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Abstract 

Improving the accuracy of absolute energies associated with rovibronic quantum states of molecules requires accu-
rate high-resolution spectroscopy measurements. Such experiments yield transition wavenumbers from which the 
energies can be deduced via inversion procedures. To address the problem that not all transitions contribute equally 
to the goal of improving the accuracy of the energies, the method of Connecting Spectroscopic Components (CSC) 
is introduced. Using spectroscopic networks and tools of graph theory, CSC helps to find the most useful target 
transitions and target wavenumber regions for (re)measurement. The sets of transitions suggested by CSC should be 
investigated by experimental research groups in order to select those target lines which they can actually measure 
based on the apparatus available to them. The worked-out examples, utilizing extensive experimental spectroscopic 
data on the molecules H 16

2
 O, 32S16O2 , H 12

2
C16 O, and 14NH3 , clearly prove the overall usefulness of the CSC method and 

provide suggestions how CSC can be used for various tasks and under different practical circumstances.
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Introduction
Due to their constant development, experimental high-
resolution molecular spectroscopic techniques [1] yield 
an ever-increasing amount of more and more precise and 
accurate information about the dynamics of molecules. 
One of the principal driving forces behind many of the 
spectroscopic advances and the improved measurements 
is the dream of the complete characterization of the rovi-
bronic spectra of molecules in various environments and 
under assorted conditions.

Measurements and first-principles calculations lead 
directly to wavenumbers, intensities, and lineshapes. In 

this paper we are addressing only part of the information 
provided by the extremely complex measured spectra, 
namely the position of the rotational-vibrational-elec-
tronic (rovibronic) lines, arising from transitions among 
the quantum states of the molecule.

Understanding the measured spectra and the underly-
ing dynamics necessitates the determination of the non-
measurable energy-level structure of the quantum states. 
However, even simple triatomic molecules have bound 
rovibrational quantum states on the order of millions and 
the number of possible transitions is on the order of bil-
lions. Moreover, to obtain information about the energy-
level structure of a molecule in a field-free environment, 
we have various experimental setups corresponding 
to different measurable transitions. Making advances 
related to the understanding of the energy-level structure 
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and the transitions and making sure that the knowledge 
gained is as accurate and precise as possible and feasible, 
requires sophisticated methods. It seems to the authors 
that quantum theory alone is not able to provide a full 
solution to these problems, and that in the fourth age of 
quantum chemistry [2] it is graph (network) theory that 
can help experimental as well as theoretical spectrosco-
pists to make further significant advances.

Let us recall briefly the connection between rovibronic 
energies and transition wavenumbers. If the energy of 
quantum state A is E(A), and there is a transition from 
quantum state A to quantum state B with a wavenumber 
of ν̃(AB) , then the energy of B is E(B) = E(A)+ ν̃(AB) 
(among spectroscopists, it is widely accepted to refer to 
this statement as the Ritz principle [3]). Taking advantage 
of the fact that the energy of the lowest-energy state of 
the molecule can be defined, without loss of generality, 
to be zero, the transition wavenumbers measured deter-
mine the absolute energies of at least some of the quan-
tum states of at least one of the nuclear-spin isomers of 
the given molecule.

Transition wavenumbers provided by either measure-
ments or theoretical calculations have a correspond-
ing uncertainty: a wavenumber w with an uncertainty u 
means that the ‘real’ wavenumber of the transition lies 
in the (w − u,w + u) interval with a probability of 95% . 
Consequently, the energy values determined using the 
extended Ritz principle are also subject to the wavenum-
ber uncertainties in the database.

It has been usual practice to collect measured transi-
tion data, including wavenumbers, intensities, and line-
shapes, into line-by-line (LBL) databases, such as the 
HITRAN [4] and the ReSpecTh [5] spectroscopic infor-
mation systems. It is also usual practice, partially based 
on the need and the anticipation of users of LBL data-
bases, that spectroscopic data sets collated from the lit-
erature may contain not only transitions of experimental 
origin but also transitions that come from first-principles 
(quantum) calculations or modeling efforts utilizing 
effective Hamiltonians.

Let us add at this point an important note about the 
utilization of spectroscopic data, for example of the data 
stored in the aforementioned spectroscopic databases. 
From the point of view of applications, like atmospheric 
modeling [6, 7], remote sensing and retrievals [8–10], 
determination of temperature-dependent partition func-
tions [11–13], and derivation of equations of state [14], 
both the transition wavenumbers and the underlying 
energies are required.

Now we are ready to state the pivotal premise that 
forms the basis of this paper: each new transition in a 
database serves equally the goal of expanding accurate 
wavenumber data, but not all transitions contribute 

equally to the goal of expanding accurate energy data. 
To elaborate this point, let us take a look at the left-hand 
graph of Fig.  1, which represents a tiny spectroscopic 
database via its spectroscopic network [15, 16]. This 
database contains 14 transitions which span 13 quan-
tum states. The solid edges of Fig. 1 are considered to be 
accurately known, while the dotted edges represent ‘inac-
curate’ transitions: inaccurate transitions have an uncer-
tainty larger than a threshold value chosen. Observe that 
the energy of the green quantum states (subgraph A) can 
be determined by using only accurate transitions. The 
accuracy of the yellow states (subgraph B) depend on the 
inaccurate transition connecting subgraphs A and B. As 
there is no path from the root to the red states, the abso-
lute energies in subgraph C, also called a floating compo-
nent [17], can only be determined after fixing the energy 
of one of the red states first (which will then act as a 
pseudo-root), for example, using first-principles compu-
tations. This also means that all red-state energies inherit 
the uncertainty of the first-principles computations.

Note that depending on the method used to deter-
mine the energy values, the energy of the green quantum 
states of Fig. 1 might actually receive a larger (i.e., worse) 
uncertainty than the uncertainty of the edges in subgraph 
A. Therefore, having a path of accurate edges from the 
root to the selected state is assumed to act as a necessary 
condition to obtain an accurate energy level of the same 
magnitude of the edges; in other words, it is not assumed 
to be a sufficient condition. Real database examples (see 
the Practical examples section) show that this necessary 
condition does not hold for large sets of quantum states 
in various LBL datasets. This paper is about an efficient 

Fig. 1 Left-hand graph: a small spectroscopic network, with vertex 
r representing the root. Solid black edges represent accurate 
transitions, dotted ones represent transitions with insufficient 
accuracy. Observe that quantum states in subgraph A (green vertices) 
have accurate energies, energies in subgraph B (yellow vertices) 
depend on the inaccurate edge between A, B, while absolute 
energies in the detached subgraph C (red vertices) are unavailable. 
Right-hand graph: by adding two accurate edges, those in blue, all the 
energies of the vertices would be known with high accuracy
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method that extends the necessary condition to these 
large sets of quantum states.

Both sources of inaccurate absolute energy values 
shown in Fig. 1 are, of course, well known in the literature 
[17, 18]. The right-hand graph of Fig. 1 shows a possible 
solution for both problems. By remeasuring the transi-
tion that connects subgraphs A and B (transition #1), it 
becomes viable to determine the absolute energies of the 
previously yellow states using only accurate transitions. 
By conducting a new measurement, yielding the transi-
tion connecting subgraph A to subgraph C (transition 
#2), the energies of the previously red states may also be 
determined accurately. These two new edges are shown 
in blue in Fig. 1.

In a practical scenario, finding a suitable set of new 
transitions to connect the subgraphs is not an easy task, 
especially when tens of thousands of transitions form the 
original graph and there are also tens of thousands of 
new, potential transitions. The main result of this paper 
is the method of Connecting Spectroscopic Components 
(CSC), which provides a ranking of transition sets based 
on their usefulness when added to the original database.

Since this paper heavily relies on graph theory, which 
might be an unfamiliar field for some of the readers, the 
authors would like to recommend two excellent text-
books for reference: one by Lovász, Vesztergombi, and 
Pelikán [19] and another one by Newman [20].

The method of connecting spectroscopic 
components (CSC)
Input
We need two sets of transitions characterizing the same 
molecule as input to the CSC method. Let us refer to the 
first set as internal transitions (i.e., they are in the data-
base we would like to improve), and to the second set 
as external transitions (i.e., these come from external 
sources, for example, from new measurements). The idea 
is to add transitions from the external transition set to 
the database of internal transitions. However, expanding 
the database with external transitions has a cost. Thus, 
it is desirable to classify the external transitions based 
on their usefulness when added to the set of internal 
transitions.

Let us investigate two characteristic examples of transi-
tion sets.

Example 1 The internal transitions are chosen from 
the complete spectroscopic database of a molecule, for 
example, entries in the ReSpecTh [5] or HITRAN [4] 
database. The corresponding external transitions are 
transitions that could be measured in a new experiment. 
The external transitions could be identified by investigat-
ing the output of first-principles computations.

Example 2 The internal transitions are transitions of 
a spectroscopic database that are under a chosen upper 
uncertainty threshold, for example, 10−3 cm−1 . The exter-
nal transitions are the ones that could be added to the 
database and that are under the uncertainty threshold 
(provided, for example, by the precision of the new meas-
urement or the theoretical calculations).

Graph construction
First, let us build the spectroscopic network using only 
the set of internal transitions. Let us call this graph H. Let 
us denote, throughout this study, the vertex representing 
the root of H by r. (In practice, it is safe to assume that 
there is at least one internal transition connected to the 
root. Else, this method is consistent by adding the root 
as an isolated vertex.) The graph H might have multiple 
connected components. Let us denote the connected 
component that contains r by H0.

If H has only one connected component, H0 , then each 
external transition would contribute by adding either 
zero or one new vertex to H0 . Thus, it is trivial to classify 
external transitions by their usefulness (0 or 1). There-
fore, let us suppose that there are multiple connected 
components in H and denote them by H0 (which contains 
r), H1 , H2 , . . . , see Fig. 2.

Now, let us add the set of external transitions to graph 
H, and let us denote the graph we obtain by G. Figure 2 
shows an example graph G where the internal and exter-
nal transitions correspond to solid and dotted edges, 
respectively. Note that the grey vertex between sub-
graphs H0 and H4 represents a quantum state that is not 
connected to any internal transitions.

Figure  2 shows various scenarios how to reach the 
other subgraphs from H0 through external edges:

Fig. 2 An example graph G, showing various scenarios how to reach 
the other subgraphs from the root through external edges. Solid 
edges: internal transitions. Dotted edges: external edges. Vertex r is 
the root of graph G
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• to reach subgraph H1 from r travelling through at 
least one external edge is required;

• the same is true for subgraph H2 ; however, there is an 
alternative solution to reach both H1 and H2 : use the 
edge between H1 and H2 , and either the H0–H1 edge 
or the H0–H2 edge;

• the path from r to subgraph H3 uses at least two 
external edges, but observe that this path also goes 
through H2;

• subgraph H4 can be reached through two external 
edges, where the midpoint vertex is not in H (i.e., no 
internal transition has the midpoint vertex as an end-
point);

• finally, to reach subgraph H5 , only one external edge 
is required, but there are two options to pick this one 
from.

Now, let us contract each H0,H1, . . . subgraph to single 
vertices h0, h1, . . . . Then, contract parallel edges between 
vertex pairs to single edges. Let us denote this graph by 
G′ . Figure  3 shows the graph obtained after performing 
this step on the graph of Fig. 2. Note that G′ contains only 
edges that correspond to external transitions. Basically, 
the CSC method will determine the usefulness of edges 
or edge sets of G′ , and the final step is to look up the cor-
responding external transitions.

Before we continue with the description of the CSC 
method, let us stop to show a global solution. Deter-
mining the minimum number of external edges to add 
to the graph to connect all Hi subgraphs to H0 has a 
straightforward solution: determine the minimum 
weight spanning tree [19] of G′ . After the addition of 
external transitions to the database, where each edge 
of the minimum weight spanning tree correspond to 

one new transition, the result is a connected graph. 
The problem with the global solution is that the result 
might be too complex for practical use. Therefore, let 
us continue the description of the CSC method, which 
will yield a local solution.

In the next step of the CSC method, let us find the 
shortest paths in G′ from h0 to all other vertices [21]. Let 
us denote the shortest path length in G′ from h0 to hi by 
li . For example, in Fig. 3, l1 = l2 = l5 = 1 and l3 = l4 = 2.

We need not only the lengths of each of the shortest 
paths, but we do require all shortest paths (i.e., edge lists 
that correspond to the paths), as well. Finding all short-
est paths between vertex pairs can be done, for example, 
using a version of the breadth-first-search (BFS) algo-
rithm [21].

Let us store the shortest paths between vertices h0 and 
hi in the set Si . The elements of Si correspond to paths 
and each path can be represented by its edge set. Thus, 
Si is a set of sets, as follows. In the trivial case of li = 1 , 
there is only one set in Si , corresponding to the path 
whose set has only one edge in it, e.g., Si = {{e1}} . If 
li > 1 , then each path for Si is represented by the set of its 
edges, for example (for li = 2 ): Si = {{e1, e2}, {e3, e4}, . . . }.

Finally, let us define a utility factor ui for each Hi , i > 0 , 
as follows:

where |Hi| is the number of vertices in Hi . In Fig. 2, for 
example, we see that

u1 =
4

1
= 4, u2 =

3

1
= 3, u3 =

2

2
= 1,

u4 =

4

2
= 2, u5 =

4

1
= 4.

Output
Let us recall that the goal of CSC is to determine a rank-
ing among external transitions (or transition sets), which 
reflects their usefulness when adding them to the set of 
internal transitions. According to the CSC method, these 
suggested transition sets are those which correspond to 
the Si sets, each having a utility factor of ui , whereby a 
higher utility factor means a more useful transition set.

To obtain an output that is ready for practical use, the 
final step of the algorithm is to find the transitions corre-
sponding to the Si paths. (For example, S5 contains only one 
edge, but this edge represents two transitions, see Fig. 2.)

Let us observe how the output corresponding to our 
example graph in Fig. 2 looks like: 

1 The addition of either the H0–H1 transition or one of 
the two H0–H5 transitions is the most useful. In each 
case, we would reach four new vertices.

ui =
|Hi|

li
,

Fig. 3 Construction of graph G′ from G, of Fig. 2, by contracting the 
subgraphs H0 , H1 , ..., to single vertices h0, h1, . . . , respectively, then 
contracting the parallel edges to single edges
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2 Adding the H0–H2 transition is the second most use-
ful expansion of the original graph, yielding three 
new vertices.

3 The next set of transitions is the two-length path to 
connect H0 and H4 . Here, adding two transitions 
brings in four new vertices.

4 The least useful transition set is the two extra transi-
tions that connect H0 and H3 , offering the two new 
vertices of H3 . Note that by adding these two edges 
we also connect H2 with its three vertices to H0 , 
making this a more useful expansion than it seems. 
See the On the utility factor section for the elabora-
tion of this phenomenon.

In practice (see the next section), there are utility factors 
of real examples as high as 91.5.

Remarks
On the utility factor
The CSC algorithm proposed is a bit too strict, at least 
in the sense that while connecting H3 would also connect 
H2 , the extra vertex contribution by H2 is not reflected 
in u3 . Thus, the above definition of the utility factor can 
be viewed as a lower bound: some paths (transition sets) 
might actually be more useful than shown by their utility 
factor.

By modifying the formula of the utility factor, this phe-
nomenon can also be incorporated into the calculations. 
However, this yields additional issues: for example, what 
if one of the shortest paths to Ha goes through Hb , while 
another shortest path to Ha goes through Hc ? These scenar-
ios could easily make the big picture inconveniently blurry.

Therefore, we advocate another approach to gain 
insight while keeping the utility factor formula simple. 
If there are at least three, relatively large Hi , i > 0 sub-
graphs for which li > 1 , then alongside the local solution 
provided by the CSC algorithm, also calculate the global 
solution. Then, use both outputs and form the final tran-
sition set suggestion by manually selecting transition sets 
to connect the Hi components to H0.

Note that the balance between the local and global 
solution is that while the global solution connects all 
Hi subgraphs using the minimum number of new tran-
sitions, the local solution is more resistant to problems 
that may occur with the external transitions after using 
the CSC method. For example, let us assume that in 
Fig. 3, the global solution to connect h0 to h2 , then h2 to 
both h1 and h3 has been selected (we omit in this exam-
ple the connection of h4 and h5 ). If it turns out that the 
selected h0-h2 transition cannot be measured, then this 
collapses the connection of three components. In con-
trast, let us take a look at the local solution where we 

try to connect h0 directly to both h1 and h2 , then con-
nect h3 to h2 . If problems occur with the measurement 
of the h0-h2 transition, it does not affect the connection 
of the component corresponding to h1 . Finding the bal-
ance between the local and global approaches is left to 
the user, with a remark that we advocate using primarily 
the local solution.

On not using graph contractions
Another way to think about what is happening during 
graph construction, but without actually using contrac-
tions, is as follows. Let us treat the graph of Fig.  2 as a 
weighted graph, with solid edges having a weight of 0 and 
dotted edges having a weight of 1. Then, find the shortest 
paths from r to one vertex from each Hi subgraph. Theo-
retically, we obtain the same Si transition sets this way. 
However, there are two disadvantages of not using graph 
contractions: 

1 The graph algorithms used here, most notably BFS, 
scale with the number of vertices and edges in the 
input graph. By contracting potentially large graphs 
into single vertices, we obtain a huge run-time 
improvement.

2 Additional care should be exercised in finding all 
shortest paths when there are edges with zero weight 
in the graph. In the CSC method, we avoid this 
problem by finding shortest paths in an unweighted 
graph.

On reducing time and space complexity
The main idea of reducing the running time of the algo-
rithm is to disregard ‘small’ Hi , i > 0 subgraphs when 
finding the shortest paths. We advocate to disregard 
the Hi , i > 0 subgraphs for which |Hi| < 8 . This greatly 
speeds up the algorithm.

One can also introduce a lower bound for the utility 
factor to use for the output, thus avoiding extremely large 
output files. We advocate a lower bound around 8 to 10.

On finding accurate floating components
A niche use of the CSC method is to find ‘accurate float-
ing components’. This term, introduced here, refers to 
either a floating component or a subgraph of a floating 
component, which is composed of accurate transitions.

Typically, spectroscopic databases contain floating 
components, but these accurate (sub-)graphs are masked 
by the fact that accuracy has not been checked before. 
A subgraph containing 10 accurate (e.g., with an uncer-
tainty lower than 10−6 cm−1 ) transitions could easily 
hide in a floating component of 15 vertices – however, 
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disregarding accuracy, this floating component does not 
come up as interesting (i.e., worth connecting to the large 
main component by adding new transitions).

In order to determine accurate floating components, 
the connected components of (1) the complete SN and 
(2) the SN composed of only the accurate transitions, 
should be compared. However, as determining the con-
nected components is already part of the CSC method, 
one could also creatively use it for this task, by comparing 
the components obtained at two uncertainty thresholds: 
first, the desired accuracy (e.g., 10−6 cm−1 ), and second, 
100 cm−1 (whereby all transitions are accurate).

Let us call briefly an accurate floating component suf-
ficiently large if it contains at least 5 vertices connected 
with transitions that have their uncertainty under 
5× 10−6 cm−1 , or if it contains at least 30 vertices con-
nected with transitions that have their uncertainty under 
10−5 cm−1 . With regard to the next, Practical examples 
section, there are no sufficiently large accurate floating 
components of H 216 O, H 12

2
C16 O, 32S16O2 , and 14NH3.

Practical examples
In this section we investigate how the CSC algorithm 
suggests transitions for re-measurement to improve 
the accuracy by which we know the absolute energies 
of quantum states. The use of the CSC method is illus-
trated on spectroscopic data of four molecules: H 216 O, 
32S16O2 , H 12

2
C16 O, and 14NH3 . In all cases, the origin 

of the spectroscopic data is the ReSpecTh spectro-
scopic information system [5]. In the case of 14NH3 , 
two extra lines, often referred to as “magic numbers” 
[15, 16, 22], were added to the ReSpecTh transition set, 
with an uncertainty value of 1× 10−6 cm−1 : a transi-
tion between the root (0, 0, 0, 0, 0, 0, 0, 0, s,A1′, 1) and the 
state (0, 0, 0, 0, 0, 0, 1, 1, s,E′′, 1) , and another transition 
between the root (0, 0, 0, 0, 0, 0, 0, 0, s,A1′, 1) and the state 
(0, 0, 0, 0, 0, 0, 0, 0, a,A2′′, 1) [for the labels of the quantum 
states, here and below, see the original publication(s)].

Table  1 provides an overview of the data generated 
for the H 216 O [23], 32S16O2 [24], H 12

2
C16 O [25], and  

14NH3 [26] molecules. Table  1 is structured as follows. 
The uncertainty threshold is a lower bound: transitions 
with at least this uncertainty form the set of the external 
transitions; transitions with a smaller uncertainty than 
the threshold form the set of the internal transitions. 
Note that, in practice, if there are both external and inter-
nal transitions between an (u, v) vertex pair, the external 
transitions can be removed before running the CSC algo-
rithm. Else, external transitions of this type are removed 
at the contraction of the (u, v) edge to a single vertex.

Moreover, |H0| is the number of vertices in H0 (the 
subgraph containing the root). The right-hand side of 

the Table  1 shows the top suggestions provided by the 
CSC method. The meaning of the ui , Hi , and li values are 
described in the previous section ( |Hi| is the number of 
vertices in Hi ). The rightmost column, labeled “transition 
pool” is a bit less intuitive: if li = 1 , that is, when one new 
transition would connect the Hi subgraph to H0 , then it 
shows the number of unique, inaccurate transitions in 
the database, from which one should be re-measured 
with the required improved accuracy. The li > 1 case is 
much harder to quantify because of the presence of (non-
trivial) paths; thus, in this case, these cells are left blank. 
A note regarding H 12

2
C16 O in Table  1: the top sugges-

tions are the same at the three uncertainty thresholds of 
1× 10−5 , 5× 10−5 , and 1× 10−4 cm

−1.

The growth of |H0|

The numbers |H0| in Table 1 are the number of quantum-
state energies reachable under the corresponding accu-
racy. While examining Table  1, one should observe the 
rapidly expanding |H0| values as the uncertainty threshold 
is increased.

In the case of H 216 O, the two most notable jumps in 
|H0| happen at 10−5 cm−1 → 5× 10−5 cm−1 , more than 
quadrupling in size, and at 10−3 cm−1 → 5× 10−3 cm−1 , 
almost quadrupling in size. In the case of 32S16O2 , not 
counting the jump from 3 to 139, the main growth 
happens at 10−4 cm−1 → 5× 10−4 cm−1 . The main 
expansions of H 12

2
C16 O and 14NH3 also happen at 

10−4 cm−1 → 5× 10−4 cm−1 . These jumps, of course, 
reflect the fact that the majority of the high-resolution 
transitions available in the ReSpecTh database have been 
measured in absorption using Fourier-transform infrared 
(FT-IR) spectroscopy.

Cases of rapid expansion
|Hi| is the number of new quantum states that would 
become reachable after the addition of new transitions to 
the original set. The corresponding expansion of the 
number of accurate energy levels can be expressed by the 
ratio 

|H0| + |Hi|

|H0|
.

For example, this ratio is 
207+ 43

207
≈ 1.21 in the most 

useful suggestion at the uncertainty threshold of 5× 10−6 
cm−1 for H 16

2
 O, implying a highly meaningful expansion 

at the cost of adding just one new accurate transition. In 
contrast, the top suggestion for the same H 16

2
 O case, but 

at 5× 10−3 cm−1 , shows a ratio of 
15278+ 14

15278
≈ 1 , indi-

cating a marginal expansion that is perhaps not worth 
pursuing.
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Table 1 Overview of the spectroscopic and graph-theoretical characteristics of the four molecules selected for this study, H 16
2

 O [23], 
32S16O2 [24], H 12

2
C16 O [25], and 14NH3 [26]; unc. = uncertainty, |Hi| is the number of vertices in the Hi subgraph, ui is |Hi|/li , where li is the 

shortest path length from h0 to hi , and hi is the contraction of Hi to a single vertex

Molecule Unc. threshold |H0| Top suggestions

(cm−1) ui |Hi| li Transition 
pool, if 
li = 1

H 16
2

O 1× 10
−6 165 No suggestions

5× 10
−6 207 43 43 1 405

39 39 1 330

1× 10
−5 212 45 45 1 424

43 43 1 360

29 29 1 267

5× 10
−5 910 No suggestions

1× 10
−4 1038 No suggestions

5× 10
−4 4274 86 86 1 26

1× 10
−3 4831 88 88 1 27

5× 10
−3 15 278 14 14 1 2

32S16O2 1× 10
−6 3 32 32 1 1

8 16 2 –

5× 10
−6 139 59 118 2 –

27 27 1 6

1× 10
−5 157 71 142 2 –

29 29 1 11

28 28 1 36

5× 10
−5 405 91.5 183 2 –

56 56 1 89

1× 10
−4 407 91.5 183 2 –

91 91 1 168

5× 10
−4 14216 No suggestions

1× 10
−3 14928 No suggestions

5× 10
−3 15129 No suggestions

H 12
2

C16O 1× 10
−6 8 12 12 1 1

8 8 1 3

5× 10
−6 37 35.5 71 2 –

14.5 29 2 –

14 14 1 43

14 14 1 35

13 13 1 30

1× 10
−5 37 36 72 2 –

14.5 29 2 –

14 14 1 43

14 14 1 35

13 13 1 30

5× 10
−5 41 36 72 2 –

14.5 29 2 –

14 14 1 43

14 14 1 35

13 13 1 30

1× 10
−4 41 36 72 2 –
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Suggestions for the same molecule and at the same 
uncertainty threshold can also be considered together. As 
an example, one can use both suggestions in Table 1 for 32
S16O2 at the uncertainty threshold of 10−4 cm−1 , and add a 
total of three new transitions with at most this uncertainty 
to reach 183+ 91 = 274 new vertices. These three transi-
tions would increase |H0| from 405 to 405+ 274 = 679 , 
which is approximately a 1.68-fold increase.

The case of disconnected ultraprecise measurements
For 14NH3 , it is worth taking a closer look at the suggestion 
at the extremely low uncertainty threshold of 5× 10−6 
cm−1 . In this case, |H0| = 151 and |Hi| = 14 , correspond-
ing to a possible 1.09-fold increase of |H0| , which is already 
quite noteworthy at this threshold. A detailed investigation 
of the corresponding graph structure, however, sheds light 
on more interesting details and consequences.

The structure of the graph is shown in Fig.  4, where 
solid edges represent transitions with uncertainties lower 
than 5× 10−6 cm−1 , while dotted edges show the less 
accurate transitions of the database. The vertices of Hi are 
colored blue or red, depending on whether they are on 
the ground vibrational state or not, respectively. The six 
dotted edges correspond to the number six in the right-
most cell of the related entry of Table 1.

It is of interest to note that while all eight ultrapre-
cise transitions between the ground and the excited 
vibrational states of 14NH3 come from a single source, 
16TwHaSe [27], the lower states of these transitions are 
not connected through ultraprecise measurements to the 
rest of the pure rotational states. This observation proves 
the considerable utility of the network approach to spec-
troscopy, as it reveals an information which otherwise 
would remain hidden in the observed transitions. In the 
language of graph theory, the determination of highly 
accurate ultraprecise absolute energies requires highly 
accurate paths to the root. Thus, since there is no “solid” 
path from the root to Hi , the ultraprecise measurements 
of 16TwHaSe [27] do not contribute (yet) towards the 
goal of determining ultraprecise energies.

Additionally, this Hi subgraph remains disconnected 
from the root at the 1× 10−5 cm−1 and even at the 
5× 10−5 cm−1 uncertainty thresholds. The vertices of the 
subgraph can only be reached from the root at the next 
uncertainty threshold, that is 1× 10−4 cm−1 . Thus, the 
energy value of these 14 quantum states inherit an uncer-
tainty of 1× 10−4 cm−1 , despite participating in transi-
tions with uncertainties less than 5× 10−6 cm−1.

Obtaining accurate experimental data for any of the 
six suggested transitions would connect the 14 states to 

Table 1 (continued)

Molecule Unc. threshold |H0| Top suggestions

(cm−1) ui |Hi| li Transition 
pool, if 
li = 1

14.5 29 2 –

14 14 1 43

14 14 1 35

13 13 1 30

5× 10
−4 3699 12 12 1 3

1× 10
−3 4221 18 18 1 3

5× 10
−3 4981 No suggestions

14NH3 5× 10
−6 151 14 14 1 6

1× 10
−5 153 38 38 1 293

30 30 1 299

5× 10
−5 192 38 38 1 349

30 30 1 366

28 28 1 41

1× 10
−4 512 86 86 1 76

5× 10
−4 2497 20 20 1 4

1× 10
−3 3663 32 32 1 1

5× 10
−3 4649 53 53 1 3
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R1 (0, 0, 0, 0, 0, 0, 6, 2, s, E , 3)
R2 (0, 0, 0, 0, 0, 0, 7, 2, a, E , 4)
R3 (0, 0, 0, 0, 0, 0, 8, 2, a, E , 5)
R4 (0, 0, 0, 0, 0, 0, 7, 2, s, E , 4)
R5 (0, 0, 0, 0, 0, 0, 4, 4, s, E , 1)
G1 (0, 0, 0, 0, 0, 0, 6, 5, s, E , 1)
G2 (0, 0, 0, 0, 0, 0, 6, 5, a, E , 1)
G3 (0, 0, 0, 0, 0, 0, 7, 5, a, E , 2)
G4 (0, 0, 0, 0, 0, 0, 7, 5, s, E , 2)
G5 (0, 0, 0, 0, 0, 0, 5, 5, s, E , 1)
G6 (0, 0, 0, 0, 0, 0, 5, 5, a, E , 1)
E1 (1, 0, 1, 0, 1, 0, 5, 4, s, E , 266)
E2 (1, 0, 1, 0, 1, 0, 5, 4, a, E , 268)
E3 (1, 0, 0, 2, 0, 2, 5, 4, a, E , 263)
E4 (0, 0, 1, 2, 1, 2, 4, 4, s, E , 233)
E5 (1, 0, 1, 0, 1, 0, 4, 4, s, E , 217)
E6 (1, 0, 1, 0, 1, 0, 4, 4, a, E , 214)
E7 (0, 0, 1, 2, 1, 2, 4, 4, a, E , 232)
E8 (1, 0, 0, 2, 0, 2, 4, 4, a, E , 209)

Fig. 4 The graph showing the suggestion of Table 1 for 14NH3 at the uncertainty threshold of 5× 10
−6 cm−1 . The R i  vertices are in the same 

subgraph as the root. The G i  (ground vibrational state) and E i  (excited vibrational state) vertices cannot be reached from the root via a path built 
from accurate transitions
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the root, providing ultraprecise absolute energies for 14 
more rovibrational states.

Cases of single transition suggestions
There are three occurrences in Table 1 where li = 1 and 
|Si| = 1 . This means that only one transition with at least 
the required accuracy should be added, but it should 
be picked from a set containing just a single transition. 
(Thus, there is no set of 400+ possible transitions to pick 
one from, as in the case of H 16

2
 O at 5× 10−6 cm−1 and at 

1× 10−5 cm−1 .) Given that two of these three simple sug-
gestions also seem very useful, we opted to include their 
detailed discussion here as three detailed examples.

The top suggestion for 32S16O2 at 1× 10−6 cm−1 des-
ignates the transition (0, 0, 0, 3, 1, 3) ← (0, 0, 0, 2, 0, 2) 
to add to the database with improved accuracy. This 
transition has the reference tag ‘78Lovas.519’. After this 
addition, H0 would grow from 3 vertices to 3+ 32 = 35 
vertices, which is an approximately 11.67-fold increase.

The top suggestion for H 12
2

C16 O at 1× 10−6 
cm−1 designates the transition (0, 0, 0, 0, 0, 0, 1, 1, 1)

← (0, 0, 0, 0, 0, 0, 0, 0, 0) to add to the database with 
improved accuracy. This transition has the reference tag 
‘97CaHaDe.1’. After this addition, H0 would grow from 
8 vertices to 8+ 12 = 20 vertices, which is a 2.5-fold 
increase.

The top suggestion for 14NH3 at 1× 10−3 cm−1 des-
ignates the transition (0, 0, 0, 1, 0, 1, 17, 16, s,A′

2
, 11)

← (0, 0, 0, 0, 0, 0, 18, 18, a,A′′
2
, 1) to add to the database 

with the higher accuracy. This transition has the refer-
ence tag ‘84UrCuNaPa.952’. However, here |H0| = 3663 
and |Hi| = 32 , implying that this would be just a marginal 
expansion of H0.

The case of large J values
Delving deeper into the data about H 16

2
 O (see the 

Additional file) brings up a new issue that has not been 
addressed yet: some transitions are easier to measure 

than others. For example, for the top suggestion at the 
5× 10−6 cm−1 threshold, with |H0| = 207 and |Hi| = 43 , 
76 transitions out of the total of 405 transitions lie 
between quantum states with J values of at most 4. In 
comparison, all transitions corresponding to the top sug-
gestion at 10−3 cm−1 lie between quantum states with J 
values between 26 and 30.

The best way to avoid issues like these is to manually 
build the set of external transitions, based on the meas-
urement preferences, then run CSC with this set. After 
this refinement of the input, the output would also con-
sist of transitions feasible for remeasurement.

The case of identifying critical wavenumber regions
CSC outputs can also be used to find the most useful 
measurement interval of fixed length L (e.g., L = 100 
cm−1 ). A straightforward method to do this is as follows.

Let us run the CSC algorithm, and sort all suggested 
external transitions in an ascending order based on 
their respective wavenumbers to obtain the ordering 
t1, t2, t3, ... . Then, let Ti denote the number of Hi compo-
nents that could be reached using the transitions within 
the [ti, ti + L] interval.

For the highest Ti value obtained, let us denote ti = A , 
and let the wavenumber of the transition with the highest 
wavenumber value of the [A,A+ L] interval be B. Then, 
the most useful wavenumber interval has to include both 
wavenumber values A and B (note that B− A < L ). If 
the highest Ti value is not unique but occurs for multiple 
indices, then we have multiple intervals that are the most 
useful.

Similarly, wavenumber intervals which do not contrib-
ute towards the main goal at all can also be highlighted. 
For example, let us consider the database of the 14NH3 
molecule [26]. At both uncertainty thresholds of 5× 10−6 
cm−1 and 1× 10−5 cm−1 , CSC does not suggest transi-
tions above 1815.3719 cm−1 but one, that has a wave-
number value of 6576.74634 cm−1.

Table 2 Format of the files in the Additional file. This segment is from the CSC output corresponding to the 32SO2 input at the 
5× 10

−6 cm−1 uncertainty threshold (see Table 1)

First column: the index of the path. Second column: the index of the edge in the path. Columns 3+: transitions corresponding to the edge of the path. In practice, this 
means that one should re-measure the ’17UlBrGrBe.1597’ transition, and one of the three other transitions, to form a new, accurate path, improving the accuracy of 
118 new quantum states

98 1 1558.64590000 0.00148854 0 3 0 2 2 0 0 0 0 1 1 1 17UlBeGrBe.1597

—

98 2 1023.54790000 0.00091459 0 3 0 2 2 0 0 1 0 3 3 1 17UlBeGrBe.515

98 2 1039.36030000 0.00133375 0 3 0 2 2 0 0 1 0 2 1 1 17UlBeGrBe.639

98 2 1040.73540000 0.00080000 0 3 0 2 2 0 0 1 0 1 1 1 17UlBeGrBe.648
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Supplementary material format
The supplementary material of this article consists of 
CSC outputs based on ReSpecTh inputs of molecules at 
various uncertainty thresholds. Table 2 shows the struc-
ture of the text files of the Additional files 1–31.

Conclusions
Improving the accuracy of the absolute energies of 
(rovibronic) quantum states of molecules is an impor-
tant task itself. The accuracy of the energy values is 
based on the accuracy of the measured transition wave-
numbers. Improved spectroscopic data are obtained 
likely through spectroscopic measurement techniques 
with improved precision, sensitivity, and resolution, 
facilitating the more accurate determination of the 
center of the resolved lines. It is important to remem-
ber that not all transitions contribute equally to the 
goal of expanding the set of accurately known energy 
levels. Therefore, it is an outstanding problem how to 
optimize the set of lines suggested for re-measurement 
in order to increase the overall accuracy of the dataset 
in the most efficient way.

Besides the representation of all the available transi-
tion wavenumbers of assigned rovibronic lines, spec-
troscopic networks offer a number of advantages and 
opportunities to solve challenges of high-resolution 
spectroscopy. For example, the method of Connecting 
Spectroscopic Components (CSC) introduced in this 
paper facilitates the optimal selection of transitions to 
be remeasured in order to improve the accuracy of the 
rovibronic energy levels of the underlying dataset.

We have shown that the CSC technique is able to 
suggest useful sets of transitions to measure when the 
goal is to improve the accuracy of the absolute ener-
gies of a significant number of quantum states. Both the 
database to improve and the set of possible new transi-
tions are defined by the user. This allows experimental 
research groups to evaluate CSC suggestions regarding 
various measurement setups (that correspond to differ-
ent sets of new transitions), and compare their useful-
ness towards making energy data more accurate in the 
selected database.

Several practical, worked-out examples, involving the 
molecules H 216 O, 32S16O2 , H 12

2
C16 O, and 14NH3 , prove 

the usefulness and the advantageous features of the CSC 
method. The prime application of CSC is the detection 
of opportunities for the rapid expansion of the set of 
accurately known energies. For example, in the case of 
the H 216 O molecule, there are 206 rovibronic quantum 
states that are connected to the root via a path of tran-
sitions that have a wavenumber uncertainty smaller than 
5× 10−6 cm−1 . Here, the addition of one new transition 

out of 405 possible ones, with an uncertainty lower than 
5× 10−6 cm−1 , would connect an additional 43 quantum 
states in this way, which is a 1.21-fold expansion.

CSC can also find high-precision transitions that do 
not contribute towards improving energy-level accu-
racy as effectively as they could. A set of such ultrapre-
cise transitions is presented for the 14NH3 molecule.

Another application of the CSC method is to high-
light wavenumber intervals that are dense or sparse in 
useful lines to measure in order to improve energy-level 
accuracy. An example of a large wavenumber interval 
which does not contain suggested transitions is shown 
for the 14NH3 molecule: for uncertainties of 5× 10−6 
cm−1 and 1× 10−5 cm−1 the wavenumber range starting 
at 1815.3718 cm−1 is extremely sparse, it contains only 
one line suggested by CSC.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 021- 00534-y.

 Additional file 1. 14NH3_1.10(− 3).txt: CSC output of the 14NH3 mol-
ecule at the 1∗10−3  cm−1 uncertainty threshold. 

Additional file 2. 14NH3_1.10(− 4).txt: CSC output of the 14NH3 molecule 
at the 1∗10−4  cm−1 uncertainty threshold. 

Additional file 3. 14NH3_1.10(− 5).txt: CSC output of the  14NH3 molecule 
at the 1∗10−5  cm−1 uncertainty threshold. 

Additional file 4. 14NH3_5.10(− 3).txt: CSC output of the  14NH3 molecule 
at the 5∗10−3  cm−1 uncertainty threshold. 

Additional file 5. 14NH3_5.10(− 4).txt: CSC output of the  14NH3 molecule 
at the 5∗10−4  cm−1 uncertainty threshold. 

Additional file 6. 14NH3_5.10(− 5).txt: CSC output of the  14NH3 molecule 
at the 5∗10−5  cm−1 uncertainty threshold. 

Additional file 7. 14NH3_5.10(− 6).txt: CSC output of the  14NH3 molecule 
at the 5∗10−6  cm−1 uncertainty threshold. 

Additional file 8. 32SO2_1.10(− 3).txt: CSC output of the  32S16O2 mol-
ecule at the 1∗10−3  cm−1 uncertainty threshold. 

Additional file 9. 32SO2_1.10(− 4).txt: CSC output of the  32S16O2 mol-
ecule at the 1∗10−4  cm−1 uncertainty threshold. 

Additional file 10. 32SO2_1.10(− 5).txt: CSC output of the  32S16O2 mol-
ecule at the 1∗10−5  cm−1 uncertainty threshold. 

Additional file 11. 32SO2_1.10(− 6).txt: CSC output of the  32S16O2 mol-
ecule at the 1∗10−6  cm−1 uncertainty threshold. 

Additional file 12. 32SO2_5.10(− 3).txt: CSC output of the  32S16O2 mol-
ecule at the 5∗10−3  cm−1 uncertainty threshold. 

Additional file 13. 32SO2_5.10(− 4).txt: CSC output of the  32S16O2 mol-
ecule at the 5∗10−4  cm−1 uncertainty threshold. 

Additional file 14. 32SO2_5.10(− 5).txt: CSC output of the  32S16O2 mol-
ecule at the 5∗10−5  cm−1 uncertainty threshold. 

Additional file 15. 32SO2_5.10(− 6).txt: CSC output of the  32S16O2 mol-
ecule at the 5∗10−6  cm−1 uncertainty threshold. 

Additional file 16. H212C16O_1.10(− 3).txt: CSC output of the  H2
 12C16O 

molecule at the 1∗10−3  cm−1 uncertainty threshold. 

Additional file 17. H212C16O_1.10(− 4).txt: CSC output of the  H2
 12C16O 

molecule at the 1∗10−4  cm−1 uncertainty threshold. 

https://doi.org/10.1186/s13321-021-00534-y
https://doi.org/10.1186/s13321-021-00534-y
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Additional file 18. H212C16O_1.10(− 5).txt: CSC output of the  H2
 12C16O 

molecule at the 1∗10−5  cm−1 uncertainty threshold. 

Additional file 19. H212C16O_1.10(− 6).txt: CSC output of the  H2
 12C16O 

molecule at the 1∗10−6  cm−1 uncertainty threshold. 

Additional file 20. H212C16O_5.10(− 3).txt: CSC output of the  H2
 12C16O 

molecule at the 5∗10−3  cm−1 uncertainty threshold. 

Additional file 21. H212C16O_5.10(− 4).txt: CSC output of the  H2
 12C16O 

molecule at the 5∗10−4  cm−1 uncertainty threshold. 

Additional file 22. H212C16O_5.10(− 5).txt: CSC output of the  H2
 12C16O 

molecule at the 5∗10−5  cm−1 uncertainty threshold. 

Additional file 23.  H212C16O_5.10(− 6).txt: CSC output of the  H2
 12C16O 

molecule at the 5∗10−6  cm−1 uncertainty threshold. 

Additional file 24. H216O_1.10(− 3).txt: CSC output of the  H2
16O mol-

ecule at the 1∗10−3  cm−1 uncertainty threshold. 

Additional file 25. H216O_1.10(− 4).txt: CSC output of the  H2
16O mol-

ecule at the 1∗10−4  cm−1 uncertainty threshold. 

Additional file 26. H216O_1.10(− 5).txt: CSC output of the  H2
16O mol-

ecule at the 1∗10−5  cm−1 uncertainty threshold. 

Additional file 27. H216O_1.10(− 6).txt: CSC output of the  H2
16O mol-

ecule at the 1∗10−6  cm−1 uncertainty threshold. 

Additional file 28. H216O_5.10(− 3).txt: CSC output of the  H2
16O mol-

ecule at the 5∗10−3  cm−1 uncertainty threshold. 

Additional file 29. H216O_5.10(− 4).txt: CSC output of the  H2
16O mol-

ecule at the 5∗10−4  cm−1 uncertainty threshold. 

Additional file 30. H216O_5.10(− 5).txt: CSC output of the  H2
16O mol-

ecule at the 5∗10−5  cm−1 uncertainty threshold. 

Additional file 31. H216O_5.10(− 6).txt: CSC output of the  H2
16O mol-

ecule at the 5∗10−6  cm−1 uncertainty threshold.
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