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The quasi-variational quantum chemical protocol and code GENIUSH [E. Mátyus et al., J. Chem.
Phys. 130, 134112 (2009) and C. Fábri et al., J. Chem. Phys. 134, 074105 (2011)] has been augmented
with the complex absorbing potential (CAP) technique, yielding a method for the determination of
rovibrational resonance states. Due to the effective implementation of the CAP technique within
GENIUSH, the GENIUSH-CAP code is a powerful tool for the study of important dynamical features
of arbitrary-sized molecular systems with arbitrary composition above their first dissociation limit.
The GENIUSH-CAP code has been tested and validated on the H2He+ cation: the computed resonance
energies and lifetimes are compared to those obtained with a previously developed triatomic rovibra-
tional resonance-computing code, D2FOPI-CCS [T. Szidarovszky and A. G. Császár Mol. Phys. 111,
2131 (2013)], utilizing the complex coordinate scaling method. A unique feature of the GENIUSH-
CAP protocol is that it allows the simple implementation of reduced-dimensional dynamical models.
To prove this, resonance energies and lifetimes of the H2·CO van der Waals complex have been com-
puted utilizing a four-dimensional model (freezing the two monomer stretches), and a related potential
energy surface, of the complex. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5000680]

I. INTRODUCTION

A rovibrational resonance state of a molecular system,
at least within the realm of the Born–Oppenheimer approxi-
mation,1,2 is a state with a finite lifetime which has sufficient
energy to break the molecule into one of its non-interacting
subsystems.3 If the lifetime of the resonance state is longer than
the time scale of a spectroscopic measurement, it is straight-
forward to detect the resonance state via (high-resolution)
spectroscopy.4–8 Resonances can also be defined as states of a
target-particle system having lifetimes (considerably) longer
than those of a direct collision process.3 In this case, res-
onances reveal themselves as sudden local irregularities in
the collision cross section, occurring at a certain energy.9

Resonance, or quasi-bound, states play an important role in
molecular spectroscopy and in scattering phenomena, and they
are also closely related to the dynamics of chemical reac-
tions,10–16 including photodissociation processes.17–19 Note
that it has recently been shown that monitoring a quan-
tum scattering resonance in an ionization reaction allows
the quantification of the anisotropy of an atom-molecule
collision.20

Theoretical/computational characterization of resonance
states commonly follows one of three strategies. The sim-
plest technique, the so-called stabilization method,21–23 uti-
lizes standard bound-state (ro)vibrational codes, computes a
large number of states above dissociation, and then selects,
as resonances, those whose energies show some kind of

a)csaszar@chem.elte.hu

stability toward small perturbations in the basis. The sec-
ond route requires the computation of collision cross sec-
tions, from which resonance properties can be extracted,24

based on the equations of quantum dynamics and scattering
theory.25 Along the third route, one determines resonance
states as stationary states of a system above its dissocia-
tion threshold and computes resonance energies and lifetimes
as the complex eigenvalues of a non-Hermitian Hamiltonian
of the system.3,26–29 There are two widely used techniques
that follow the third route: the complex absorbing potential
(CAP)26,27,30,31 and the complex coordinate scaling (CCS)28,29

methods. A considerable advantage of the CAP technique
is that it allows the utilization of general L2 bound-state
algorithms.32–36,38 In fact, the CAP technique is an approx-
imation to complex coordinate scaling,39 and it involves the
addition of a special complex potential to the original real
rovibronic Hamiltonian. The CAP approach results in the
damping of the resonance wave functions at the asymptotic
region of the potential energy surface (PES) and provides
approximate resonance eigenvalues and eigenfunctions.3,26

CCS requires the rotation of the dissociation coordinate of
the system on the complex plane, thereby providing the reso-
nance eigenvalues with corresponding square-integrable wave
functions.3,7,28,29 This is a direct method, applicable when the
Hamiltonian is given in an analytic form. Analytic Hamil-
tonians include those with fitted PESs; in this case, one
needs to rewrite the PES “subroutine” into complex arith-
metic.7 Both the CAP and the CCS methods have been applied
during the past two decades to study molecular resonance
states.7,40–46
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Up to now, mostly triatomic molecules have been
subjected to detailed resonance computations; nevertheless,
resonances of the four-atomic HOCO system have also been
investigated, using simplified models.47–49 Hernández and
Clary47 identified resonance states of HOCO using the stabi-
lization method in a two-dimensional (2D) model, while later
Bowman and co-workers computed HOCO resonance states
with the help of the CAP technique, first within a 2D48 and
then a 3D model of the system.49

Hereby we present an implementation of the CAP tech-
nique in the framework of one of the fourth-age quantum chem-
ical50 quasi-variational approaches and codes, GENIUSH,36,38

where GENIUSH stands for a general (GE) code with a
numerical (N), internal-coordinate (I), user-specified (US)
Hamiltonian (H). Combining GENIUSH with CAP allows
the straightforward extension of resonance computations to
larger molecular systems. The reason is that GENIUSH was
designed36 to provide a general, black-box-type code capa-
ble of computing rovibrational bound states not only in
full but also in reduced dimensions, using arbitrary coor-
dinate systems and arbitrary embeddings for arbitrary-sized
molecules. In GENIUSH, the Hamiltonian is constructed
fully numerically. Augmented with the CAP technique, the
GENIUSH-CAP algorithm allows the determination of reso-
nance states of polyatomic molecules, as well as their reduced-
dimensional models, fully exploiting all the advantages of
the GENIUSH approach. Given an efficient implementation
of the GENIUSH-CAP method, a universal code becomes
available for the investigation of rovibrational states of poly-
atomic molecules and complexes above their first dissociation
limit.

In what follows, we report our implementation of the
GENIUSH-CAP method. Testing of the coding utilized the
weakly bound H2He+ complex, where we compared the
GENIUSH-CAP resonance energies and lifetimes to those
computed with the previously developed7 D2FOPI-CCS code.
Note that the D2FOPI-CCS code is applicable only to triatomic
molecules. Then, we determine and analyze in some detail
vibrational resonance states of the four-atomic H2·CO van der
Waals complex, employing a four-dimensional (4D, with the
rigid monomer approximation both for H2 and CO) model of
the molecule.

II. GENIUSH-CAP

The toolchest of the GENIUSH code36,38,51,52 is aug-
mented in this study with the CAP technique26,27,53,54 to allow
the determination of rovibrational resonance states of full-
and reduced-dimensional models of polyatomic molecules.
GENIUSH computes rovibrational bound states of polyatomic
molecules using a discrete variable representation (DVR)55–57

of the Hamiltonian, and it employs an iterative Lanczos eigen-
solver,58 the implementation employed orthogonalizes the
Lanczos vectors every second iteration step,37 to determine the
desired rovibrational eigenstates of the molecule investigated.
Due to the numerical construction of not only the potential but
also the kinetic energy operator, reduced-dimensional mod-
els can be defined simply by fixing the internal coordinates at
given values.

The CAP method, as mentioned above, is basically a per-
turbation of the Hamiltonian with a complex potential, which
damps the otherwise diverging resonance eigenfunctions of the
system in the asymptotic region of the PES. The augmented
Hamiltonian can be written as

Ĥ
′

(η) = Ĥ − iηŴ (R), (1)

where Ĥ is the original Hamiltonian, η is the CAP-strength
parameter, i is the imaginary unit, and Ŵ (R) is a real-valued
function of the R dissociation coordinate, assuming nonzero
values at the asymptotic region of the PES. As a consequence of
the addition of the CAP, the resonance wave functions start to
resemble square-integrable functions.53,59 This makes it pos-
sible to use the L2 eigenvectors obtained when solving the
eigenvalue problem of the original real symmetric Hamiltonian
as basis functions during the resonance computations,

Ψ res =
∑

i

aiΦ GEN,i, (2)

where ai ∈ C, Ψres is the resonance wave function, andΦGEN,i

is the ith eigenvector with an eigenenergy either below or above
the first dissociation asymptote, computed with GENIUSH.
Despite the fact that most of the ΦGEN,i with energies above
the first dissociation limit have no real physical meaning,
they serve very well as L2 basis functions for expanding the
wave functions of the resonance states. In GENIUSH, rovi-
brational eigenstates are obtained as linear combinations of
the direct products of DVR vibrational and rotational basis
functions,

Φ GEN,i(q
(1), q(2), . . . , q(N), α, β, γ)

=
∑

kl...m

J∑
K=−J

ci
kl...m,K χ

(1)
k (q(1))

× χ(2)
l (q(2)) . . . χ(N)

m (q(N))CJKM (α, β, γ), (3)

where ci
kl...m,K are real-valued expansion coefficients,

q(1), q(2), . . . , q(N) refer to the N active coordinates used
in the given computation, and χ(1)

k , χ(2)
l , . . . , χ(N)

m denote
the DVR functions associated with each active coordinate.
CJKM (α, β, γ) refer to the 2J + 1 orthonormal Wang functions
used as rotational basis functions38 depending on the α, β, and
γ angles, which define three successive rotations around the
three orthogonal axes of the molecule-fixed system (J is the
rotational quantum number). K = −J , . . . , +J is defined by
the projection of the total angular momentum Ĵ of the system
on the molecule-fixed z-axis, and M = −J , . . . , +J is the pro-
jection of Ĵ on the space-fixed Z-axis. The matrix elements of
the new non-Hermitian Hamiltonian represented in theΦGEN,i

eigenvector basis can be obtained as

H
′

(η)ij =
〈
ΦGEN,i |Ĥ

′

(η)|ΦGEN,j
〉

= Eiδij − iη
〈
ΦGEN,i |Ŵ |ΦGEN,j

〉
, (4)

where Ei is the ith rovibrational energy, and δ is the Kronecker
delta symbol. Exploiting the orthogonality of the GENIUSH
eigenvectors, we need to determine the matrix elements of the
complex potential in the basis of these vectors,
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Wij =

∫ q(1)
max

q(1)
min

∫ q(2)
max

q(2)
min

. . .

∫ q(N)
max

q(N)
min

∑
kl...m

∑
k′ l′ ...m′

J∑
K=−J

ci
kl...m,K cj

k′ l′ ...m′ ,K
χ(1)

k (q(1))χ(2)
l (q(2)) . . . χ(N)

m (q(N))

× Ŵ χ(N)
m′

(q(N)) . . . χ(2)
l′

(q(2))χ(1)
k′

(q(1))dq(1)dq(2) . . . dq(N)V (q(1)q(2) . . . q(N)). (5)

Since Ŵ is independent of the rotation angles, the integration over these variables can be performed trivially: due to the orthonor-
mality of the Wang functions, this results in δKK′ . V (q(1)q(2) . . . q(N)) refers to the volume element of the integration. To evaluate
this integral, we employ the Gaussian quadrature method using the q(1)

a , q(2)
b , . . . , q(N)

c DVR grid points as quadrature points.
Thus, we transform this integral to a sum, where advantages of the DVR technique can be exploited,

Wij =
∑

ab...c

∑
kl...m

∑
k′ l′ ...m′

J∑
K=−J

wawb . . . wc ci
kl...m,K cj

k′ l′ ...m′,K
χ(1)

k (q(1)
a )χ(2)

l (q(2)
b ) . . . χ(N)

m (q(N)
c )W (qa, qb, . . . qc)

× χ(N)
m′

(q(N)
c ) . . . χ(2)

l′
(q(2)

b )χ(1)
k′

(q(1)
a ), (6)

where wa, wb, . . . , wc are quadrature weights. Using the DVR
of the original Hamiltonian implies that57

χk(qa) = w−1/2
a δka. (7)

Due to Eq. (7), the following simple formula describes the
elements of the complex Hamiltonian:

H
′

(η)ij = Eiδij − iη
∑

ab...c

J∑
K=−J

ci
ab...c,K cj

ab...c,K

×W (qa, qb, . . . qc). (8)

After building the complex Hamiltonian, it is diagonal-
ized with a direct diagonalization method, invoked from the
Lapack++ package.60 Avoiding the use of an iterative eigen-
solver is possible due to the relatively small dimension of
the matrix. The eigenvalues of the complex Hamiltonian are
obtained in the form E0 − iΓ2 , where E0 is the resonance
position and Γ−1 is the lifetime of a resonance state in atomic
units.

When varying the η CAP-strength parameter, two error
types occur with respect to the exact resonance energy.26 The
first one is due to the modification of the original Hamilto-
nian of the system, which consequently changes the computed
resonance eigenvalues with respect to the exact values. This
error can be expressed as a power series in η. The second
error emerges due to the use of a finite basis set. The first
error naturally increases with increasing η, while the sec-
ond one decreases. This is due to the fact that if we use a
stronger absorbing potential, meaning a larger η value, the res-
onance wave function obtained is damped more effectively in
the asymptotic region and therefore becomes more suitable
for an expansion in a basis of L2 functions. If we deter-
mine the eigenvalues of the complex Hamiltonian using a
given interval of η, eigenvalue trajectories can be drawn on
the complex plane, with each point of the trajectory corre-
sponding to an η value. In these trajectories, a cusp forms
where the two errors become similar in magnitude, and this
cusp position is the best approximation of the exact resonance
eigenvalue.26,27

To gain further information about resonance states deter-
mined with the GENIUSH-CAP procedure, we developed a
tool to visualize the probability densities corresponding to the
resonance wave functions. For this, we take the resonance wave

function corresponding to the η value at the cusp and, based
on Eqs. (2) and (3), plot

J∑
K=−J

|
∑
i=1

aic
i
ab...c,K |

2
(9)

at each DVR grid point along two selected coordinates (the
other coordinates are held fixed at certain values).

During GENIUSH-CAP computations, one can change
and optimize the following: (1) the range where the CAP is
turned on; certain resonance states, depending on the extent
of their delocalization, are rather sensitive to this choice; (2)
the interval of the η parameter, which usually covers several
orders of magnitude; (3) the number of GENIUSH eigenvec-
tors employed as basis functions; (4) the number of η values
used during a trajectory computation; and (5) the functional
form of the CAP. Our choices are detailed below when we dis-
cuss the two applications. Here we make only two remarks.
First, in GENIUSH-CAP, the η CAP-strength parameter is
distributed according to the function

ηj(ηmin, ηmax, n, j) = ηmin−1+exp[log((ηmax−ηmin)+1)j/(n−1)],
(10)

where ηj is the jth value of η, n is the number of η values,
and ηmin and ηmax are the minimum and maximum values of
the given η interval, respectively. Second, we choose the func-
tional form of the CAP to be a polynomial with an order of 1,
2, 3, and 5, optimized by Poirier and Carrington.61 Employ-
ing different functional forms during test computations proved
to have only a minimal effect on the results; thus, in this
paper, we only present numerical results obtained via using
the highest-order polynomial of Ref. 61.

III. COMPARING GENIUSH-CAP AND D2FOPI-CCS
RESULTS: THE TEST CASE OF H2He+

Our choice of the triatomic H2He+ system as a test system
was partially inspired by the desire to test the GENIUSH-CAP
code under development against results obtained by another,
well-established code, D2FOPI-CCS,7 and partially by the
astrophysical importance of and the widespread interest in
the dynamical features of this triatomic molecule. H2He+ is
known to be a collision complex forming instantaneously dur-
ing the following reactive scattering processes: H+

2 + He, H2



094106-4 Papp, Szidarovszky, and Császár J. Chem. Phys. 147, 094106 (2017)

+ He+, and HHe+ + H.19 Therefore, detailed knowledge of the
resonance states of H2He+ is of fundamental importance, see
Ref. 62 and references therein. Additionally, it has been found
that resonance states play an important role in the strong-field
photodissociation processes of H2He+.19

A. Computational details

The nuclear motions of the H2He+ complex are repre-
sented well by the orthogonal Jacobi coordinates r = |r|, R
= |R|, and θ, where r connects the two H atoms, R points
from the center of mass of the two H atoms to the He atom,
and θ is the included angle of the previous two vectors. For
the nuclear motion computations presented in this paper, the
PES of H2He+ was taken from Ref. 63. The refined PES of
Ref. 63 features dissociation thresholds of De = 2732.34 cm�1

and D0 = 1775.42 cm�1, and it supports 16 bound vibrational
states. The equilibrium structure of the H2He+ complex is lin-
ear with re = 2.077 92 bohrs and Re = 2.965 96 bohrs. During
the nuclear-motion computations, the following atomic masses
were used: mH = 1.007 276 47 u and mHe = 4.002 347 55 u.

In the full-dimensional GENIUSH vibration-only bound-
state computations, we use 40 and 200 scaled Laguerre-DVR
points along the r and R coordinates in the range of [1.0, 5.0]
and [0.5, 40.0] bohrs, respectively. On the angular coordinate,
we use 40 unscaled Legendre-DVR points in the interval of
(0.0, 180.0)◦. The convergence of the bound-state energies
is better than 0.01 cm�1 with respect to the number of basis
functions being increased by 20% on each coordinate. The
resonance eigenvalues, both their real and imaginary parts,
are converged to within a few 0.1 cm�1 (with respect to the
case when the number of basis functions on the R coordi-
nate is increased by 20%); however, this convergence strongly
depends on the given resonance. For the GENIUSH-CAP com-
putations, we use 400 vibrational GENIUSH eigenvectors as
the basis set and change the minimum value of R, where the
CAP is switched on, between 10 and 35 bohrs, while the Rmax

value, where the CAP is switched off, is fixed at 40 bohrs.
Further GENIUSH-CAP computations were carried out based
on a GENIUSH computation with a maximum R value of 50
bohrs, using 200 basis functions along R. In this case, the
CAP was switched on between 40 and 50 bohrs, and 1500
GENIUSH eigenvectors were used as a basis for the CAP
computation.

As a prerequisite of the D2FOPI-CCS7 computations,
bound states of the H2He+ system were also computed with
the D2FOPI code.35 For these computations, we employed
40 potential-optimized (PO) spherical-DVR basis functions35

along the r coordinate, 180 PO spherical-DVR basis func-
tions along the R coordinate, and 40 Legendre functions along
the θ coordinate. The coordinate ranges used in the computa-
tions are (0.0, 5.0) bohrs for r, (0, 40) bohrs for R, and (0.0,
180.0) for θ. In the D2FOPI-CCS method, resonance eigen-
states were obtained by diagonalizing the complex-coordinate-
scaled rovibrational Hamiltonian using different values for
the scaling parameter and identifying cusps in the resulting
eigenvalue trajectories. Details of this approach can be found
in Ref. 7. For constructing the matrix representation of the
CCS Hamiltonian, 500 vibrational eigenvectors were used.
The bound vibrational energy levels computed with D2FOPI

and GENIUSH are the same within numerical accuracy, while
the convergence of the D2FOPI-CCS resonance energies is
between 0.01 cm�1 and 1 cm�1, depending on the resonance
state.

B. Resonances of H2He+

To validate the GENIUSH-CAP code, resonance ener-
gies and lifetimes of the triatomic molecule H2He+, computed
with the newly developed code, have been compared with the
corresponding results of the D2FOPI-CCS code. Since the
CCS method does not involve approximations in determin-
ing resonance states (apart from utilizing a finite basis), the
D2FOPI-CCS protocol provides an adequate test to verify the
GENIUSH-CAP approach and the corresponding code.

Comparison of resonance eigenvalues, both their real and
imaginary parts, obtained by the two different techniques
shows remarkably good agreement, see Table I. Table I lists
several long-lived resonance eigenvalues of H2He+ located
in the energy interval [D0, 3000] cm�1 and having |Γ/2|
< 1 cm�1. We usually obtain resonance energies from the
two different techniques within a few 0.1 cm�1, and even the
obtained lifetimes usually agree within a factor of two, and
even in the worst cases, they are of the same order of mag-
nitude. In Table I, we can spot extremely long-lived states at
the energies of 1809.0 and 1832.0 cm�1, having several orders
of magnitude longer lifetimes than the other resonances in the
region. These B2-symmetry states, when utilizing the C2v(M)
molecular symmetry (MS) group, are characterized by wave
functions antisymmetric along the θ coordinate. Within this
symmetry, the system can dissociate only into the second low-
est dissociation channel, when the H+

2 product is in its first

TABLE I. Long-lived resonances of the H2He+ complex, both real [Re(Eres)
< 3000 cm�1] and imaginary [Im(Eres)] parts (cm�1), and the correspond-
ing lifetimes (in ps), obtained both with GENIUSH-CAP and D2FOPI-CCS
computations.

GENIUSH-CAP D2FOPI-CCS

Re (Eres) Im (Eres) Lifetime Re (Eres) Im (Eres) Lifetime

1775.8 �0.05 49.6 1775.9 >�0.005 >530.9
1776.7 �0.20 13.1 1777.0 �0.13 20.4
1778.3 �0.41 6.5 1779.8 �0.43 6.2
1809.0 �0.00 178 83.6 1809.0 >�0.0001 >265 460.9
1822.6 �0.06 44.2 1822.6 �0.06 43.5
1832.0 �0.00 4247.4 1832.0 >0
1834.2 �0.07 40.2 1834.2 >�0.04 >66.4
1835.1 �0.21 12.5 1835.5 �0.13 20.4
1950.4 �0.08 31.5 1950.7 >�0.02 >132.7
1951.4 �0.22 12.1 1951.8 �0.23 11.5
2123.7 �0.12 22.4 2123.6 �0.13 20.4
2124.8 �0.25 10.5 2125.6 �0.22 12.3
2352.5 �0.16 16.6 2352.0 >�0.22 >12.1
2353.8 �0.31 8.6 2354.8 �0.38 7.0
2491.9 �1.10 2.4 2491.9 �0.91 2.9
2602.8 �0.73 3.6 2602.9 �0.87 3.1
2635.1 �0.21 12.6 2635.1 �0.36 7.5
2636.7 �0.38 7.0 2638.0 �0.45 5.9
2642.4 �0.54 4.9 2642.2 �0.58 4.6
2969.6 �0.27 9.8 2969.5 >�0.50 >5.3
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FIG. 1. GENIUSH-CAP eigenvalue
trajectories of two selected resonance
states of the H2He+ system, corre-
sponding to the probability density
plots of Fig. 2. Blue and pink triangles
refer to 200 and 220 basis functions,
respectively, along the R dissoci-
ation coordinate in the GENIUSH
bound-state computations. Resonance
positions (cusps along the trajectories)
are indicated by the crossing of the two
gray lines.

excited rotational state (j = 1), which is estimated within the
rigid rotor approximation to be around 60 cm�1 higher than
the first dissociation limit corresponding to the j = 0 state of
H+

2 . Thus, these states are in fact bound states, as reflected in
their extremely long lifetimes. Overall, the close agreement of

the GENIUSH-CAP and D2FOPI-CCS results proves the cor-
rectness of the implementation of the CAP technique within
GENIUSH.

In Fig. 1, we present two selected GENIUSH-CAP
eigenvalue trajectories, whereby different colors reflect two

FIG. 2. 2D GENIUSH-CAP probabil-
ity density plots, see Eq. (9), of two
resonance states of H2He+ correspond-
ing to the resonance energies of Fig. 1.
In both cases, the third coordinate is held
fixed at its equilibrium value and the
CAP is switched on between 30 and 40
bohrs along the R dissociation coordi-
nate. r and R coordinates are given in
bohrs, while θ is given in radians.
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different basis set sizes, 200 and 220 DVR points, used along
the R dissociation coordinate in the bound-state GENIUSH
computations. Inspection of the left panel of Fig. 1 reveals that
the cusp is very sharp; thus, both the lifetime and the energy of
this resonance state can be determined precisely. In contrast,
the right panel of Fig. 1 shows a cusp covering a few 0.1 cm�1

range, yielding a somewhat lower precision. We attribute this
behavior to the extent of the delocalization of the resonance
states, as discussed below.

C. Characterizing resonance states
with GENIUSH-CAP

Visualization of the resonance probability densities can be
useful when the detailed characterization of a resonance state is
sought since several important features of the given resonance
can be extracted from the nodal structure of the wave function.

Figure 2 depicts three 2D cuts of the probability densities
of the two resonance states whose corresponding trajectories
are presented in Fig. 1. In each case, the third coordinate is held
fixed at its equilibrium value. As shown in the left panels of
Fig. 2, the wave function of the resonance state at 1822.6 cm�1

is localized well inside the potential well along the R dissocia-
tion coordinate. This is supported by the fact that this resonance
could be identified even when the CAP was switched on,
and thereby the resonance wave function was damped, in the
20–40 bohrs range along R. In contrast, the dominant part
of the wave function corresponding to the resonance state at
1942.2 cm�1 is extended along the R coordinate until it is
damped by the CAP. Due to this delocalized nature, the L2

expansion of this resonance state is less effective than that of
the previous one. This is probably the reason why its trajectory
features a “less sharp” cusp in Fig. 1. The wave function has a
significant amplitude in the asymptotic region, indicating that
this resonance corresponds to a “less bound” state. This is also
reflected in its shorter lifetime compared to the resonance state
at 1822.6 cm�1. Due to its short lifetime, having an imaginary
part of �4.3 cm�1, this state is not listed in Table I.

At the asymptotic region neither resonance states of Fig. 2
are excited in the HH-stretch motion; however, in the case
of the resonance state at 1822.6 cm�1, one node appears
in the r coordinate at the stronger interaction region of the
PES. Additionally, two nodes can be observed along the θ
coordinate at the interaction region for both resonance states
(Fig. 2). This suggests that these states are Feshbach reso-
nances.3 The R intermolecular stretching mode is only doubly
excited in the case of the 1822.6 cm�1 resonance state; how-
ever, not surprisingly, R is highly excited for the resonance at
1942.2 cm�1.

IV. A TETRATOMIC TEST CASE: H2·CO

A high-resolution infrared (IR) spectrum measured in the
region of the CO fundamental for H2·CO was assigned and
fully explained by Jankowski et al.8 in 2012, after devel-
oping an accurate ab initio PES of the complex.64 Sev-
eral attempts have been made to understand the resonance
energy level structure of this complex, using both sophisti-
cated experimental and theoretical scattering techniques.65–67

Employing the GENIUSH-CAP code, we hereby deter-
mine numerous rovibrational resonance states of H2·CO and
analyze them in some detail. This is one of the first cases, to
the best of our knowledge, when a four-atomic molecular sys-
tem is subjected to a variational resonance computation using
a model with more than three degrees of freedom.47–49,68

A. Computational details

During the nuclear-motion computations for the H2·CO
complex, the following masses were used: mH = 1.007 825 035
u, mC = 12.0 u, and mO = 15.994 914 63 u. The computations
employed a 4D PES, taken from Ref. 64, averaged over the
intramonomer vibrations and corresponding to the v = 0 state
of CO. The intramonomer distances were fixed at 1.449 and
2.140 bohrs for H2 and CO, respectively.64 The first dissocia-
tion limit of H2·CO corresponds to the dissociation of the para-
H2·CO complex, De,para = 94.096 cm�1 and D0,para = 19.440
cm�1,8,64 where the H2 product is in its ground rotational state
(j1 = 0). The dissociation limit corresponding to ortho-H2·CO,
D0,ortho, where the H2 product is in its first excited rotational
state (j1 = 1) is 2B above the para dissociation energy within
the rigid rotor approximation, where B refers to the rotational
constant of the H2 molecule. The GENIUSH computations
yield both the para- and ortho-H2·CO states in the same com-
putation. The 4D PES implies that the B0 rotational constant
corresponds to the frozen bond length, r0 = 1.449 bohrs,64

of the H2 unit and thus equals to BPES
0 = 56.919 cm�1. This

value is 2.403 cm�1 lower than the experimental value69 of
Bexpt

0 = 59.322 cm�1; therefore, the ortho dissociation energy
obtained from the reduced-dimensional model, 113.838 cm�1

relative to the para dissociation, is 4.806 cm�1 lower than the
experimental value of the ortho-H2·CO dissociation energy
of Dexpt

0,ortho = 118.644 cm�1. Thus, we expect to obtain ortho-

H2·CO energy levels approximately 5 cm�1 lower (the conver-
gence of certain states may vary) than the absolute energies
obtained from experiments.

During the nuclear motion computations, we used gen-
eralized Jacobi coordinates, presented in Fig. 3, for the four
intermolecular degrees of freedom of the H2·CO van der Waals
complex. The equilibrium structure of the complex corre-
sponds to Re = 7.9145 bohrs, θ1, e = 0◦, θ2, e = 180◦, and
φe = 0◦. The two intramonomer vibrations are kept frozen
during the GENIUSH bound-state computations. In these com-
putations, the following intervals and basis sets are used for
the active coordinates: R ∈ [5.0, 40.0] bohrs with 200 scaled
Laguerre-DVR points, θ 1 and θ2 ∈ (0.0, 180.0)◦ with 30

FIG. 3. The coordinate system for the intermolecular degrees of freedom used
in the reduced-dimensional GENIUSH computations of H2 ·CO.
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unscaled Legendre-DVR points along both coordinates, and
φ ∈ [0.0, 360.0]◦ with 51 Fourier-DVR points. During the
GENIUSH-CAP computations, we changed the R value where
the CAP is switched on between 20 and 35 bohrs, while keep-
ing the Rmax value, where the CAP is switched off, fixed at
40 bohrs. We used 220 vibrational GENIUSH eigenvectors as
a basis for the CAP computations. Convergence of the reso-
nance states, which usually varies between 0.1 and 1 cm�1,
depending on the given resonance, was tested by changing the
number of basis functions on each coordinate by 10%. All
the resonance energies are given relative to the para-H2·CO
zero-point energy (ZPE), 74.66 cm�1, measured with respect
to the global minimum of the 4D PES. All three bound states
of para-H2·CO obtained with GENIUSH agree well, within
0.03 cm�1, with those reported in Ref. 8.

B. Resonance states of H2·CO

In this study, several vibrational resonance states of
the H2·CO complex have been determined employing the
GENIUSH-CAP code and the 4D PES of Ref. 64. Since the
first dissociation limit of H2·CO, as mentioned above, is D0,para

= 19.440 cm�1, in the GENIUSH-CAP computations, one
effectively obtains all the states that have an energy higher than
D0,para as resonance states. The dissociation limit correspond-
ing to the ortho-H2·CO complex, 113.838 cm�1 relative to the
para dissociation limit and 133.278 cm�1 relative to the para-
H2·CO ZPE in the 4D model, lies much higher than D0,para.
Note also that, as reported in Ref. 8, the ZPE of the ortho-
H2·CO complex is 98 cm�1 relative to the para dissociation
limit. Thus, all the bound states corresponding to the ortho-
H2·CO complex are expected to be obtained as resonance
states with GENIUSH-CAP. In line with this expectation, we
found seven extremely long-lived resonance states below the
dissociation energy of ortho-H2·CO.

A joint experimental and theoretical work8 also reported
seven vibrational bound-state energies for ortho-H2·CO, listed
in the third column of Table II. However, the energy lev-
els reported in Ref. 8 were obtained from separate com-
putations for para- and ortho-H2·CO, and the ortho-H2·CO
energies were shifted later with the experimental value of
D expt

0,ortho = 118.644 cm�1 with respect to the para dissociation.

TABLE II. Vibrational resonance energies (cm�1), shifted by 4.8 cm�1, given
relative to the para-H2 ·CO zero-point energy (p-ZPE) (first column), and
lifetimes (ns) (second column) of extremely long-lived resonance states of the
ortho-H2 ·CO complex, obtained from GENIUSH-CAP computations. The
third column contains bound vibrational energy levels (cm�1) relative to the
p-ZPE taken from Ref. 8.

GENIUSH-CAP Reference 8

Eres shifted by 4.8 cm�1 Lifetime Ebound

117.8 7.0 117.8
118.4 1.5 118.6
121.7 3.7 121.7
122.9 1.0 123.1
130.4 3.5 130.5
136.1 4.0 136.3
136.1 2.3 136.4

The GENIUSH-CAP ortho-H2·CO energy levels therefore
deviate by approximately 5 cm�1 from the computed results
of Ref. 8. This is the difference between the experimental and
the reduced-dimensional theoretical D0,ortho values.

Therefore, if we shift the GENIUSH-CAP resonance ener-
gies with the value of the expected difference between the
GENIUSH-CAP results and those of Ref. 8, i.e., 4.806 cm�1,
the extremely long-lived GENIUSH-CAP resonance energies
agree well, within 0.1–0.3 cm�1, with the bound ortho-H2·CO
energy levels computed in Ref. 8, see Table II. Lifetimes
of these extremely long-lived resonances are also listed in
Table II.

In the J = 0 GENIUSH-CAP computations, the rovibra-
tional ground state of ortho-H2·CO does not appear since it is
found in the J = 1 manifold.8 Seemingly, H2·CO belongs to
the group of molecules featuring negative “rotational” ener-
gies,70,71 that is, the J = 1 rotationally “excited” ground vibra-
tional state has lower energy than the J = 0 ground vibrational
state featuring no rotational “excitation.”

TABLE III. Vibrational resonance energies and lifetimes of the H2 ·CO com-
plex computed with GENIUSH-CAP. The first and the second columns show
all resonance positions and lifetimes, respectively, in the range of [D0,para,
50] cm�1 with |Γ/2 | < 1 cm�1. The third and fourth columns show ener-
gies of the resonance states relative to the first resonance state and to the first
resonance states above the new dissociation channels characterized by the
rotational energies of CO (boldfaced numbers in the third column), respec-
tively. In the fourth column, relative energies corresponding to resonance states
labeled with the n sequential quantum number are italicized. The fifth column
provides assignments (j2 characterizes the rotation of the CO subunit, see the
text for details) of the resonances listed in columns 1 and 2. The sixth and
seventh columns show resonance positions and lifetimes, respectively, above
the last “bound” ortho-H2 ·CO state, up to 145 cm�1, with |Γ/2 | < 1 cm�1.
Resonance positions and lifetimes are given in cm�1 and ps, respectively.

para-H2 ·CO ortho-H2 ·CO

Re (Eres) Lifetime Erel,j2 = 0 Erel,j2 j2 n Re (Eres) Lifetime

19.5 288 0.0 0.0 0 0 136.2 657
20.3 28 0.8 0.8 0 1 136.9a 617
21.8 11 2.4 2.4 0 2 137.0a 583

23.3 82 3.8 0.0 1 0 137.5 48
24.0 7 4.5 0.7 0 3 137.7 36
24.2 15 4.7 0.9 1 1 137.9 6
25.7 10 6.2 2.4 1 2 137.9 30
26.8 4 7.3 3.5 138.6 20
27.8 7 8.3 4.5 1 3 139.2 13
29.6 8 10.1 6.3 139.3 14

31.5 20 12.0 0.0 2 0 139.8 12
31.8 9 12.3 0.3 140.7 4
32.3 12 12.8 0.8 2 1 141.1 7
32.3 12 12.8 0.8 141.2 8
33.7 7 14.2 2.2 2 2 141.9 6
36.1 5 16.6 4.6 2 3 143.7 5
43.2 14 23.7 11.7 143.8 7

43.4 38 23.9 0.0 3 0 144.6 108
44.2 10 24.7 0.8
44.4 15 24.9 1.0 3 1
45.8 8 26.3 2.4 3 2
47.8 5 28.3 4.4 3 3

aOne of these resonance states was also reported in Ref. 8.
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FIG. 4. GENIUSH-CAP eigenvalue tra-
jectories of two selected resonance
states of the para-H2 ·CO complex, with
resonance energies of 19.5 and 24.2
cm�1 (see Fig. 5 for the correspond-
ing probability density plots). Orange
and purple dots refer to 200 and 220
basis functions along the R dissocia-
tion coordinate in the GENIUSH bound-
state computations, respectively. Reso-
nance positions (cusps along the trajec-
tories) are indicated by the crossing of
the two gray lines.

Two-dimensional probability density plots, see Eq. (9),
corresponding to the seven extremely long-lived reso-
nances are presented in the supplementary material. All of
the GENIUSH-CAP eigenvalue trajectories of these states
cover a very narrow energy range, and the corresponding

eigenvalues could be converged to better than 0.1 cm�1.
Thus, not surprisingly, the probability density plots of these
high-lying resonance states reveal that these states are per-
fectly localized in the potential well along the R coordi-
nate. The probability densities show a very clear structure

FIG. 5. 2D GENIUSH-CAP probabil-
ity density plots, see Eq. (9), of two
selected resonance states of the H2 ·CO
complex, with resonance energies of
19.5 and 24.2 cm�1. The inactive coor-
dinates are held fixed at R = 20 bohrs,
θ1 = 90◦, θ2 = 90◦, andφ = 180◦ in the
case of the resonance at 19.5 cm�1, and
at R = 30 bohrs, θ1 = 90◦, θ2 = 45◦, and
φ = 180◦ in the case of the resonance
state at 24.2 cm�1. The CAP is switched
on between 35 and 40 bohrs along the
R dissociation coordinate. The R coor-
dinate is given in bohrs, while θ1 and θ2
are given in radians.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-027733
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implying intermonomer bending excitations. The observed
structure is also in line with the fact that the states cor-
respond to the bound states of the ortho-H2·CO complex.

Note that the appearance of the ortho-H2·CO bound states as
resonances with finite lifetimes is only due to the utilization
of the CAP procedure.

FIG. 6. 2D R–θ2 GENIUSH-CAP probability density plots, according to Eq. (9), of 12 selected resonance states of the H2 ·CO complex, with resonance energies
of 19.5, 20.3, 21.8, 23.3, 24.2, 25.7, 31.5, 32.3, 33.7, 43.4, 44.4, and 45.8 cm�1. The θ1 and φ coordinates are held fixed at θ1 = 90◦ and φ = 180◦. The CAP is
switched on between 35 and 40 bohrs along the R dissociation coordinate. The R coordinate is given in bohrs, while θ2 is given in radians.
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We also identified several resonances appearing in the
energy region [D0,para,50] cm�1. Energies and lifetimes of
these resonance states having |Γ/2| < 1 cm�1 are listed in
Table III. Figure 4 shows the GENIUSH-CAP eigenvalue
trajectories corresponding to two selected resonance states
obtained with energies of 19.5 cm�1 and 24.2 cm�1. Further-
more, in Fig. 5, we present two-dimensional plots, see Eq. (9),
of the probability densities of these two resonance states. The
resonance state at 19.5 cm�1 (left panels of Fig. 5) is just above
the D0,para limit, with a lifetime as large as 288 ps, and its wave
function is localized mainly at 15–25 bohrs. Inspecting the
right panels of Fig. 5 reveals that the shorter-lived (15 ps) res-
onance state at 24.2 cm�1 features a more extended wave func-
tion along R, mainly localized at the asymptotic region of the
PES.

In Table III, we also propose assignments for some of the
resonance states of para-H2·CO. The probability density plots
of these states are shown in Fig. 6 and more extensively in the
supplementary material. In different rows of Fig. 6, a different
number of nodes along the θ2 coordinate appear in the reso-
nance wave functions, which can be associated with increasing
end-over-end rotational excitation of the CO monomer, charac-
terized by the j2 approximate quantum number. The rotational
energies of the CO molecule, estimated within the rigid rotor
approximation using the rotational constant B0,CO = 1.9 cm�1,
are 3.8, 11.4, and 22.8 cm�1 for j2 = 1, 2, and 3, respec-
tively. The energies of the leftmost resonances in the rows of
Fig. 6, given relative to the energy of the first resonance above
D0,para, are boldfaced in the third column of Table III. These
energies coincide with the rigid rotor energies of CO. These

FIG. 7. Selected 2D GENIUSH-CAP probability density plots, according to Eq. (9), of the three longest-lived resonance states of H2·CO above D0,ortho, with
resonance energies of 136.2, 136.9, and 137.0 cm�1. The other coordinates are held fixed at their equilibrium values. The CAP is switched on between 35 and
40 bohrs along the R dissociation coordinate. The R coordinate is given in bohrs, while θ1, θ2, and φ are given in radians.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-027733
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resonances also exhibit long lifetimes. Thus, the longest-
lived resonances at the energies of 19.5, 23.3, 31.5, and 43.4
cm�1 of Table III correspond to the opening of new dissoci-
ation channels labeled with j2 = 0, 1, 2, and 3, respectively.

Resonance states above the dissociation energy of a
given channel characterized by j2, shown within the rows of
Fig. 6, feature an increasing number of nodes in the R coor-
dinate. These nodes refer to an increase in the relative kinetic
energy of the monomers, which manifests in smaller and
smaller wavelength continuum waves describing the asymp-
totic parts of the resonance wave functions along the R coor-
dinate. The resonance states corresponding to a given disso-
ciation channel (a given row of Fig. 6) can be labeled with
the n sequential “quantum number” starting from zero for
each new j2 state. The fourth and fifth columns of Table III
reveal that the energies of the resonances, labeled with n = 1,
2, and 3 corresponding to a given j2 quantum number, increase
approximately with 0.8, 2.4, and 4.5 cm�1 relative to the
energy of the n = 0, j2 state. Table III also shows that the
lifetimes of the resonance states decrease with increasing n, in
line with the delocalization of their wave functions along R.

The resonance states appearing just above the first disso-
ciation threshold of the H2·CO complex (first row of Fig. 6)
are assigned as Feshbach resonances, as no rotational exci-
tation of CO occurs at the asymptotic region of their wave
functions, while near the interaction region, the rotational exci-
tation of CO can be observed. The resonance states appearing
just above the new dissociation channels, characterized by
j2 = 1, 2, and 3, in contrast, seem to be shape resonances,
as their wave functions feature the same excitation patterns
at the asymptotic and at the interaction regions of the PES.

Between 136 and 137 cm�1, just above D0,ortho, we found
three long-lived resonance states; their resonance energies and
lifetimes are listed in Table III. The probability density plots
of the three resonances between 136 and 137 cm�1 are given in
Fig. 7 and the supplementary material. These wave-function
plots suggest that all three of these resonance states correspond
to the ortho-H2·CO complex, where both the H2 and the CO
moieties are in their first rotationally excited states, i.e., j1 = j2

= 1. However, j1 and j2 are only approximate quantum num-
bers, explaining the small splitting according to the m1 and
m2 quantum numbers, which are related to the projection of
ĵ1 and ĵ2 onto the intermolecular axis connecting the centers
of masses of the H2 and CO monomers. The m1 and m2 quan-
tum numbers are also related to excitations along θ1 and θ2,
respectively. However, due to the J = 0 constraint, not all the
3 × 3 = 9 possible combinations of m1 and m2 can be seen
in our computations. The following combinations are feasi-
ble (the signs are not assigned): m1 = ±1, m2 = ∓1 at the
energy of 136.2 cm�1, m1 = m2 = 0 (no excitations along θ1

and θ2) at 136.9 cm�1, and m1 = ∓1, m2 = ±1 at 137.0 cm�1.
Our assignments, given in the previous paragraph, are

based on energy values and wave-function plots. These assign-
ments were also confirmed by computing overlaps between
the resonance wave functions and eigenstates of a sim-
ple model system. This assignment technique resembles the
coupled rotor decomposition (CRD) analysis introduced in
Ref. 72. Briefly, this technique is characterized by the fol-
lowing steps: (i) Using GENIUSH, 3D reduced-dimensional

computations are carried out, in which the R coordinate is fixed
at 80 bohrs and the PES is removed from the Hamiltonian. This
results in eigenstates corresponding to two non-interacting
rigid monomers, H2 and CO, for which quantum number
assignation could be easily done based on rigid rotor monomer
energies. (ii) Since the 3D computations are carried out on the
same DVR grids along the active coordinates as those used
during the 4D GENIUSH computations, the resonance wave
functions can easily be projected onto the 3D eigenstates. The
norm of these projections gives the CRD coefficients. For each
resonance state investigated in this study, the j1 and j2 approxi-
mate quantum numbers could be assigned unambiguously with
CRD coefficients usually above 0.9 and always larger than
0.75.

We could also identify an ortho-H2·CO resonance state
corresponding to the opening of the j2 = 2 channel at
144.6 cm�1. The corresponding probability density plot is pre-
sented in the supplementary material. Numerous shorter-lived
resonance states in the region [D0,ortho,145] cm�1 were also
found; they are listed in Table III.

V. SUMMARY AND CONCLUSIONS

This study presents a universal approach to the varia-
tional determination of rovibrational resonance states of poly-
atomic molecules: the complex absorbing potential (CAP)
technique26,27,53,54 has been implemented into the fourth-
age50 quantum chemical quasi-variational nuclear-motion
code GENIUSH.36,38 The GENIUSH-CAP protocol inherits
all the advantages of GENIUSH, such as the possibility of
computing rovibrational states of molecules of arbitrary size,
both in reduced and full dimensions, using arbitrary coordi-
nate systems and embeddings, chosen most suitably for the
given system. The GENIUSH-CAP protocol can be employed
efficiently for the computation of resonance states of poly-
atomic molecules and complexes. Furthermore, it has also been
shown that inspection of GENIUSH-CAP resonance wave
functions facilitates a deeper, qualitative insight into some of
the properties of resonance states.

The GENIUSH-CAP code has been validated by com-
paring the computed resonance energies and lifetimes of the
H2He+ cation to those obtained with the triatomic D2FOPI-
CCS code utilizing the complex coordinate scaling method.
The results obtained with the two codes show excellent
agreement.

We also report resonance energies and lifetimes for the
ortho and para states of the H2·CO complex using GENIUSH-
CAP. To the best of our knowledge, these are the highest-
dimensional variational resonance computations for a four-
atomic system. We carried out reduced-dimensional (4D)
computations with GENIUSH-CAP, after eliminating the HH
and CO stretch coordinates, successfully identified seven
long-lived resonances high above the first dissociation limit
of the para-H2·CO complex, and assigned them to bound
states of ortho-H2·CO. This assignment is supported by the
bound vibrational energy levels reported in Ref. 8 and by the
inspection of the GENIUSH-CAP resonance probability den-
sity plots. Furthermore, we identified and assigned several
vibrational resonances of both para- and ortho-H2·CO and

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-027733
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-027733
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discussed the qualitative features of selected states with the
help of their probability density plots. Finally, we showed
that it is possible to assign approximate quantum numbers
to the resonance states obtained with GENIUSH-CAP. This
is achieved through computing the projections of the reso-
nance states onto eigenstates of simple model systems, also
computed with GENIUSH. In this work, projections onto non-
interacting rigid-rotor monomer eigenstates were carried out,
resulting in monomer rotational quantum number assignments
for the resonance states.

SUPPLEMENTARY MATERIAL

See supplementary material for 27 two-dimensional prob-
ability density plots, see Eq. (9), obtained from GENIUSH-
CAP complex resonance eigenvectors.
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