516 [0.999] 127.444 [1.000] 126.980
mode #2 (a″) 22.635 [0.709] 146.821 [0.999] 147.737 [1.000] 147.081
mode #3 (a′) 152.414 [0.997] 154.535 [1.000] 155.435 [1.000] 154.915
mode #4 (a′) 181.860 [0.997] 183.616 [1.000] 184.520 [1.000] 184.164
mode #5 (a′) 365.029 [0.999] 359.462 [1.000] 360.825 [1.000] 360.379
mode #6 (a″) 627.917 [1.000] 628.887 [1.000] 630.629 [1.000] 630.336
mode #7 (a′) 1630.891 [1.000] 1636.284 [0.998] 1629.379 [1.000] 1629.307
mode #8 (a′) 1654.553 [1.000] 1653.650 [0.998] 1650.272 [1.000] 1650.269
mode #9 (a′) 3717.256 [1.000] 3717.229 [1.000] 3718.380 [1.000] 3718.730
mode #10 (a′) 3827.402 [1.000] 3827.377 [1.000] 3813.668 [1.000] 3813.925
mode #11 (a′) 3903.134 [1.000] 3903.037 [1.000] 3915.136 [1.000] 3915.150
mode #12 (a″) 3945.897 [1.000] 3945.744 [1.000] 3935.001 [1.000] 3935.281

aThe definition of the atoms O1′ and H2′ is shown in Figure 1a. For all the other abbreviations, see footnote a to Table 1.
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1a) is to optimize the O1′−H2′ distance. As observed in Table 2,
this modification improves significantly the noRGC(c) and
RGC1 estimates for mode #9.
To analyze the effects the choice of different internal-

coordinate systems has on the RGC1 fundamentals, three
alternative Z matrices have been constructed by modifying the
“default” specification introduced in section S4. The
intermolecular modes related to the default and the alternative
internal-coordinate systems are shown in Table 3. The
definitions of the modified coordinates are given in the
oligoCGO output files. To enhance readability, significant
errors are typeset in bold. Although the origin of the
differences is not obvious, it is reassuring that utilizing
“chemically meaningful” internal coordinates in the RGC1
scheme provides excellent estimates of the fundamentals.
The fact that accurate results are obtained for the interaction

energy and the vibrational fundamentals of WW1 via the RGC
schemes is encouraging. While there are oligomers with
considerably stronger H bonds, WW can be viewed as an
unfavorable case in the world of constrained optimizations. In
other words, the discrepancies from the fully geometry
optimized results are expected to be smaller for systems
containing much more rigid monomers.
5.2. Water−Methane Dimer, WM. From the 25 SPs

identified on the WM19 PES,64 the first and the seventh
lowest-energy SP, WM1, and WM7, respectively, are studied

here. WM1, whereby the water molecule plays the role of the
H-bond donor, is definitely the global minimum on the real
PES of WM. The order of the WM7 SP, whereby the H-bond
donor is the methane molecule, is less clear.
While several studies70−73 consider WM7 as a secondary

minimum of WM, the Hessian on the WM19 PES
corresponding to WM7 is characterized by a small negative
eigenvalue. An unconstrained aug-cc-pVTZ MP2 geometry
optimization and the subsequent harmonic vibrational analysis
yields one imaginary fundamental, 3.6 i cm−1, for WM7, in line
with the WM19 PES. At the aug-cc-pVQZ MP2 level,
employing a significantly larger basis, the same fundamental,
related to the (almost free) rotation of the water monomer
around the C1″−H1″ axis, becomes real, is 2.9 cm−1. To
ascertain the true order of WM7 further electronic-structure
computations, much closer to the complete-basis-set full-
configuration-interaction limit, would be required. This task is
beyond the scope of the present study.
As is clear from Table 4, the interaction energies of WM1

and WM7 are significantly smaller, by more than a factor of 4,
than that of WW1. The intermolecular fundamentals of WM1
exhibit a similar behavior, at least in a qualitative sense, to
those determined for WW1: (a) when the residual gradient is
ignored in Cartesian space, the underlying cSP is characterized
by an imaginary mode (mode #1), although the uSP structure
is a minimum; (b) the RGC1 scheme produces highly accurate

Table 3. Six Intermolecular Fundamentals Pertaining to the Unique Minimum of the Water Dimer, WW1, Obtained via the
RGC1 Scheme with Alternative Internal-Coordinate Systemsa

quantity RGC1 RGC1(alt-1) RGC1(alt-2) RGC1(alt-3) noRGC(u)

mode #1 (a″) 126.741 [1.000] 126.696 [1.000] 126.741 [1.000] 126.740 [1.000] 126.980
mode #2 (a″) 145.345 [1.000] 145.768 [0.999] 145.346 [1.000] 145.346 [1.000] 147.081
mode #3 (a′) 153.295 [1.000] 155.169 [0.992] 164.843 [0.789] 153.298 [1.000] 154.915
mode #4 (a′) 181.455 [1.000] 188.975 [0.993] 297.764 [0.779] 181.445 [1.000] 184.164
mode #5 (a′) 355.534 [1.000] 355.964 [1.000] 357.811 [0.987] 355.530 [1.000] 360.379
mode #6 (a″) 625.170 [1.000] 625.215 [1.000] 625.170 [1.000] 625.170 [1.000] 630.336

aThe wavenumbers of columns “RGC1” and ‘noRGC(u)’ are copied from Table 1. Columns “RGC1(alt-1)”, “RGC1(alt-2)”, and “RGC1(alt-3)”
comprise the results obtained with three alternative internal-coordinate systems, whose definitions are included in the appropriate oligoCGO
output files. The boldface entries have relatively large errors, when compared to the noRGC(u) reference values (see the last column of the table).

Table 4. Comparison of Selected Quantum-Chemical Quantities Determined for the First (WM1) and Seventh (WM7) Lowest-
Energy Stationary Points of the Water−Methane Dimera

species quantity noRGC(c) RGC1 RGC2 noRGC(u)

WM1 (Cs) ΔEinter −400.610 see noRGC(c) −405.301 −405.301
[see Figure 1b] GRMSD 4.01 see noRGC(c) 0.55 0.00

mode #1 (a″) −35.889 [0.999] 22.759 [1.000] 24.297 [1.000] 23.593
mode #2 (a′) 73.653 [0.977] 79.898 [0.989] 80.297 [0.999] 80.038
mode #3 (a′) 67.891 [0.934] 85.646 [0.989] 86.492 [0.999] 86.087
mode #4 (a″) 72.500 [0.975] 94.038 [1.000] 95.087 [1.000] 94.786
mode #5 (a′) 104.230 [0.925] 117.976 [1.000] 119.855 [1.000] 119.827
mode #6 (a″) 148.944 [0.975] 172.954 [1.000] 176.735 [1.000] 176.538

WM7 (Cs) ΔEinter −258.949 see noRGC(c) −260.045 −260.038
[see Figure 1c] GRMSD 47.59 see noRGC(c) 47.57 0.00

mode #1 (a″) −58.861 [0.987] 6.916 [0.839] 7.225 [0.862] −3.629
mode #2 (a′) −45.569 [0.988] −12.050 [0.847] −12.125 [0.866] 9.012
mode #3 (a″) −61.607 [0.994] 13.057 [0.893] 13.553 [0.914] 11.326
mode #4 (a′) 72.267 [1.000] 72.301 [0.999] 72.569 [0.999] 72.500
mode #5 (a′) 57.476 [0.994] 91.941 [0.996] 92.469 [0.996] 92.087
mode #6 (a″) 97.144 [0.995] 118.185 [0.996] 119.014 [0.996] 118.388

aSee footnote a to Table 1 for the abbreviations and the definitions of the quantities.
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wavenumber estimates; and (c) the RGC2 protocol provides a
geometry which almost fully coincides with its uSP counter-
part.
As a warning against the blind acceptance of the RGC1 and

RGC2 estimates, for WM7 the situation is considerably less
favorable than found for WW1 and WM1. Though the
deviation of the RGC2 interaction energy from its noRGC(u)
pair is minuscule, the RGC1/RGC2 wavenumbers exhibit
significant errors, giving qualitatively incorrect results for
modes #1−#3.
5.3. Methane Dimer, MM. For MM, results have been

obtained for five selected SPs, namely, MM1 (D3d), MM2 (Cs),
MM3 (C2), MM4 (D3h), and MM16 (D3d), out of the 17 SPs
found on the MM19 PES.64 All these SPs have dihydrogen

(H:H) contacts,26 ensuring limited stability, with |ΔEinter| <
250 cm−1.
The only minimum of the MM19 PES, MM1, belongs to the

D3d point group. The three Hs of each monomer interact in a
staggered configuration; this interaction scheme is denoted
here as 3:3s. Despite the fairly small monomer deformations,
the discrepancies of the noRGC(c) and noRGC(u) modes
(see Table 5) are significant for the degenerate modes, more
than 10 cm−1. For MM1, the deviations of the RGC1 and RGC2

fundamentals from the noRGC(u) results are never larger than
0.25 cm−1.
The next three SPs, MM2, MM3, and MM4, exhibit quite

similar monomer orientations, with almost identical interaction
energies, where three Hs of the monomers are “connected” in

Table 5. Comparison of Selected Quantum-Chemical Quantities Determined for Five Stationary Points of the Methane Dimer
(MM) via Different Approachesa

species quantity noRGC(c) RGC1 RGC2 noRGC(u)

MM1 (D3d) ΔEinter −210.225 see noRGC(c) −210.581 −210.581
[see Figure 1d] GRMSD 1.22 see noRGC(c) 0.00 0.00

mode #1 (eg) 19.027 [0.962] 43.401 [0.965] 43.639 [0.950] 43.612
mode #2 (eg) 19.028 [0.962] 43.401 [0.965] 43.636 [0.950] 43.612
mode #3 (a1u) 46.241 [1.000] 44.482 [1.000] 44.686 [1.000] 44.661
mode #4 (a1g) 65.774 [1.000] 65.774 [1.000] 65.907 [1.000] 65.906
mode #5 (eu) 56.368 [0.860] 69.269 [0.974] 69.518 [0.982] 69.502
mode #6 (eu) 56.368 [0.860] 69.269 [0.974] 69.520 [0.982] 69.502

MM2 (Cs) ΔEinter −196.077 see noRGC(c) −196.380 −196.380
[see Figure 1e] GRMSD 2.17 see noRGC(c) 0.96 0.00

mode #1 (a′) −36.966 [0.798] 9.376 [1.000] 11.594 [1.000] 10.181
mode #2 (a″) −26.108 [0.996] 25.085 [1.000] 26.603 [1.000] 26.498
mode #3 (a″) −18.501 [0.799] −28.972 [1.000] −28.933 [1.000] −29.324
mode #4 (a′) 65.664 [0.763] 64.887 [1.000] 65.072 [1.000] 65.045
mode #5 (a′) 62.611 [0.761] 73.825 [1.000] 73.749 [1.000] 73.956
mode #6 (a″) 68.602 [0.998] 77.597 [1.000] 77.722 [1.000] 77.530

MM3 (C2) ΔEinter −196.053 see noRGC(c) −196.353 −196.353
[see Figure 1f] GRMSD 2.28 see noRGC(c) 0.82 0.00

mode #1 (b) −37.018 [0.999] −10.875 [1.000] −9.631 [1.000] −11.689
mode #2 (a) −29.818 [0.724] 25.548 [1.000] 27.258 [1.000] 27.223
mode #3 (a) −16.013 [0.726] −28.498 [1.000] −28.251 [1.000] −28.707
mode #4 (a) 64.344 [0.983] 64.826 [1.000] 65.012 [1.000] 64.988
mode #5 (b) 63.947 [0.999] 74.092 [1.000] 74.045 [1.000] 74.213
mode #6 (a) 69.676 [0.984] 78.224 [1.000] 78.416 [1.000] 78.136

MM4 (D3h) ΔEinter −195.749 see noRGC(c) −196.018 −196.018
[see Figure 1g] GRMSD 1.01 see noRGC(c) 0.00 0.00

mode #1 (e″) −38.704 [0.924] −17.525 [0.963] −17.413 [0.994] −17.470
mode #2 (e″) −38.702 [0.924] −17.524 [0.963] −17.400 [0.994] −17.471
mode #3 (a″1) −19.785 [1.000] −28.364 [1.000] −28.395 [1.000] −28.508
mode #4 (a′1) 64.188 [1.000] 64.188 [1.000] 64.288 [1.000] 64.289
mode #5 (e′) 72.075 [0.907] 80.367 [0.953] 80.554 [0.996] 80.538
mode #6 (e′) 72.074 [0.907] 80.367 [0.953] 80.551 [0.996] 80.538

MM16 (D3d) ΔEinter −94.864 see noRGC(c) −94.917 −94.917
[see Figure 1h] GRMSD 0.47 see noRGC(c) 0.00 0.00

mode #1 (a1u) −23.279 [1.000] −4.243 [1.000] −5.290 [1.000] −4.678
mode #2 (eg) −15.624 [0.994] −12.001 [0.998] −11.509 [1.000] −11.236
mode #3 (eg) −15.627 [0.994] −12.003 [0.998] −11.512 [1.000] −11.239
mode #4 (eu) 11.192 [0.993] 15.118 [0.996] 14.982 [1.000] 15.193
mode #5 (eu) 11.196 [0.993] 15.120 [0.996] 14.985 [1.000] 15.196
mode #6 (a1g) 44.957 [1.000] 44.957 [1.000] 14.977 [1.000] 45.004

aSee footnote a to Table 1 for the abbreviations and the definitions of the quantities considered.
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an eclipsed form. Therefore, these structures are called 3:3e.
The main difference among the three SPs is in their point
groups. As the point-group symmetry increases, the number of
imaginary modes also increases, as expected. Surprisingly, the
noRGC(c) estimates of modes #1−#3 are very similar for the
three SPs, falsely ranking these structures as third-order SPs.
Using the RGC schemes, accurate wavenumbers are obtained
for these SPs, as well.
In the second-highest-energy SP of MM, MM16, one H of

both monomers takes part in the H:H contact interaction,
producing a staggered configuration, which can thus be named
1:1s. Owing to the minimum number of interacting Hs, MM16

is approximately half as stable as MM1. As to the normal modes
of MM16, the lowest fundamental, mode #1, represents the
(virtually free) rotation of the left methane monomer of Figure
1h around the C1″−H1″ axis. Mode #1 is the fundamental which
is predicted with a large relative error without RGC.
5.4. Methane Trimer, MMM. To the best of our

knowledge, the methane trimer, MMM, has not been analyzed
at high levels of electronic-structure theory. Some publica-
tions74−76 consider the “cyclic” (C3h) structure as the global
minimum of MMM, but the underlying computations do not
go beyond the level of density functional theory. In the present
study, a full geometry optimization and harmonic vibrational
analysis have been conducted for this C3h structure, called
MMMa, at the aug-cc-pVTZ MP2 level. This analysis resulted
in a doubly degenerate imaginary mode around 6.8 i cm−1. A

similar value, 8.6 i cm−1, was obtained at the aug-cc-pVQZ
MP2 level.
To detect a lower-order SP for MMM, small perturbations

have been added to the atomic positions of MMMa along the
imaginary mode. Starting from this perturbed (initial)
geometry, an aug-cc-pVTZ MP2 optimization was performed,
leading to a minimum structure of C2 point-group symmetry,
named MMMb. As MMMb lies at a higher energy than MMMa,
MMMb is only a local minimum at this level of theory. To find
the true global minimum of MMM, higher-level electronic-
structure computations are needed.
Assuming rigid monomers, constrained geometry optimiza-

tions have also been performed for MMMa and MMMb. The
12 intermolecular fundamentals obtained with different
schemes are displayed in Table 6. The effect of the residual
gradient is significant in the case of MMM; several noRGC(c)
modes are not correct, not even qualitatively. The RGC1
estimates show almost perfect agreement with their noRGC(u)
counterparts: the largest unsigned deviation is 3 cm−1 for the
lowest-lying degenerate mode of MMMa. The RGC2 values are
even more accurate, with the largest discrepancy less than 1
cm−1.

6. CONCLUSIONS

Harmonic vibrational analyses at stationary points (SPs)
obtained by geometry optimizations are important to (a)
assess whether the SP determined is a minimum or a saddle
point of arbitrary order and (b) provide a minimal under-

Table 6. Comparison of Selected Quantum-Chemical Quantities Determined for Two Stationary Points of the Methane
Trimer (MMM)a

species quantity noRGC(c) RGC1 RGC2 noRGC(u)

MMMa (C3h) ΔEinter −541.246 see noRGC(c) −542.337 −542.337
[see Figure 1i] GRMSD 1.53 see noRGC(c) 0.02 0.00

mode #1 (e″) −35.530 [0.990] −8.987 [0.999] −6.095 [1.000] −6.796
mode #2 (e″) −35.535 [0.990] −9.003 [0.999] −6.125 [1.000] −6.817
mode #3 (e′) −37.144 [0.693] 42.394 [0.805] 42.625 [0.900] 42.594
mode #4 (e′) −37.149 [0.693] 42.391 [0.805] 42.623 [0.900] 42.595
mode #5 (a″) 44.020 [0.995] 48.964 [1.000] 49.387 [1.000] 49.317
mode #6 (e′) 55.523 [0.720] 59.942 [0.724] 60.146 [0.908] 60.133
mode #7 (e′) 55.523 [0.720] 59.941 [0.724] 60.145 [0.908] 60.134
mode #8 (e″) 58.547 [0.857] 62.040 [0.936] 62.342 [0.967] 62.278
mode #9 (e″) 58.547 [0.857] 62.041 [0.936] 62.343 [0.967] 62.279
mode #10 (a′) 74.738 [0.708] 70.443 [1.000] 70.714 [1.000] 70.702
mode #11 (a′) 48.907 [0.708] 80.931 [1.000] 81.267 [1.000] 81.254
mode #12 (a″) 84.555 [0.995] 91.461 [1.000] 91.790 [1.000] 91.731

MMMb (C2) ΔEinter −540.595 see noRGC(c) −541.514 −541.515
[see Figure 1j] GRMSD 1.57 see noRGC(c) 1.32 0.00

mode #1 (b) −2.858 [0.711] 20.909 [1.000] 21.706 [1.000] 21.149
mode #2 (b) −32.303 [0.721] 31.427 [1.000] 32.131 [1.000] 31.971
mode #3 (b) −42.496 [0.620] 35.843 [1.000] 36.332 [1.000] 36.105
mode #4 (a) 34.588 [0.935] 36.896 [1.000] 37.024 [1.000] 36.987
mode #5 (a) 10.877 [0.943] 41.268 [1.000] 41.864 [1.000] 41.659
mode #6 (b) 26.736 [0.915] 55.056 [1.000] 55.440 [1.000] 55.240
mode #7 (a) 40.399 [0.865] 60.431 [1.000] 60.700 [0.999] 60.583
mode #8 (a) 61.263 [0.889] 63.558 [1.000] 64.112 [0.999] 63.795
mode #9 (a) 70.471 [0.950] 72.101 [1.000] 72.412 [1.000] 72.318
mode #10 (b) 70.628 [0.686] 80.615 [1.000] 81.053 [0.999] 80.892
mode #11 (b) 73.636 [0.693] 83.519 [1.000] 83.886 [0.999] 83.785
mode #12 (a) 82.060 [0.963] 88.254 [1.000] 88.492 [1.000] 88.468

aSee footnote a to Table 1 for the abbreviations and the definitions of the quantities considered.
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standing of the vibrational characteristics of the SP. Computing
physically meaningful vibrational fundamentals of weakly
bound oligomers becomes challenging if the SP is a
constrained stationary point (cSP), obtained, for instance,
within the rigid-monomer approximation and a constrained
optimization. Since the gradient vector contains nonzero
elements at a cSP, one faces the nonzero-force dilemma46

during the derivation of normal modes.
In this study, an efficient code, called oligoCGO, is

presented for the determination and the normal-mode
vibrational analysis of cSPs. The oligoCGO code is able to
(a) avoid occasional internal-coordinate singularities during
the optimization steps, (b) ascertain the order of the cSP by
evaluating the eigenvalues of the reduced-dimensional internal
Hessian, and (c) cure the nonzero-force dilemma via two
residual gradient correction (RGC) schemes.
RGC1, which follows the recommendation of ref 46 and

discards the remaining forces in an internal-coordinate system,
is justified in the Appendix. RGC2 modifies the cSP geometry
in a single Newton step and the final Hessian is computed at
this updated geometry. The RGC2 scheme is more expensive
than RGC1, due to the fact that the Hessian needs to be
evaluated twice. Nevertheless, the computational cost of the
RGC2 procedure can be reduced by replacing the Newton
correction with a much cheaper quasi-Newton step.
To prove the utility of the RGC schemes implemented in

oligoCGO, 10 stationary points, corresponding to the
water−water, water−methane, and methane−methane dimers
as well as the methane trimer, are examined. These examples
confirm that the neglect of the remaining forces in Cartesian
coordinates may yield even qualitatively incorrect vibrational
fundamentals at cSPs. For instance, the cSP belonging to the
global minimum of the water dimer has an incorrect imaginary
mode when the constrained structure is that corresponding to
rigid monomer units. In all the cases studied, RGC1 and RGC2

improve significantly the harmonic fundamentals of cSPs when
referenced to the normal-mode wavenumbers of unconstrained
SPs. The discrepancies of the RGC1 and RGC2 wavenumbers
are typically less than 1−2 cm−1 from the reference values.
Electronic-structure codes, at least those we are aware of, do

not correct the normal-mode wavenumbers of cSPs for the
residual gradients, because they simply work in Cartesian
space. Therefore, the direct results of such quantum-chemical
computations might be misleading. Developers of these codes
may want to consider implementing the RGC1 and RGC2

schemes, helping users to obtain reasonable vibrational
fundamentals at cSPs, without performing full geometry
optimizations.

■ APPENDIX

To justify the approximation displayed in eq 7, one must
return to the derivative relations presented in section 2.2. As a
first step, ∂2E/∂Xj∂Xk is rewritten via the chain rule,
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where ∂ql and ∂Xk are not interchangeable as ql and Xk are not
independent of each other. By differentiating eq A.1 with
respect to Xi, we obtain

∑ ∑∂
∂ ∂ ∂

= ∂
∂ ∂ ∂

∂
∂

+ ∂
∂ ∂

∂
∂ ∂= =

E
X X X

E
X q X

q

X
E

q X

q

X Xi j k l i l k

l

j l l k

l

i j

3

1

3

1

2 2

(A.2)

While the second sum of eq A.2 requires the knowledge of only
second partial energy derivatives, the first sum depends on
expensive third partial energy derivatives. Assuming the first
sum to be much smaller than the second one, its neglect leads
to
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where [[ ]] denotes a specific entry of its argument tensor, and
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is used to expand ∂
2E/∂ql∂Xk. Consequently, TCart ≈

A(2)BHCart, as stated in eq 7.
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