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1.  Introduction

There is growing acceptance that benchmark atomic and 
molecular (A+M) calculations should follow accepted exper­
imental practice and include an uncertainty estimate alongside 
any numerical values presented [1]. Increasingly, A+M com­
putations are also being used as the primary source of data for 
input into modeling codes. It is our assertion that these data 
should, if at all possible, be accompanied by estimated uncer­
tainties. However, it is not at all straightforward to assess the 
uncertainties associated with A+M computations. The aim of 
this work is to provide guidelines for A+M theorists to acquire 
uncertainty estimates as a routine part of their work. We con­
centrate on data that are most important for high-temperature 
plasma modeling: data for A+M structure, electron-atom (or 

ion) collisions, electron collisions with small molecules, and 
charge transfer in ion-atom collisions.

Uncertainty quantification (UQ) is a very active research 
area in connection with simulations of complex systems aris­
ing in weather and climate modeling, simulations of nuclear 
reactors, radiation hydrodynamics, materials science, and 
many other applications in science and engineering. A report 
from the USA National Research Council [2] provides a valu­
able survey. The current state of the field is reflected in the 
biennial meeting of the SIAM Activity Group on uncertainty 
quantification [3]. This field of UQ for complex systems has a 
mathematical core in the description of uncertainty propaga­
tion for chaotic deterministic and stochastic evolution equa­
tions  in many dimensions (‘polynomial chaos’). In many 
cases the interest is then focused on systems for which the 
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basic equations  are not well established and involve poorly 
known parameters and functional dependencies.

The present article is concerned with quantification of 
uncertainties in elaborate computations, but the nature of 
computational A+M science for application to high temper­
ature plasmas is rather different from the focus areas of pre­
sent UQ science. This A+M science is concerned with simple 
physical systems and their interactions. The underlying equa­
tions  governing the processes of interest and the ensuing 
dynamics are essentially known [4], except for a few special 
cases a true first-principles treatment is numerically intracta­
ble: the complexity scales exponentially with the number of 
electrons while for a fixed number of electrons the complexity 
of the first-principles equations  using a basis tends to scale 
polynomially in the basis size with the number of electrons 
in the exponent. A+M theory is, therefore, about develop­
ment of models that aim to approximate the exact problem 
with numerically tractable procedures. The uncertainties in 
these procedures, referred to as ‘model uncertainties’ in the 
following, are strongly model-dependent and are often poorly 
understood. The solution of any given model is itself subject 
to uncertainties due to convergence and other numerical issues 
associated with a grid or a basis set. These will be referred to 
as ‘numerical uncertainties’. Finally, closer to established UQ 
science, uncertainties propagate through the various stages of 
a calculation, e.g. from structure to collisions, in ways that are 
hard to quantify.

Plasma conditions in, for example, astrophysics and nuclear 
fusion applications span many orders of magnitude variation 
in energy and in spatial and temporal scales, and systems can 
be far from thermodynamic equilibrium. Basic data may be 
required for quite strange-looking A+M systems; e.g. for col­
lision processes between neutral atoms and highly charged 
ions (relevant for neutral beam heating in fusion plasma and 
for processes involving the solar wind) or for neutral and low 
charge states of atoms in high temperature plasma (relevant 
for laser-produced plasma and for plasma-wall interaction). 
For applications to low-temperature industrial plasmas, simi­
lar to the case of chemical dynamics, data are required for 
transient species such as molecular radicals and molecular 
complexes above the dissociation threshold. In addition, for 
applications in plasma chemistry essentially always data are 
required for multiple electronic states, corresponding to the 
possibility of charge transfer. Very often the modeling requires 
data that are not accessible to direct experiments; for example, 
data for atomic processes from excited initial states, data for 
molecular processes resolved with respect to the rovibrational 
state of the molecule, data for processes involving electroni­
cally excited molecules, data for molecular radicals, and to 
some extent data involving hazardous species such as tritium 
or beryllium.

To develop an effective and objective science of uncer­
tainty assessment for A+M applications one has to bring 
together physics, chemistry, computer science, and applied 
mathematics communities. The A+M and plasma modeling 
communities are making the first steps in this direction, for 
example by meetings such as [5] and [6]. Our ultimate goal 
is to develop guidelines for self-validation of computational 

theory for A+M processes; i.e. computational procedures 
by which an uncertainty estimate is obtained along with the 
primary quantity of interest. We recognize that experimental 
benchmark data are sometimes available and can be used for 
additional validation. In general, this is more readily possible 
for structural studies (where spectroscopic data often provide 
benchmark accuracy) than for studies of collision processes. 
Similarly, procedures for uncertainty estimates are currently 
better developed for structure calculations than for scattering. 
This will be further elaborated below.

Energies and state-resolved cross sections  are the pri­
mary data from A+M science, but these data are normally 
processed further before being used in plasma modeling 
codes, which tend to use effective rate coefficients for pro­
cesses in thermal plasma with explicit account of long-lived 
electronic states only. The processed data may be tabulated 
for interpolation or fit functions may be used, or a combi­
nation of interpolation and function fitting. At that stage, 
completeness of the data (relative to processes covered and 
range of collision energy) and qualitative correctness of 
behavior at extreme conditions is essential; more important 
than pointwise accuracy. These processed, tabulated and 
fitted data are incorporated into integrated modeling codes, 
and a key challenge for theory and simulation is the con­
sistent integration of all processes and scales together with 
a well-founded assessment of uncertainties as they are gen­
erated and propagated in the simulations. For the propaga­
tion of uncertainties in A+M data through a simple plasma 
model (no spatial dependence) we note the HydKin toolkit 
[7], which has been developed to support fusion plasma 
modeling and other applications.

The focus of the present work is on calculations based on 
quantum mechanics for A+M properties and processes that 
are important in plasmas: atomic and molecular structure, 
electron collisions with atoms and molecules (and their 
ions), and charge transfer in ion-atom and ion-molecule 
collisions. Processes governed by time-dependent fields 
and photon-induced processes are not considered. Section 2 
contains general remarks about the need for uncertainty esti­
mates and about approaches for uncertainty assessment. In 
section 3 we discuss uncertainty assessment for atomic and 
molecular electronic structure. Section 4 is concerned with 
uncertainty assessment for electron-atom and electron-mol­
ecule collisions. In section 5 we consider charge transfer in 
heavy particle collisions. Section 6 is concerned with uncer­
tainty assessment in practice, with examples from atomic 
and molecular structure, electron collisions and heavy par­
ticle collisions. In section 7 we provide conclusions and an 
outlook for future work.

2.  General considerations

Uncertainties should be provided for observable and other 
physically important intermediate quantities, such as molec­
ular electronic excitation energies. Quantities in structural 
studies for which uncertainties should routinely be provided 
include:
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	 •	energy level differences, such as excitation and ionization 
energies and for molecules also dissociation energies and 
barrier heights;

	 •	configurational parameters of molecules such as bond 
lengths and bond angles at local minima and transition 
states;

	 •	properties, such as dipole moments, oscillator strengths, 
lifetimes, and polarizabilities;

	 •	numerical issues such as analytical representations (fits) 
yielding potential energy and dipole moment surfaces.

Quantities in collisional studies for which uncertainties should 
routinely be provided include:

	 •	threshold energies;
	 •	cross sections and/or appropriate rates;
	 •	positions and widths of key resonances;
	 •	other observables, such as the polarization of the emitted 

radiation, branching ratios, etc.

It may also be desirable to provide uncertainties for other key 
computed quantities, such as eigenphase sums or scattering 
lengths, which are important for the theoretical analysis of 
given processes. These quantities, however, do not generally 
form input of modeling codes and therefore the provision of 
uncertainties can be regarded as having lower significance. 
It must be recognized that there are difficulties in estimating 
uncertainties in some cases, for example if a resonance comes 
out on the wrong side of a threshold. This observation means 
that a computational model must have reached a sufficient 
level of stability and accuracy before an uncertainty estimate 
is appropriate. However it is exactly such computations that 
provide benchmarks and inputs to modeling codes.

For structural studies, including computations of relative 
energies and properties, the focal point analysis (FPA) tech­
nique [8] provides an excellent procedure to assign uncertain­
ties for key quantities. Studies building on an FPA approach 
can also include uncertainty estimates for effects not explic­
itly computed: for example it is much easier to estimate the 
magnitude of higher order electron correlation or nonadiaba­
tic corrections to the Born–Oppenheimer approximation than 
it is to compute them in specific cases; see [9] for example.

In clear contrast, at present there is no well-defined general 
procedure for uncertainty propagation in scattering calcul­
ations. Notable exceptions are the way uncertainties in dipole 
moments and oscillator strengths propagate from structure to 
certain collisional observables.

It is important to estimate all major corrections separately, 
rather than as a sum that may contain accidental cancellations, 
and to compare the estimates with known values for reference 
ions. Whenever possible, calculations should be done by more 
than one method (such as CI and MCHF), and the results com­
pared for consistency. In the ideal scenario, for a given method 
of calculation, uncertainties in the parameters of the method 
should be propagated towards uncertainties in the final results 
(cross sections, energies, etc). Due to the need to approximate 
the many-electron Schrödinger equation with a tractable model, 
systematic errors are in general unavoidable. The use of dif­
ferent independent methods will help to reduce the influence 

of systematic unknown errors. Assuming that some uncertainty 
estimate is available the results from different methods can be 
combined using a Bayesian approach to produce a final proba­
bility distribution for quantities of interest, from which a revised 
uncertainty can be obtained. The use of models in combination 
with experimental benchmarks to produce correlated probabil­
ity distributions for quantities of interest has become rather well 
established in the nuclear data community under names such 
as total Monte Carlo (TMC) or unified Monte Carlo (UMC); 
for example see [10]. It would be very interesting to see such 
a formal and objective approach applied in the field of atomic, 
molecular and optical physics as well.

Once the evaluation (comparison) between results of 
theoretical methods is done, the final step is to check that 
the uncertainty estimates are in accord with the actual differ­
ences between theory and experiment for known cases. For an 
objective evaluation, in an ideal situation, when experimental 
and theoretical uncertainties are available, the same evaluation 
procedure based on the formal statistical approach is recom­
mended. The data (values and uncertainties) resulted from this 
evaluation would account for all available information from 
theory and experiment. If no systematic error in the theor­
etical data is suspected (for example, if two different meth­
ods produce results within their intervals of uncertainties), the 
theoretical results and their uncertainties could be extended to 
cases where there are no experimental data available.

The above discussion demonstrates why uncertainty 
quantification is very important in theoretical calculations. 
Unfortunately, uncertainty quantification of the final results 
from a given theoretical method is often impossible or very 
difficult. But it is still strongly recommended that the authors 
of the produced data give an approximate estimate of uncer­
tainty of the produced results for the purposes discussed above. 
In many situations, where the direct uncertainty propagation is 
not possible, sensitivity tests could and should be performed to 
collect statistics and estimate uncertainties of the final results.

3.  Uncertainty estimates for structure computations

3.1.  Atoms

The discussion of uncertainties in atomic structure computa­
tions begins with one- and two-electron atoms and ions since 
these provide the traditional testing grounds for theory in 
comparison with experiment. Theoretical uncertainties here 
limit the accuracy that can be achieved for more complex 
atomic systems.

The highest accuracy can of course be achieved for hydro­
gen and other two-body problems since the Schrödinger equa­
tion can be solved exactly to find the exact nonrelativistic wave 
function and energy [11]. Uncertainties then come from rela­
tivistic and quantum electrodynamic (QED) corrections, and 
the effects of finite nuclear size and structure (for a general 
review, see [12]). The sizes of the relativistic and QED cor­
rections are determined by the dual expansion parameters α 
and Zα , where 1 137.035 999 139 31/ ( )α =  is the fine structure 
constant and Z is the nuclear charge [13]. Beginning with the 
lowest order nonrelativistic energy, the relativistic corrections 
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can generally be represented as an expansion in powers of 
Z 2( )α . For the case of one-electron atoms and infinite nuclear 

mass, the series can be summed to infinity by solving instead 
the Dirac equation to obtain the exact relativistic energies [11]. 
However, QED corrections (Lamb shifts) cannot be similarly 
summed to all orders, and so represent a dominant source of 
uncertainty. The lowest order one-loop terms from vacuum 
polarization and electron self-energy are of order Z3 4α  Ry. 
These can be calculated exactly. Higher order terms come 
from both binding energy corrections as additional powers of 

Zα , and multi-loop Feynman diagrams as additional powers 
of α. The higher order terms are known in their entirety up 
to Z6 6α  Ry, but the uncertainty in the numerical coefficients 
gives an uncertainty of order Z6 7α  Ry, or a few kHz for the 
ground state of hydrogen [14]. The uncertainty from finite 
nuclear size effects is about an order of magnitude larger, and 
hence dominates.

For heavy hydrogenic ions up to U91+ and beyond, con­
siderable progress has been made in summing the binding 
energy corrections (i.e. powers of Zα ) to all orders for cer­
tain classes of diagrams [15], coupled with experiments for 
comparison (see Gumberidze et al [16], and earlier references 
therein). For the ground state of U91+ , the theoretical Lamb 
shift is 464.26 0.5±  eV, in good agreement with the measured 
value 460.2 4.6±  eV. For excited s-states, the Lamb shifts and 
uncertainties scale approximately as 1/n3 with n and Z6 with Z. 
These uncertainties place a fundamental limit on the accuracy 
of atomic structure computations.

For atoms or ions containing two or more electrons, the 
Schrödinger equation  is not separable, and hence cannot be 
solved exactly. Electron correlation then enters as an important 
new source of uncertainty. The correlation energy represents 
the difference between the exact energy, and the Hartree–Fock 
(HF) approximation arising from the use of spherically aver­
aged potentials to obtain an independent particle approx­
imation. Methods for few-electron atoms are divided into two 
broad categories, depending on the relative importance of cor­
relation effects and relativistic corrections. As a function of Z 
for an isoelectronic sequence, correlation effects are propor­
tional to Z0  =  1 (i.e. a constant) while the lowest order relativ­
istic corrections are proportional to Z2 3α . There is therefore a 
crossover point when Z 12 3α = , or Z 1 272 3/ /α= � . For Z 27⩽ , 
correlation effects dominate relativistic effects. Consequently, 
one should start with the best possible solutions to the non­
relativistic Schrödinger equation and treat relativistic correc­
tions as a perturbation. Conversely, when Z  >  27, one should 
start with exact one-electron solutions to the Dirac equation, 
and treat electron correlation as a perturbation. We will call 
these two regions the low-Z and high-Z regions respectively. 
There is a broad region around Z  =  27 where both methods 
yield useful results, and provide interesting comparisons to 
assess the accuracy.

Atoms with two or three electrons provide a special case 
because specialized techniques are available that yield essen­
tially exact solutions to the Schrödinger equation. This is 
achieved by expanding the wave function in a Hylleraas basis 
set of functions involving explicitly powers of the interelec­
tron coordinate r r r12 1 2= | − |, where r1 and r2 are the position 

vectors of the individual electrons. Since a Hylleraas basis 
set is provably complete [17, 18], a variational calculation in 
Hylleraas coordinates is guaranteed to converge from above 
to the exact nonrelativistic energy. The accuracy can be read­
ily determined from the rate of convergence as more func­
tions are added to the basis set. In this way, the nonrelativistic 
energy of the ground state of helium has been determined to 
35 or more significant figures [19, 20], and results accurate to 
20 or more significant figures can be readily obtained for the 
entire singly excited spectrum of helium [21]. At this level 
of accuracy, calculations must be done in at least quadruple 
precision (32 decimal digits). Some authors go even further 
to use multiple precision arithmetic (48 or 64 decimal dig­
its) [22–24] in order to avoid numerical linear dependence in 
the basis set and preserve numerical stability. The record is 
the 101-digit arithmetic used by Schwartz [19] for the ground 
state of helium. However, the standard quadruple precision 
arithmetic provided by FORTRAN is usually sufficient, pro­
vided that care is exercised in choosing the basis set in order to 
avoid excessive numerical linear dependence. See for example 
[25] for the use of triple basis sets in Hylleraas coordinates 
to maintain numerical stability. Results for lithium-like atoms 
with three electrons are not as accurate because the basis sets 
become considerably larger (i.e. 30 000 terms instead of 3000 
terms), but energies accurate to 16 figures and other atomic 
properties can still readily be obtained [26].

At these levels of accuracy for two- and three-electron 
atoms, the dominant sources of uncertainty in the low-Z 
region are the relativistic and QED corrections, as discussed 
above for hydrogen. The Breit interaction accounts for rela­
tivistic corrections of order Z2 4α  Ry, and a full many-electron 
theory accounts completely for QED corrections of order 

Z3 4α  (including the Araki–Sucher terms for QED corrections 
to the electron–electron interaction) [27–29]. Theory has 
also recently been completed for all terms of order Z4 5α  Ry 
[30], although the nonrelativistic operators become compli­
cated and difficult to evaluate. The resulting uncertainty from 
higher order terms is estimated to be 36 MHz for the ioniz­
ation energy of the ground state of helium, and this scales as 
Z5 with nuclear charge and roughly 1/n3 with n. For a compre­
hensive review, and tabulation for all states up to n  =  10 and 
angular momentum L  =  7, see [31].

In the high-Z region, the all-orders methods described 
above for hydrogenic ions can be extended to helium-like ions 
and combined with 1/Z expansion calculations from the low-
Z region (the so-called unified method) to obtain results that 
are accurate over the entire range from Z  =  2 to Z  =  100 [32, 
33]. In most cases, the theoretical accuracy is better than the 
experimental. The uncertainty from omitted terms of order 

Z4 4α  is estimated to be  ±1.2(Z/10)4 cm−1 for the n  =  2 states.
Calculations of similar accuracy can also be carried out in 

Hylleraas coordinates for three-electron atoms, but that is the 
limit to what has been achieved to date. Further progress is 
hindered by the technical difficulties of calculating integrals 
involving nonseparable products of factors containing all the 
interelectron coordinate of the form r r r12 23 34�.

For many-electron atoms, one must resort instead to gener­
ally applicable methods of atomic structure based on the HF 
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approximation, or its generalizations to the multi-configuration 
Hartree–Fock (MCHF) or configuration interaction (CI) meth­
ods. The MCHF method is usually called MCSCF in quantum 
chemistry as the HF approximation is called the self-consistent 
field (SCF) method. The relativistic versions of these methods 
are based on the Dirac equation  instead of the Schrödinger 
equation, and are called the Dirac–Fock (DF) approximation, 
with generalizations to the corresponding multi-configuration 
Dirac–Fock (MCDF) or relativistic configuration interaction 
(RCI) methods. The basic approximation of the HF and DF 
methods is to assume that the many-electron wave function 
can be written as an antisymmetrized product of one-electron 
orbitals (a Slater determinant). The HF (or DF) solution is the 
one that minimizes the energy over all wave functions that 
can be expressed in this Slater determinant form. The differ­
ence between the HF (or DF) energy and the exact energy is 
called the electron correlation energy. The correlation energy 
can be systematically taken into account by solving a larger 
problem in which the mixing with other electronic configura­
tions is included. The configuration mixing is induced by the 
difference between the effective HF potential and the exact 
electrostatic potential containing all the interelectronic repul­
sion terms. The difference between CI and MCHF revolves 
around whether or not the electron orbitals are frozen (CI) or 
allowed to vary (MCHF) to obtain a self-consistent solution. 
The correlation energy is of key importance in chemical phys­
ics, because it is typically the same order of magnitude (about 
1 eV) as chemical binding energies. One might say that much 
of chemistry is buried in the correlation energy. Full spectro­
scopic accuracy can require correlation energies as accurate 
as  ±10−9 eV or better for neutral atoms.

The coupled cluster (CC) method is a variation of CI, which 
also starts from the HF orbitals, but then uses Brueckner–
Goldstone perturbation theory to describe excitations from 
the HF reference state, organized as singles (S), doubles (D), 
triples (T) etc. The advantage is that it guarantees the size-
extensivity of the solution, but it lacks the variational charac­
ter of the CI method.

Both the CI and MCHF methods are exact in principle 
(within their respective nonrelativistic or relativistic approx­
imations) and generally applicable to many-electron atoms 
and ions, but they are much more slowly convergent than the 
methods based on Hylleraas basis sets for two- or three-electron 
atoms. It can be shown that a CI calculation is equivalent to 
a Hylleraas calculation that includes only the even powers 
of r12 in the basis set, but it is the odd powers that are most 
effective in reproducing the cusp at r12  =  0 in the correlated 
electronic wave function. For this reason, a CI calculation 
requires much larger numbers of configurations in the varia­
tional wave function in order to achieve even modest levels of 
accuracy, and so careful convergence studies must be carried 
out to assess the uncertainty in the calculation. Convergence 
uncertainties better than  ±10−6 eV are seldom achieved, even 
for few-electron atoms, and the convergence is typically much 
worse for many-electron atoms. For example, Chantler et al 
[34] carried out a detailed convergence study for satellite 
spectra of the copper K-alpha photo-emission spectrum, and 
found that uncertainties were of the order of  ±0.01–0.1 eV  

using the MCDF method. Their work includes a detailed con­
sideration of valence-valence and valence-core contributions 
to the correlation energy. They also make use of comparisons 
between the length and velocity forms of dipole transition 
integrals to assess the accuracy. Many other similar studies 
have been carried out. A great deal of work has now been done 
by many authors to develop systematic procedures to assess 
the theoretical/computational uncertainties, and to assign 
reasonable uncertainty estimates [35–42]. Uncertainties of 
transition parameters can be evaluated by investigating differ­
ences between results calculated in the length and the velocity 
gauges for LS-allowed transitions [43], and the analysis can be 
also extended for LS intercombination lines for certain cases 
[38]. Perturbative analysis by performing smaller calculations 
with neglected correlation effects is also useful to estimate 
uncertainties [35].

Furthermore, it is necessary to include uncertainties due to 
physical effects not included in the calculation, such as addi­
tional classes of excitations, or quantum electrodynamic cor­
rections. In recent work authors such as Safronova et al [40] 
and Kállay et al [42] have made progress towards a comprehen­
sive programme for the assessment of uncertainties that goes 
beyond the simple assessment of convergence uncertainties. 
The objective is to estimate an uncertainty that is independent 
of the actual difference between theory and experiment. For 
uncertainties of this type, the central value is not necessarily 
the most probable. For example, if QED corrections of order 

3α  have been omitted, then one can expect further corrections 
of order  ±c 3α , where c is a nonzero coefficient whose value 
can often be estimated from other similar calculations, or from 
general scaling rules with n and Z. It is often possible to estab­
lish similar ‘reference ions’ where experimental data exist for 
comparison with theoretical estimates of the uncertainties. 
The aim is to obtain reasonable estimates of the uncertainties, 
not rigorous bounds on the actual difference between theory 
and experiment (i.e. the error).

3.2.  Molecular electronic ground state properties

Without the so-called Born–Oppenheimer (BO) separation 
[44, 45] of nuclear and electronic motions the traditional con­
cept of a molecular structure would basically be lost, as only a 
murky quantum soup of delocalized particles would exist. As 
a consequence of the BO approximation, electronic structure 
theory and nuclear motion theory emerge as the two main sub­
fields of molecular quantum chemistry. These two fields are 
linked by potential energy surfaces (PESs), plus any beyond-
BO corrections that may deemed appropriate for a given prob­
lem [46–49]. Given that for all but a few simple problems the 
converged absolute energy of a molecular system cannot be 
obtained, it is important to note that molecular structure com­
putations are always concerned with relative rather than total 
energies, and the same must be the case for the uncertainty 
estimates.

Much of modern applied molecular quantum chemistry is 
aimed at mapping out, locally or globally, PESs of molecular 
species or reaction complexes (scattering systems) by means 
of sophisticated numerical techniques [50, 51]. For studies of 
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molecular structures the PES is needed mostly in the vicinity 
of a minimum. The widespread availability of analytic gra­
dients and higher derivatives in standard electronic structure 
codes [52] has substantially increased the utility of quantum 
chemistry for the exploration of PESs. For studies of scatter­
ing systems it is important to have a full-dimensional rep­
resentation of the surface throughout the accessible region. 
Fundamental work in this area was done by Murrell and cow­
orkers [53]; see [54] for more recent developments.

For all systems of chemical interest, the exact solution to 
the (nonrelativistic, time-independent) electronic Schrödinger 
equation cannot be obtained; thus, a hierarchy of increasingly 
accurate wave function approximation methods is needed 
beyond the BO separation of nuclear and electronic motions 
[50]. Basic to the understanding of this hierarchy and of 
the uncertainty at any given level is the computational cube 
depicted in figure 1 [55]. It demonstrates that there are three 
fundamental approximations in polyatomic electronic struc­
ture theory:

	 •	choice of the electronic Hamiltonian;
	 •	truncation of the one-particle basis (often referred to as 

the atomic orbitals);
	 •	the extent of the electron correlation treatment, the 

n-particle basis.

The target result corresponding to the three simultaneous 
limits is approached as closely as possible by choosing an 
appropriate Hamiltonian and extending both the one-particle 
basis set and the many-electron correlation method (n-particle 
basis) to technical limits. For lighter elements, perhaps up to 
Ar(Z  =  18), the effects of special relativity will not be conse­
quential (see the previous section), except in electronic struc­
ture studies seeking ultimate accuracy.

The ab initio limit can be approached by composite 
schemes that employ multiple electronic structure computa­
tions at different levels of theory to arrive at a single energy 
for a given molecular geometry. A general composite scheme 

that is highly successful is the FPA approach [8]. A fundamen­
tal characteristic of this approach is the dual extrapolation to 
the one- and n-particle limits of electronic structure theory. 
The process leading to these limits can be characterized as 
follows:

	 •	use of a family of basis sets, such as (aug)-cc-pVXZ [56], 
which systematically approaches completeness through 
an increase in the cardinal number X, as a key aspect of 
FPA is the assumption that the higher order correlation 
increments show diminishing basis set dependence;

	 •	application of lower levels of theory (typically, HF and 
MP2 computations) with very extensive basis sets;

	 •	execution of a sequence of higher order correlation treat­
ments with the largest possible basis sets;

	 •	layout of a two-dimensional extrapolation grid based on 
the assumed additivity of correlation increments, that is, 
the differences between correlation energies given by 
successive levels of theory in the adopted hierarchy.

Within the FPA approach one considers the consequences 
of several ‘small’ physical effects:

	 •	core electron correlation;
	 •	special relativity;
	 •	adiabatic and nonadiabatic corrections to the BO approx­

imation;
	 •	quantum electrodynamics (QED).

In diatomic molecules containing first-row atoms several 
effects due to core correlation have been established [57]. 
Equilibrium bond lengths experience a contraction of about 
0.001 Å for single bonds and 0.002 Å or more for multiple 
bonds. The direct effect of core correlation is a correction 
function to the valence diatomic potential energy curve that 
has negative curvature at all bond lengths around the equi­
librium position. Core correlation decreases all higher order 
force constants.

For extremely accurate structural studies the corrections to 
the BO approximation cannot be neglected, especially if light 
atoms are present in the system.

QED also provides electronic radiative corrections (or 
Lamb shifts) arising from the interaction of the electron with 
the fluctuation of the electromagnetic field in vacuum. Studies 
of atoms, see above, and simple molecules [58] have indicated 
that QED effects are generally orders of magnitude smaller 
than scalar relativistic corrections.

Molecular properties are also an important result of elec­
tronic structure calculations, not least because they provide 
input into subsequent scattering calculations. FPA-type 
approaches are now being used to provide uncertainty esti­
mates for permanent dipole moments [59, 60]. There are two 
viable methods of calculating dipole moments associated 
with a given electronic wave function. The most straight­
forward method, implemented directly in standard quantum 
chemistry codes, is to compute the dipole moment as an 
expectation value (EV). An alternative method is to compute 
the dipole moment studying the response to the applica­
tion of a (small) electric field placed in appropriate direc­
tions by finite differences (FD) of the perturbed energies. 

Figure 1.  The three axes of the computational cube of 
wavefunction-based electronic structure theory represents three 
important approximations.
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The methods are related by the Hellmann–Feynman theorem 
[61], but in general this theorem only holds when exact wave 
functions are used. In practice, differences between the two 
methods can be large [62]. EV dipoles are cheaper to com­
pute, indeed they are essentially free once a wave function 
is available, whereas FD dipoles require the computation 
of extra points with a finite field. However, minor contrib­
utions to the dipoles, e.g. non-BO or relativistic effects, can 
be evaluated in the FD approach using energy differences 
even when their contribution to the electronic wave func­
tion is unknown. Furthermore, there is a general acceptance 
[63–65] that the FD approach converges more quickly to the 
true answer for a given (approximate) wave function. We 
therefore recommend the adoption of this approach to the 
uncertainty assessment for dipole moments. We note that, 
unlike the situation with the use of different gauges for pho­
toionization calculations [66, 67], thus far comparison of 
EV and FD approaches have provided little insight into the 
uncertainty in a given calculation.

Even less effort has been dedicated to the computation 
of transition dipole moments, despite their importance for 
electronic spectra and as inputs to scattering calculations. 
However, FD methods for evaluating transition dipoles 
are available [68] if not extensively used. Studies [69, 70] 
suggest that while the FD approach for transition dipoles 
shows improved convergence behavior compared to the 
EV approach, perhaps more so than for the diagonal dipole 
moments, there are technical issues with their use that still 
need to be overcome [70, 71].

Target polarization is an important property for scatter­
ing calculations. However, the target polarizability rarely 
enters directly into the scattering model. Even when it does, 
it usually enters only in the long range part of the potential 
[72]. How well a given scattering model represents the target 
polarizability can be used as a proxy for how converged the 
polarization potential is as a whole. If the model gives a poor 
representation of the target polarizability, then the representa­
tion of the overall polarization effect is likely to be poor. The 
components of the dipole polarizability tensor can be com­
puted using the formula

n n

E E
2

0 0
,rs

n

r s

n0 0

⟨ ⟩⟨ ⟩
∑α

µ µ
=

| | | |
−>

� (1)

where the μ are dipole operators, and r and s represent Cartesian 
components. Here En and n⟩|  represent the electronic energy 
and associated electronic wave function for the nth electronic 
state of the system; the state for which the polarizability is 
being calculated is labeled 0⟩| , but it does not have to be the 
ground state. For the ground state this series converges from 
below, provided enough states are included in the expansion. 
Experience [73, 74] shows that (a) convergence to the correct 
value requires consideration of the continuum; and (b) sums 
running over only bound states show apparent convergence to 
a value that is too low. These issues are illustrated in figure 2.

Use of equation (1) can therefore demonstrate the adequacy 
of a chosen close-coupling expansion. However, when doing 

this one also should note that approximate wave functions, 
such as those given by the HF approximation, are usually 
more polarizable than accurate wave functions. A cancellation 
of errors can therefore arise, whereby an inaccurate target rep­
resentation is combined with an incomplete sum over states 
yielding a polarizability in apparent agreement with experi­
ment or better computations.

3.3.  Molecular electronic excited state properties

Excited electronic states are of interest in their own right 
and form an important component of scattering calculations, 
where their representation is important both for electronic 
excitation studies and as part of close-coupling expansions. 
There are far fewer systematic studies of the convergence of 
excited state calculations with respect to the various comp­
onents discussed above. FPA has been used for the study of 
properties of excited electronic states only to a limited extent 
[76–78]. Indeed an issue for many scattering studies, both 
theoretical and experimental, is that generally there are far 
fewer studies of excited states of different spin symmetry than 
the ground state, since excitation of such states is optically 
forbidden. However, the lowest excited state is usually in this 
class.

Molecular excited electronic states can be classified as 
valence, roughly corresponding to rearrangement of the elec­
trons within the valence orbitals, and Rydberg, corresponding 
to a loosely bound electron orbiting a parent ion. Different 
techniques are required to give good representations of these 
two types of states [79], even though many molecular states 
are either a mixture of the two or change their character as 
a function of bond length. We note that Rydberg states form 
regular series, which are often well represented by quantum 
defect theory [80]. Experience shows that uncertainties in 
these states can also often be better represented in terms 
of quantum defects rather than absolute energies [81, 82], 

Figure 2.  Spherically averaged polarizability of water in its 
equilibrium geometry computed using sum-over-states formula (1) 
[73]; the experimental value is corrected for vibrational effects [75].
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although other methods can be used for calculations including 
assessment of uncertainties [83].

4.  Uncertainty estimates for electron scattering 
calculations

Before going into uncertainty assessment for collision pro­
cesses, it is advisable to recognize that there are a number of 
energy ranges for which particular methods have been devel­
oped and are believed to be particularly suitable. The confi­
dence in a given method is usually based on general scattering 
theory, some numerical examples, and—last but not least—
comparison with experimental benchmark results. There is, 
however, never a guarantee in collision physics, although 
some variational principles exist (e.g. for the eigenphase sum).

In general, the energy ranges of interest are:

	 •	low energy collisions, with incident projectile energies 
well below the first electronic inelastic threshold;

	 •	low energy, near-threshold collisions, with projectile 
energies well below the first ionization threshold;

	 •	intermediate energy collisions, with incident projectile 
energies from about the first ionization threshold to a few 
times that value;

	 •	high energy collisions, with projectile energies exceeding 
several times the first ionization threshold;

	 •	collisions with relativistic energies, in which the kinetic 
energy of the incident projectile should no longer be 
described by the nonrelativistic formula.

There is a wealth of literature available on methods for 
electron scattering calculations; hence we refer to recent 
reviews [84–87]. However, we emphasize again that there is 
no unambiguous rule regarding the reliability of a particular 
method. As will be further discussed below, there are simply 
too many parameters other than the collision energy that may 
come into play. Nevertheless, it seems useful to provide some 
general guidelines based on this one parameter.

For low energy collisions a one-state close-coupling 
expansion may provide a good start. In contrast to potential 
scattering (which is a further simplification if the potential is 
chosen as local, i.e. only depending on the position of the scat­
tering projectile), the approach can properly contain exchange 
effects. On the other hand, even the closed channels can have 
a major influence by polarizing the target. This effect is often 
accounted for by some real-valued ‘optical’ potential (local 
or nonlocal). In fact, the method can be pushed toward higher 
energies by including an imaginary ‘absorption’ potential to 
account for loss of flux into inelastic channels.

Moving on to the near-threshold regime, the close-coupling 
expansion containing a number of n discrete states (to be 
referred to as ‘CC n’ below) has been the method of choice 
for many years. It is often highly successful in the description 
of resonances associated with low-lying inelastic thresholds. 
However, the method may have problems in the low energy 
regime if significant polarization effects originate from cou­
pling to higher-lying discrete states and, in particular, the 
ionization continuum.

For intermediate energy collisions, the above-mentioned 
effect of coupling to discrete states omitted in the CC n expan­
sion, and even more importantly to the ionization continuum, 
should be accounted for in some way. One way to do this is to 
extend the CC expansion by including a number of so-called 
‘pseudo-states’, which are essentially finite-range states that 
are forced to fit into a box. For the general idea, details of 
the box are not important; it only matters that the states are 
square-integrable and provide a way to discretize the (count­
able) infinite Rydberg and the continuous ionization spectra. 
This is the basic idea behind the ‘convergent close-coupling’ 
(CCC) [88] and ‘R-matrix with Pseudo-States’ (RMPS) [89, 
90] approaches. While the implementations may vary greatly, 
the critical idea is exactly the same in both methods. Hence, 
if the same states (physical and pseudo) are included in the 
expansion, the final results should be the same—except for 
numerical issues that may remain in practice.

Other ways to account for the possibility that two electrons 
may leave the target after the collision (but only one of the 
electron wave function fulfills the correct boundary conditions 
in the CC approach) include ‘time-dependent close-coupling’ 
(TDCC) [91] and ‘exterior complex scaling’ (ECS) [92]. In 
the former, a wavepacket is used for the projectile and the for­
malism is expressed as an initial value rather than a boundary 
value problem. In the latter, the coordinate system is changed 
from a real to a complex radial grid in order to transform 
the oscillatory character of the positive-energy continuum 
wave function to an exponentially decreasing character that, 
once again, allows for proper evaluation of certain integrals. 
CCC, RMPS, TDCC, and ECS have been highly success­
ful in handling ionization processes in particular, although 
the extraction of the relevant information is by no means 
trivial. For details we refer to some of the references given, 
which however should only be considered as a starting point. 
Regarding actual applications to date, ECS has not really been 
used for production calculations of atomic data relevant for 
plasma modeling, TDCC has been used mostly to check other 
approaches for quasi-one and quasi-two electron targets, CCC 
has been applied over a wide range of the latter targets, while 
RMPS has been applied also to targets with more complex 
structure, in particular the noble gases beyond helium as well 
as other open-shell systems.

Moving on to the high energy regime, perturbative methods 
based on some form of the Born series are generally the method 
of choice. In this case, the projectile is either described by a 
plane or a distorted wave, and then the transition matrix ele­
ments are obtained by relatively straightforward integrations. 
The first-order distorted-wave Born approximation (DWBA) 
[93–96] has the advantage over the corresponding plane-wave 
(PWBA) version [97] in that it accounts for some higher order 
terms of the plane-wave series. In practice, production calcul­
ations of atomic data in the high energy regime are mostly 
being performed in the DWBA approach [98–101]. If possi­
ble, a good check of the applicability of the method involves 
pushing it toward the intermediate energy regime and then 
comparing the predictions to those from more sophisticated 
methods. The present implementation of the CCC approach 
in momentum space is particularly useful in this respect, since 

J. Phys. D: Appl. Phys. 49 (2016) 363002



Topical Review

9

the limiting case of the CCC T-matrix elements for high ener­
gies is actually the DWBA or PWBA result.

Regarding the high energy range, full-relativistic imple­
mentations of RMPS [102], CCC [103], and DWBA [104] 
exist and are frequently used, especially for heavy targets 
and when the description of explicitly spin-dependent effects 
(beyond exchange) is desirable. This may, indeed, be neces­
sary since (in a classical picture) the kinetic energy of the 
projectile may be relativistic near the nucleus even if it is non­
relativistic in the asymptotic regime far away from the target. 
In this paper we will not consider collisions for which the ini­
tial energy is already relativistic.

Finally, we mention the existence of semi-empirical meth­
ods, such as the ‘binary encounter f-scaling’ (BEf) [105] and 
‘binary encounter Bethe’ (BEB) [106] approaches to electron 
impact excitation and ionization. While these methods are 
highly useful in practice, they are somewhat limited in scope. 
For example, BEf can only be used for optically allowed 
transitions and also requires experimental or reliable theor­
etical data for rescaling. We do not feel comfortable to suggest 
a method for an uncertainty assessment for these approaches.

As mentioned above, there are many issues that contribute 
to the problem of uncertainty assessment in scattering calcul­
ations. These include:

	 •	Target properties (energy levels, polarizability, dipole and 
higher moments), which are ultimately associated with 
the quality of the wave functions used.

	 •	Model contributions, including:

	−	 The need for a consistent treatment of the N-electron 
target versus the (N+1)-electron collision problem, 
which is a critical issue in obtaining accurate reso­
nance positions;

	−	 accounting for the nuclear motion in electron-mole­
cule collisions.

	 •	Numerical uncertainty.

Some of these issues will be elaborated further below. Not sur­
prisingly, the major challenge is to propagate the uncertainty 
associated with the above lists to give a final uncertainty on 
the quantities of interest (see below). We suggest that:

	 •	Calculations be performed for a range of target models, 
thereby reflecting the underlying uncertainty in the target 
properties.

	 •	Attempts be made to quantify uncertainties associated 
with the choice of the scattering model; this will need to 
be done on a case-by-case basis (see below).

	 •	Numerical uncertainties be quantified similarly to the 
FPA procedure described above.

4.1.  Electron-atom/ion scattering

There is a wealth of experimental observables in the field 
of electron collisions with atoms, ions, and molecules. For 
a fixed incident projectile energy and direction (even those 
could, of course, be represented by some distributions), the 
most general (and hence least specific) observable is the grand 
total cross section, obtained by integrating over all processes, 

energies, angles, angular momenta, spins, their components, 
etc. Such a cross section is certainly relevant and can some­
times (but not always) be measured with high accuracy in 
transmission cells or via the loss of the target species in traps.  
The grand total cross section is made up of sums or integrals 
over unobserved quantities, where the lack of observation 
is not a requirement of quantum mechanics, but rather a 
choice of the experimenter. This choice may be voluntary or 
involuntary. In the former case, one might only be interested 
in a rather global set of parameters to model a system, while 
the latter case might be forced if the signal rate is simply 
inadequate to measure what one would really like to know.

It is clearly unrealistic to discuss all possible cases, 
including those not even specified above, where the ini­
tial projectile and target beams might have been prepared 
beyond an unpolarized ensemble. We therefore restrict 
our discussion to angle-integrated state-to-state cross sec­
tions  and in some cases the rate coefficients that can be 
derived from them by performing an integral over the inci­
dent projectile energy.

For electron collisions with atoms and ions, the processes 
of interest for the present paper, including initially excited 
states, are:

	 •	elastic+momentum transfer;
	 •	inelastic (excitation);
	 •	inelastic (ionization);
	 •	dielectronic recombination.

A few illustrative examples about how one might attempt to 
quantify uncertainties in theoretical predictions for these pro­
cesses will be given in section 6.

4.2.  Electron-molecule scattering

Many of the issues involved in uncertainties for electron-mol­
ecule scattering are similar to those for atoms so below we 
concentrate on those that differ.

Processes of interest, including those starting from initially 
excited states, are

	 •	elastic and momentum transfer collisions;
	 •	inelastic, rotational excitation;
	 •	inelastic, vibrational excitation;
	 •	dissociative electron attachment or recombination;
	 •	inelastic, electronic excitation;
	 •	impact dissociation, which normally goes via electronic 

excitation;
	 •	ionization.

These processes (listed in approximate order of increasing 
collision energy) involve a mixture of electronic excitation 
(either directly or via impact dissociation or ionization) and 
excitation of the (rotational or vibrational) nuclear motion. 
There is no current, general method that solves for all these 
processes simultaneously in a unified self-consistent man­
ner. For example, most treatments of electronic excitation 
or ionization are performed at the fixed nuclei level whereas 
treatments of dissociative attachment or recombination use 
specially adapted nuclear motion techniques employing 
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resonance (potential energy) curves which are computed in 
electron collision calculations. See [107, 108] for example.

In practice nuclear motion is often introduced in a some­
what ad hoc fashion deemed appropriate for the process of 
interest. For example, resonances greatly enhance vibrational 
excitation cross sections and these can be computed in a rela­
tively straightforward fashion using resonance curves, see 
[108]. Conversely, nonresonant vibrational excitation can be 
treated by vibrationally averaging T-matrices as a function of 
geometry [109, 110].

The vibrational averaging of the geometry-fixed scattering 
(or T-) matrices is a part of the frame transformation approach 
[109, 111, 112], developed in the 1970s and 1980s to account 
for non-BO couplings of the incident electron with the vibra­
tional and rotational motion of the target molecule. For col­
lisions with molecular ions, the frame transformation can be 
combined with multi-channel quantum defect theory (MQDT) 
[113, 114] to give an approach that unifies nonresonant and 
resonant processes in electron-molecule scattering [111, 112, 
115–117] including rovibrational and electronic resonances, 
and that accounts for non-BO couplings and vibrational exci­
tation of the target by the incident electron. Full vibrational 
close-coupling also provides a means of treating resonant and 
nonresonant processes simultaneously for electron collisions 
with neutral molecules, but it is rarely used [118].

Rotational motion and excitation of the target molecule are 
often treated by means of a transformation from the body-fixed 
frame to the laboratory frame by simple angular momentum 
recoupling [119], which can be viewed as a part of the general 
frame transformation approach discussed above [120–121]. If 
one uses the rigid-rotor approximation, the purely rotational 
frame transformation is analytical for linear, spherical, or 
symmetric top molecules and, therefore, is easy to implement 
[120]. The rotational frame transformation approach has been 
demonstrated to work very well when compared to full close-
coupling treatments [120]. For molecules with permanent 
dipole moments, however, rotational excitation requires spe­
cial treatment because the long-range interaction of the elec­
tron with the target dipole moment means that a large number 
of partial waves should be taken into account. Special hybrid 
treatments are used to provide the contribution of the higher 
partial waves [122, 123].

Along with rotational and vibrational excitation, disso­
ciative electron attachment and dissociative recombination 
(DR) are the dominant low energy processes. The cross sec­
tions  for these dissociative processes are very sensitive to 
the locations of curve crossings between the dissociative 
resonance state(s) and the target curve; the resulting cross 
sections are known to be highly sensitive to this aspect of the 
calculation [82, 124–127].

There is a hierarchy of non-perturbative low-energy elec­
tron-molecule collision models. The simplest one currently in 
use is the static exchange (SE) model, which considers elec­
tron collisions with a target represented by a Hartree–Fock 
wavefunction. In the SE model the electron is allowed to 
occupy empty (‘virtual’) target orbitals but the target itself 
remains frozen. The SE model is well-defined, which makes 
it useful for cross-comparison of codes but limited in the 

amount of physics included. For example SE calculations can 
give low-lying shape resonances but usually they are too high 
in energy and too broad; Feshbach resonances, which involve 
simultaneous target excitation and trapping of the scattering 
electron, cannot be represented in this model. Inclusion of 
polarization effects using the static exchange plus polarization 
(SEP) model is often found to give reliable parameters for low-
lying shape resonances; converging SEP calculations usually 
requires the inclusion of many more virtual orbitals than are 
required to converge the simple SE model for the same system 
[128]. Conversely Feshbach resonances, which dominate the 
DR process, are best represented by models that contain their 
parent state as part of a close-coupling expansion.

For collisions with a molecular ion having a closed 
electronic shell, the energy surface of the neutral dissocia­
tive potential usually crosses the ionic surface far from the 
geometry of the equilibrium of the target ion. In this case, the 
actual geometry at which the ionic and dissociative potential 
surfaces cross is irrelevant, because the DR cross section is 
determined by the probability of electron capture into a state 
different than the dissociative state. During such a process 
the target ionic core is excited rovibrationally and the elec­
tron is captured into a weakly-bound Rydberg state. This is 
the so-called indirect DR mechanism [125, 129], which is 
dominant for many closed-shell molecular ions [130–133]. 
The accuracy of the theoretical DR cross section in the indi­
rect process, via intermediate molecular Rydberg states and 
rovibronic resonances, is mainly determined by the accuracy 
of representing the non-BO coupling responsible for the inci­
dent electron capture. Expressed in terms of the electron-
molecule scattering matrix Si v iv;′ ′  the DR cross section  is 

S Ei v iv;
2 /σ∼ | |′ ′ , where indices v′ and v represent final and ini­

tial vibrational states of the ion during the capturing process, 
and i′ and i describe electronic states. The matrix element 
Si v iv;′ ′  is obtained by integrating the geometry-fixed scattering 
matrix over vibrational states v′ and v. For small molecules, 
the numerical accuracy of vibrational wave functions is usu­
ally relatively good, and the uncertainty of the final cross 
section is mainly determined by the quality of the geometry-
fixed scattering matrix. For larger polyatomic ions, the inacc­
uracy of wave functions, which are usually calculated using 
the normal-mode approximation [130–133], may contribute 
significantly to the uncertainty of the final DR cross sec­
tion. Therefore, assuming that the accuracy of the vibrational 
wave functions is good, the uncertainty of the final DR cross 
section  for the indirect mechanism (for most closed-shell 
molecular ions) is S S2/ /σ σ∆ ∼ |∆ | | |, where S and S∆  are 
the geometry-fixed scattering matrix and its uncertainty. The 
scattering matrix for DR calculations can be computed using 
electron scattering codes, such as R-matrix, complex Kohn, 
or variational Schwinger methods. Recent examples, include 
Fonseca dos Santos et al [133] who obtained their geometry-
fixed scattering matrix using the complex Kohn calculations, 
and Little et  al [134] who performed similar calculations 
based on R-matrix computations. Comparisons have shown 
that these two methodologies yield very similar results for a 
given scattering model [135]. A second method, used exten­
sively in earlier studies [130–132, 136, 137], is based on 
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quantum defects extracted from energies of Rydberg states of 
the corresponding neutral molecule. The Rydberg-state ener­
gies are usually obtained ab initio, but experimental energies 
have also been used [138–140].

At collision energies near threshold electronic excitation 
provides an important new channel. For this situation CC 
n-type models are usually employed. Such calculations face 
all the difficulties described above for atoms plus complica­
tions introduced by loss of symmetry and nuclear motion 
encountered in molecules.

The intermediate energy region is beginning to be explored 
with fully ab initio methods but only for rather simple sys­
tems [141–144]. Conversely, extensive studies for the high 
energy region were performed using various perturbative 
approximations such as the Born or DWBA approximations 
[98, 145, 146].

5.  Uncertainty assessment for charge transfer 
collisions

When the incident electron in a collision with an atomic or 
a molecular target is replaced by a positively charged ion a 
new channel appears: electron transfer. Since this channel is 
the most important one for plasma and related applications 
we will concentrate on such charge transfer collisions in this 
section.

It goes without saying that an accurate solution of the full 
Schrödinger equation  is not feasible, except maybe for the 
simplest charge transfer collision systems involving just two 
nuclei and one electron. Accordingly, and similarly to what 
has been discussed for electron scattering in section 4, differ­
ent approximation methods have been developed, which are 
deemed suitable in different energy ranges.

The situations of interest for charge transfer collisions are:

	 •	very low energy collisions, in which the de Broglie 
wavelength associated with the projectile motion is 
comparable with the length scale that is characteristic for 
electronic processes;

	 •	low energy collisions, in which the projectile de Broglie 
wavelength is too small to resolve electronic processes, 
but the projectile-target interaction time is still long com­
pared to the characteristic electronic time scale;

	 •	intermediate energy collisions, in which the relative 
projectile-target speed is comparable with the orbital 
speeds of the active electrons;

	 •	nonrelativistic high energy collisions, in which the pre­
vious condition is no longer fulfilled;

	 •	relativistic energy collisions.

Note that we are using a similar nomenclature as in sec­
tion 4, although the actual magnitudes of the collision ener­
gies are very different for electron versus heavy particle 
projectiles.

An authoritative overview of the entire spectrum of theor­
etical charge transfer methods available by the early 1990s 
was given by Bransden and McDowell [147]. For more recent, 
but somewhat more specialized accounts we refer the reader to 

[148, 149] and references therein. The following paragraphs 
are meant to provide a (necessarily incomplete) mini-survey 
of what is discussed in those works and what else is of rel­
evance in the context of this article.

The gold standard for the calculation of charge trans­
fer cross sections  from very low up to intermediate projec­
tile energies has long been one or another variant of the CC 
expansion. Accordingly, limitations in basis-set convergence 
are the main source of numerical uncertainties. Most of these 
CC calculations are also afflicted by model uncertainties, 
because it is normally not the full Schrödinger equation that is 
cast into matrix-vector form.

One gets closest to the ideal of a calculation free of model 
uncertainty in the very low energy regime in which a fully 
quantum mechanical description of the scattering system is 
required. In this region, electron transfer usually dominates 
the dynamics and can be understood by considering the real 
and avoided crossings of a small number of potential energy 
curves of the quasimolecular system of projectile and target. 
Accordingly, an expansion in terms of products of molecular 
electronic states and nuclear wave functions is the standard 
method of attack. In its original form this so-called perturbed 
stationary state (PSS) approach has inherent defects, because 
individual terms in the expansion do not satisfy the boundary 
conditions of the scattering problem, thereby introducing spu­
rious origin-dependent couplings in a finite matrix representa­
tion of the Schrödinger equation [150]. These defects can be 
remedied by including electron translation factors (ETFs) or 
by using reaction coordinate techniques [150, 151]. An alter­
native method is the hyperspherical close coupling (HSCC) 
approach, in which a rescaled Schrödinger equation written in 
terms of hyperspherical coordinates is solved (see [152] and 
references therein).

In modern applications to few-electron systems the molec­
ular states and couplings are calculated with sophisticated 
quantum chemistry methods, which implies that electron 
correlations are taken into account and the general approach 
can be called ab initio [153]. It has become customary, albeit 
somewhat inaccurate, to refer to these modern versions of 
the PSS approach as quantum mechanical molecular-orbital 
close-coupling (QMOCC) calculations [154], and we follow 
this convention.

Moving up in collision energy to, say, 1 keV amu−1 and 
higher, fully quantum mechanical methods become chal­
lenging because they normally involve partial-wave or other 
expansions of the scattering amplitude that become very 
large in the low energy region. Very recently, the three-body 
problem of proton-hydrogen scattering has been addressed 
in a fully quantum mechanical CCC approach that solves the 
Lippmann-Schwinger integral equations  for the scattering 
amplitudes [155]. The more traditional approach is to make 
use of the smallness of the projectile de Broglie wavelength 
by adopting a semiclassical approximation. As long as one 
is interested in total (i.e. integrated over projectile scattering 
angle) cross sections  only, the semiclassical approximation 
amounts to reducing the full scattering problem to a time-
dependent Schrödinger equation  (TDSE) for the electronic 
motion in the field of classically moving nuclei. The classical 
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trajectories can be determined by considering the nonadiaba­
tic coupling of the electronic and the nuclear motion as is done 
in the electron nuclear dynamics (END) method [156, 157], or 
by using Coulomb or model scattering potentials [158–161]. 
At collision energies of a few keV amu−1 and higher, simple 
straight-line trajectories are just as good, i.e. the numerical 
error introduced by replacing a curved trajectory by a rectilin­
ear one is negligibly small compared to errors associated with 
basis-set convergence issues or other numerical uncertainties. 
The same can be said about the semiclassical approximation 
itself: at least for total cross section calculations it is essen­
tially exact in and above the low energy regime.

In the low energy regime electron transfer still is the 
strongest electronic process and molecular state expansions 
(including ETFs) still are the most widely used methods [162]. 
Within the semiclassical framework they are often referred to 
as MOCC methods (without the ‘Q’).

Once direct target ionization, i.e. transitions into the contin­
uum, become important other CC techniques or fully numer­
ical methods for the solution of the semiclassical TDSE gain 
importance. A common feature of the former is that, similar 
to what has been discussed for electron scattering, positive 
energy pseudo-states are included to discretize the continuum. 
Even if one is not interested in direct target ionization one 
cannot simply close the ionization channel in a calculation 
without running the risk of degrading the results for target 
excitation and electron transfer. It is characteristic of the inter­
mediate energy regime that all channels are coupled and have 
to be taken into account simultaneously. Examples of suitable 
intermediate energy CC methods are the two-center atomic-
orbital, AOCC, method [162] and the two-center basis genera­
tor method (TC-BGM) [163], both of which include bound 
(atomic) target and bound (atomic) projectile states, endowed 
with ETFs, and sets of pseudo-states whose explicit forms 
vary.

Notwithstanding considerable success in applications to 
charge transfer collisions these methods can be criticized for 
being built on formally overcomplete basis sets. Indeed, there 
are known cases in which too large basis sets on both cent­
ers (perhaps combined with insufficient numerical accuracy in 
the calculation of matrix elements) have led to spurious cou­
plings and unphysical results [164], meaning that the bigger 
(the basis), the better (the convergence) is not necessarily true 
for these two-center methods. The insight that completeness 
of a basis is not necessary, in principle, for following the evol­
ution of the time-dependent state vector exactly [165] does 
not help in practice, since there is no other practical criterion 
available than checking for changes in the results when more 
basis states are added. One-center expansions are not afflicted 
by the overcompleteness problem, but are in practice inferior 
to two-center methods when it comes to separating electron 
transfer from ionization to the continuum.

As indicated above, direct numerical approaches to the 
solution of the semiclassical TDSE offer an interesting alter­
native to CC expansions. The basic idea is straightforward: 
represent the electron wave function on a grid (usually in 
coordinate space) and propagate it in time by application 
of the time-evolution operator over a large number of small 

time steps. This can be done in different ways, e.g. by using 
the split-operator Fast Fourier transform method. Whichever 
technique is used, most time-dependent lattice (TDL) meth­
ods share the following features: (i) the Coulomb potentials 
of the nuclei are replaced by soft-core potentials; (ii) absorb­
ers are introduced to avoid unphysical reflections of the wave 
function at the boundaries of the numerical box; (iii) numer­
ical accuracy mostly depends on the spatial grid parameters 
(provided a sufficiently small time step size is used for the 
propagation). One attractive feature of TDL approaches is that 
they provide a view on the electron density distribution in the 
continuum, i.e. insight into electron emission characteristics, 
but they have also been applied successfully to charge transfer 
problems [166, 167].

As in the case of electron scattering, perturbative methods 
and distorted-wave approaches are the principal methods of 
choice in the nonrelativistic high energy regime. They can be 
formulated on the level of the semiclassical approximation 
or for the full quantum mechanical problem, and at least for 
some of the methods put forward over the years both options 
can be shown to be (essentially) equivalent [147]. Numerical 
uncertainties are usually well controlled, at least in first-order 
models, but model uncertainties can only be estimated by 
extensive comparisons with other (preferably nonperturba­
tive) calculations and with experimental data.

Most of the approaches discussed in this section have been 
generalized to deal with collisions at relativistic energy. The 
principal motivation for studying this regime is the fundamen­
tal interest in relativistic dynamics and phenomena such as 
radiative charge transfer and electron-positron pair produc­
tion. While the former process can also be of importance at 
very low collision energies [147, 154], the latter is, of course, 
a truly relativistic effect. Since relativistic collisions are less 
relevant for applications, we will not discuss them further in 
this article.

We end this brief survey of charge transfer methods with a 
few general comments. First, the majority of methods touched 
upon in this section deal with true or effective one-electron 
problems. The two-electron problem has been addressed in a 
number of perturbative models [168], and also in the frame­
work of the semiclassical CC approach [162]. As mentioned 
above, modern (Q)MOCC methods can deal with many-
electron systems in an ab initio fashion, but they have mostly 
been applied to one-electron transitions, i.e. single electron 
transfer [153, 154]. For truly many-electron problems, such as 
multiple electron transfer to a highly charged ion, simplifica­
tions are unavoidable, which implies that further modeling, 
usually on the level of the semiclassical TDSE, is necessary. 
An obvious idea is to replace the many-electron Hamiltonian 
by a sum of effective one-electron Hamiltonians, i.e. to solve 
the problem on the level of the independent electron model 
(IEM). This has worked quite well in several instances, but it 
is not obvious how to carry out a reliable uncertainty assess­
ment of an IEM calculation. One way to go about this is to 
consider several variants of IEM calculations, e.g. by varying 
the effective potentials used within reasonable bounds, and 
monitor the spread of results obtained. It will be illustrated in 
section 6.4 that this is a useful procedure, although it can give 
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at most qualitative information on the uncertainty of a given 
IEM calculation.

Second, echoing a comment made in section 4 for electron 
scattering, we mention that simpler, sometimes semi-empirical 
and/or classical methods for calculating charge transfer cross 
sections have been widely used over many years. Among them 
are two-state quantum mechanical models (see [147]), vari­
ants of the classical over-barrier model [169], and the classical 
trajectory Monte Carlo method [170]. The latter in particular 
has been highly successful in many applications, even in the 
low energy regime [171] in which quantum effects are deemed 
important. An implication of this somewhat surprising obser­
vation is that uncertainty estimates have to rely on extensive 
comparisons with more rigorous quantum mechanical meth­
ods and with experimental data.

Third, in many cases the observables of interest are not 
electron transfer cross sections, but cross sections associated 
with post-collisional events such as radiative de-excitation 
of excited projectile states or the fragmentation of the target 
in ion-molecule collisions. This requires further modeling, 
and hence it introduces further uncertainties and also the 
problem of uncertainty propagation. Again, it seems that the 
only known and practical way of dealing with these issues 
is to perform computations for a range of models and moni­
tor the spread of results. An example for this will be given in 
section 6.4.

6.  Illustrations

6.1.  Structure

The best examples of uncertainty estimates in high-precision 
theory are provided by few-electron atoms. Hydrogen is a 
special case because there the Schrödinger (or Dirac) equa­
tion  can be solved exactly, and so the uncertainty comes 
entirely from higher-order QED terms or nuclear structure 
effects not included in the calculation (see section 3.1). For the 
two- and three-electron cases of helium-like and lithium-like 
atoms complete calculations in Hylleraas coordinates have 
been performed. Recent high-precision measurements [172, 
173] and theory [29, 174, 175] for the s s S s s S1 2 1 32 2 2 2−  
two-photon transition in lithium provide an excellent example 
of what can be achieved. Table 1 lists the various contributions 
to the transition frequency, expressed as a double power series 
in powers of M/µ  and α, where M/µ  is the ratio of the reduced 
electron mass to the nuclear mass, and α is the fine structure 
constant (see table caption for numerical values). The sum of 
the first three entries gives the total nonrelativistic transition 
energy, including first- and second-order finite nuclear mass 
corrections of order M/µ  and M 2( / )µ . These account for the 
nonrelativistic part of the isotope shift, but at this level of acc­
uracy, the usual normal and specific isotope shifts of order M/µ  
are not sufficient, and therefore the second-order M 2( / )µ  term 
must also be included. The associated uncertainties shown in 
table 1 were reliably estimated from the rate of convergence 
of the calculation with the size of the Hylleraas basis set. Next 
comes the leading relativistic correction of order 2α  relative 

to the nonrelativistic energy from the Breit interaction, and 
the relativistic recoil term of order M2 /α µ . The uncertainties 
from all these terms can be accurately estimated from the rate 
of convergence with the size of the Hylleraas basis set. At the 
next level are the QED corrections of order 3α , corresponding 
to the Lamb shift in hydrogen. The theory for these terms is 
complete in terms of known expectation values of operators, 
including both the electron-nucleus and electron–electron 
QED contributions (the Araki–Sucher terms). The dominant 
source of uncertainty are the Bethe logarithms for the states of 
lithium [176]. The terms of order M3 /α µ  are radiative recoil 
corrections due to the finite nuclear mass. These can be cal­
culated to more than sufficient accuracy in terms of known 
operators [176]. The dominant source of uncertainty in the 
theoretical transition frequency comes from the higher-order 
QED corrections of order 4α  and 5α , since the basic theory 
for these terms has not yet been developed. However, esti­
mates can be obtained from the corresponding QED shifts in 
hydrogen with appropriate scaling with the nuclear charge 
and electron screening, as shown in the table, with 10% and 
25% uncertainties assigned respectively for these two terms. 
Finally, the correction due to the finite nuclear charge radius 
is included.

The final theoretical value 27 206.093 7(6) cm−1 is in 
good agreement with the substantially more accurate (2 parts 
in 1010) measurement 27 206.094 082(6) cm−1 (see table 1.) 
However, the important lesson to be learned from the com­
parison is that, since the theoretical uncertainties in the lower 
order terms are well controlled, the comparison between 
theory and experiment provides an experimental value for the 
higher order QED terms of order 4α  and 5α  that cannot yet be 
calculated directly. This same principle has been applied with 

Table 1.  Theoretical contributions to the −s s S s s S1 2 1 32 2 2 2  
transition energy (cm−1) of 7Li [29, 174, 175], and comparison with 
experiment [172].

Contribution Transition energy (cm−1)

Infinite mass 27 206.492 847 9(5)
/µ M     −2.295 854 362(2)

( / )µ M 2         0.000 165 9774

α2         2.089 120(23)

/α µ M2     −0.000 003 457(9)

α3     −0.187 03(26)

/α µ M3         0.000 009 74(13)

α4 (Est.)     −0.005 7(6)

α5 (Est.)         0.000 52(13)

Nucl. size     −0.000 390(10)
Total 27 206.093 7(6)
Expt. [172] 27 206.094 082(6)

Note: The entries on the left indicate the powers of M/µ  and α that give rise 
to each contribution relative to the nonrelativistic energy for infinite nuclear 
mass, where M 7.820 202 988 6 10 5/ ( )µ = × −  is the ratio of the reduced 
electron mass to the nuclear mass for an atomic mass of 7.016 003 425 
6(45) u, and 1 137.035 999 139 31/ ( )α =  is the fine structure constant. The 
contributions of order 4α  and 5α  are estimates. Nucl. size is the finite nuclear-
size correction for an assumed nuclear charge radius of 2.390(30) fm.
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great effectiveness to determine the nuclear charge radius for 
a range of halo nuclei from 6He to 11Be from the measured 
isotope shifts [177, 178]. Here, the otherwise dominant uncer­
tainties from the mass-independent QED terms in table 1 can­
cel when taking the difference between isotopes with different 

M/µ , and so the residual difference between experiment and 
theory with much smaller uncertainties provides an accurate 
determination of the relative nuclear charge radii.

The pair of articles by Safronova et al [40, 41] describes 
high accuracy computations with uncertainty estimates for 
energies of low-lying excited states in Ag-like, Cd-like, 
In-like and Sn-like ions. The electronic structure for all 
these states is characterized by a [Kr]4d10 core and 1, 2, 
3, or 4 valence electrons, respectively. A 5s2 component 
in the structure of an In-like or Sn-like ion can optionally 
be viewed as part of the core, leaving one or two valence 
electrons. Three models are used in [40, 41]: the linearized 
coupled-cluster method including all single, double, as well 
as partial triple excitations (All-order SDpT), the configura­
tion-interaction plus all-order model (CI+All-order) and the 
configuration-interaction plus many-body perturbation the­
ory model (CI-MBPT). All three models start from a frozen-
core DF potential. The All-order SDpT model is the most 
computationally intensive, and it is used only for the mono­
valent systems, i.e. the Ag-like ions and the In-like ions with 
the 5s2 electrons included in the core. The CI+All-order 
and CI-MBPT models are used for monovalent and multiva­
lent systems. Within each model the principal convergence 
issue arises from the truncation in the partial wave expan­
sion, particularly for the 4f shell. Second order perturbation 
theory is used to evaluate the contribution of partial waves 
with l  >  6. It is found that this contribution is approximately 
equal to the contribution from the l  =  6 term, which is then 
used as an approximation. The Breit term and the QED cor­
rections are evaluated separately. Finally, a 25% uncertainty 
is assigned to each of the four corrections (i.e. higher order 
correlations, higher partial wave contributions, Breit interac­
tions, and QED corrections), and the results are combined 
via sum of squares to obtain the total uncertainty.

The above considerations yield an uncertainty estimate 
based strictly on theory. It was applied by Safronova et  al 
[40] to the In-like Ce9+ , Pr10+ , and Nd11+ ‘monovalent’ ions 
where the CI+All-order and the CI-MBPT approach are both 
applicable. However, Safronova et al also rely on comparisons 
with reference ions for which experimental data are available. 
In [40] the isoelectronic Ba7+ ion was used as a reference 
ion. Results from the monovalent All-order (coupled cluster) 
SDpT model and the CI+All-order model with three valence 
electrons were compared, and it was found that CI+All-
order gave the better agreement with measurement. Table 2 
(extracted from table  V of [40]) shows the final computed 
energies for two levels in In-like Ce9+ and Ba7+ together with 
estimated contributions from high order correlations, higher 
partial waves, and Breit interaction, and along with uncer­
tainty estimates for the states in Ce9+ . QED corrections were 
considered to be negligible for this system. The uncertainty 

estimate for the calculated Ce9+ energies was obtained as the 
sum of two contributions: the error (relative to experiment) 
in the calculation for the Ba7+ reference ion and the abso­
lute change between the reference ion and the actual ion in 
the sum of the identified small terms. Finally, these calculated 
uncertainties were compared with the actual deviation from 
the experimental energies (which are available for Ce9+ ), and 
it was found that the estimate of uncertainties of calculated 
energies is reasonable for 4f states but significantly larger for 
5p states.

UQ is being routinely used to determine structural para­
meters of small molecules within tight uncertainty bounds. 
This is done, at least in part, to aid the predictions of the rota­
tional spectrum of these species and hence their detection in 
the laboratory and space [179, 180].

Table 3 illustrates an application of the FPA method to 
uncertainty assessment of the calculated dissociation energy 
(D0) of H2 16O. Full details are given by Boyarkine et  al 
[9] who provide similar results for water isotopologues. 
Subsequent measurement of D0 for H2 18O yielded results 
within the uncertainties of the predicted value [181]. The 
uncertainties listed in table 3 include a contribution of 1 cm−1 
due to nonadiabatic effects, even though these effects were 
assumed to give a negligible direct contribution to the value of 
D0 and actual calculation of nonadiabatic effects did not form 
part of the study. An estimate of the magnitude of contrib­
utions due to effects neglected in a given model is a part of the 
uncertainty assessment.

One area where uncertainty assessment is beginning to 
have significant impact is the computation of dipole-moment 
surfaces [59, 60] and hence rotation-vibration transition inten­
sities [182]. The methodology used here is based on adapt­
ing the FPA method for computing the dipole moment surface 
(DMS) and then performing multiple computations using 
different PESs and DMSs to establish stability of the results 
[183, 184]. These computations are important as it is often 
difficult to measure absolute transition intensities with the 
accuracy demanded for the interpretation of modern remote 
sensing experiments.

Table 2.  Calculations and their uncertainties of the excited state 
energies of Ce9+ and Ba7+ [40].

Ion level
Ce9+  
5p3/2 4f5/2

Ba7+  
5p3/2 4f5/2

Experiment 33 427 54 947 23 592 137 385
All-order SDpT 33 406 55 419 23 564 137 770
Diff (Exp—SDpT) 21 −472 28 −385
CI+all 33 450 54 683 23 605 137 256

Diff (Exp—CI+all) −23 264 −13 129

CI+MBPT 33 986 54 601 24 020 137 086
High-order correlations −147 2687 −134 2224
Higher partial waves 14 −1011 12 −858
Breit interaction −403 −1595 −293 −1197
Uncertainties 130 220 — —

Note: All values are in cm−1.

J. Phys. D: Appl. Phys. 49 (2016) 363002



Topical Review

15

6.2.  Electron-atom/ion collisions

As the first example we consider the momentum transfer cross 
section for low energy electron collisions with Ar atoms; an 
important parameter for many laboratory plasmas. Figure  3 
shows a comparison between experiment and theory. While 
the agreement with experiment is nearly perfect for the pre­
sumably best model (fully relativistic including dynamic 
distortion (DD) of the target charge distribution by the pro­
jectile), the important issue for the present paper is the fact 
that (i) a number of calculations were performed, and (ii) that 
even a nonrelativistic approach with a less sophisticated way 
of accounting for the above effect yields rather similar results. 
Because of this, together with the general confidence in the 
polarized-orbital method as an enhanced one-state close-
coupling approach that contains the most important physical 
effects, one can make reasonable estimates about the posi­
tion of the minimum (we suggest 0.15 eV 0.05 eV   ± ) and the 
value of the cross section away from the resonance (10% or 
better at 0.01 eV and 1.0 eV).

Figure 4 shows predictions from both CCC and RMPS for 
electron impact excitation of the n  =  2 states of helium. Once 
again, it seems possible to make a reasonable estimate of the 
uncertainty in the theoretical predictions. Even though these 
computations are nearly 20 years old, they have indeed with­
stood the test of time. This is ultimately not surprising, since 
the scattering models contain what we believe is the essential 
physics, namely an accurate target description (the relevant 

energy levels and oscillator strengths agree with experiment 
and much more sophisticated structure-only computations at 
the 10% or better level) as well as channel coupling within 
the discrete spectrum as well as to the ionization continuum. 
Significant differences occur only in the resonance regime near 
the low-lying excitation thresholds, with the principal reason 
being that the CCC calculations had only been performed at a 
few energies. Looking at the comparison, one might conclude 
that the average of the two sets of theoretical predictions is 
accurate at least at the 20% level (most likely better). This is 
something that cannot be said even today for most of the exper­
imental data points, of which there are only very few anyway.

Figure 5 is an example of a systematic study regarding the 
convergence of the close-coupling expansion [191]. In this 
particular implementation, the resulting equations are solved 
using the so-called ‘B-spline R-matrix with pseudo-states’ 
(BSRMPS) approach. Once again, however, we emphasize 
that it is not the implementation of a particular model that 
determines the overall uncertainty of its predictions. If the 
close-coupling expansion could literally be driven to an infi­
nite number of states on an infinitely fine spatial grid, then it 
should yield the correct solution of the underlying many-par­
ticle Schrödinger or Dirac equation. In practice, of course, this 
is not possible. In the above example, the structure descrip­
tion for the states of interest, the initial p S3 6 1

0( )  state and the 
four final 3p54s states of argon, was carried out as well as the 
authors believed was necessary for most of the uncertainty to 
come from the finite size of the close-coupling expansion. This 
also means that purely numerical errors in solving the equa­
tion with a fixed number of states are believed to be negligible.

Looking at the figure, one can see a very strong effect of 
adding more and more states to the close-coupling expansion. 
However, going from a 500-state (BSR-500) to a 600-state 
(BSR-600) model ultimately indicates some convergence. 
As mentioned several times already, there is no guarantee for 
the correctness of the final results. Nevertheless, the results 

Table 3.  Ab initio contributions to the first dissociation energy of 
H2 16O.

Value Uncertainty

A CBS CCSD(T) frozen core 43 956 6
B Core correlation CCSD(T) +81 2
C All-electron CBS CCSD(T)  

[=A+B]
44 037 6

D Higher order electron correlation −52 3
E CBS FCI [=C+D] 43 985 7
F Scalar relativistic correction −53 3
G QED (Lamb shift) correction +3 1
H Spin–orbit effect −69.4 1
I Angular momenta coupling, OH +31.5 0
J Sum spin effects, OH [=H+I] −37.9 1
K DBOC, H2O +35.3 0.5
L ZPE H2O 4638.1 0
M ZPE OH 1850.7 0.5
N Net ZPE, H2O [=L+M] 2787.4 0.5
U Nonadiabatic contributions 0 1
V Total MD, H2O [=I+K+N+U] −2721 1

D0(H2O) Calc. [=E+V] 41 145 8
(Obs—Calc) D0(H2O) +1 —

Note: All values are in cm−1. Uncertainties are given in the last column. 
Signed contributions are incremental values. Contributions (A) to (H) only 
concern the electronic motion with fixed nuclei. CBS means complete 
basis set, FCI is full configuration-interaction, DBOC means the diagonal 
Born–Oppenheimer correction and ZPE is the vibrational zero-point energy. 
Contributions (I) to (N) involve solving the nuclear motion problem for 
water and for the OH diatomic and are therefore nuclear mass dependent 
(MD). Full details about the components considered in the focal point 
analysis can be found in Boyarkine et al [9].

Figure 3.  Momentum transfer cross section for electron scattering 
from argon atoms in their ground state. Results from various 
polarized orbital calculations (see text) are compared with a 
recommended set of experimental data [185] (solid circles). The 
curve labeled ‘rel-pol+DD’ is a fully relativistic model including 
dynamic distortion. (Reproduced with permission from [84]. 
Copyright 2013 IOP Publishing Ltd.)
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Figure 4.  Cross section for electron-impact excitation of the n  =  2 states in helium from the ( )s S1 2 1  ground state. Three sets of 
experimental data [186–188] are compared with predictions from nonrelativistic CCC [189] and RMPS [190] models. (Figure adapted with 
permission from [190]. Copyright 1998 IOP Publishing Ltd.)
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results of a number of BSR calculations shows the convergence of the predictions from a close-coupling model. (Reproduced figure with 
permission from [191]. Copyright 2014 by the American Physical Society.)
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change in a systematic way, and it seems as if at the very least 
the BSR-600 predictions can be taken as a likely upper limit 
of the ‘true’ solution of the underlying equations, at least out­
side of the resonance regime.

Moving on to the intermediate energy and high energy 
regimes, figure 6 shows the angle-integrated cross section for 
excitation of the p p D3 45 3

3( )  (2p9) state in argon from the 
initial metastable p s P3 45 3

2( )  (1s5) state [84]. This is a very 
strong optically allowed transition with a threshold energy of 
less than 2 eV. Hence it is not the absolute projectile energy 
that matters in the classification of the energy regime. For 
all practical purposes, this is a high energy collision, and 
hence one might assume that perturbative methods should 
be appropriate. Indeed, the top panel shows that results from 
PWBA, DWBA, and a 15-state R-matrix (close-coupling) 
model quickly converge towards each other—provided a very 
similar target description is being used. In fact, the principal 
reason for the deviation between the various sets of results 
in this panel is the lack of unitarization of the DWBA scat­
tering matrix rather than a fundamental problem with a per­
turbative approach. On the other hand, we see a significant 
(about 30% in this case) dependence of the DWBA predic­
tions when the relevant one-electron orbitals (4s and 4p) were 
generated with different atomic structure codes (CIV3) [193] 
or SUPERSTRUCTURE [194], respectively) and slightly dif­
ferent optimization criteria. This is an instructive example 

where the reliability of a collision calculation is effectively 
determined by the quality of the structure description rather 
than the collision model itself. While the results obtained with 
the CIV3 orbitals appear to provide better agreement with 
experiment in this particular case, this is by no means the rule. 
Furthermore, the uncertainties associated with the absolute 
experimental normalization are often substantial. Clearly, the 
availability of a reliable oscillator strength for this transition 
can be used to rescale the predictions [105] and hence reduce 
the likely uncertainty of the predictions.

Next we present a few examples for electron–ion collisions. 
The first one is for electron scattering from Fe+ , which is a 
very complex target. Due to this complexity and the ionic 
character of the target, there is a wealth of resonance structure 
as function of the incident projectile energy. An example is 
shown in figure 7 for just one partial-wave symmetry.

Comparing results from individual calculations makes lit­
tle sense in this case. Instead, one should concentrate on an 
observable that is more stable regarding small changes in the 
individual predictions, but which is still meaningful in mod­
eling applications. Such an observable is the effective col­
lision strength, where an integral over the incident energies 
weighted over a Maxwellian (or possibly other) speed distri­
bution is performed for a range of temperatures. An exam­
ple is shown in figure 8. Comparing the results from different 
models should give some indication about the uncertainty of 

Figure 6.  Cross section for electron impact excitation of the ( ) → ( )p s P p p D3 4 3 45 3
2

5 3
3 ( →s p1 25 9) (in Paschen notation) transition in argon. 

A number of theoretical predictions are compared with the experimental data of Boffard et al [192]. (Reproduced with permission from [84]. 
Copyright 2013 IOP Publishing Ltd.)
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the predictions, especially if some additional criteria regard­
ing the likely quality of the target description and the collision 
model are used to give increasing weight to a particular set 
of results. In the example shown, however, the latter may not 
even be necessary if an uncertainty of about 20% is deemed 
sufficient.

For highly charged ions, as electron correlation effects are 
less important, perturbative methods such as PWBA, DWBA 
produce comparable results to nonperturbative methods as 
long as the structure description is reliable. As seen from  
figure 9, even for a singly-ionized system such as Be+ , there 
is much better agreement between predictions from a number 
of different distorted-wave models and highly sophisticated 
close-coupling theories than between any of these predic­
tions with the only available set of experimental data [199]. 
Given the importance of beryllium and its ions for fusion 
devices, additional calculations were recently performed, all 
of which essentially confirmed the results published in [200]. 
The principal reason for this good agreement is the generally 
fast convergence of pseudo-state models with the number of 
pseudo-states included in the close-coupling expansion [201]. 
It is hence very likely that the theoretical results are more reli­
able than the experimental data in this case.

We note that cross sections, which are dominated by res­
onant processes, can be very sensitive to the details of the 
calculation. This has been explored, for example, for the e-C+ 
collision system [202], where a single low-lying resonance 
dominates the low-energy behavior.

The process of dielectronic recombination is strongly 
affected by resonances and, moreover, an almost unbounded 
number of states and transitions can be involved. This makes 
it very difficult to calculate cross sections  and even more 
difficult to estimate uncertainties in the calculated results. 
Experimental benchmarks are of the highest importance as 
may be seen in recent work for intermediate charge states 
of tungsten [203, 204]. However, in the recent article [205] 
there is a discussion of uncertainties in calculated rates of 
dielectronic recombination for S2+ recombining to S+ asso­
ciated with uncertainties in the autoionizing level positions. 

The uncertainty was assessed by performing two additional 
calculations in which a critical autoionizing resonance posi­
tion was shifted to just above threshold, thereby maximizing 
the resulting low-temperature rate coefficient, or by shifting 
it to an intermediate position. The authors conclude that ‘An 
observational program, combined with spectral modeling and 
a parallel effort in atomic theory, could make real progress in 
deriving DR rates for third and fourth row elements with well-
defined uncertainties’.

6.3.  Electron-molecule collisions

Up until now, uncertainty assessment has been rare in electron-
molecule collision calculations. An exception is the recent 
study of electron collisions with H2

+ by Zammit et al [206]. 
This system has the advantage that it is possible to use (near) 
exact wave functions for the one-electron target. Zammit et al 
use a CCC technique and the adiabatic nuclei approximation 
to compute vibrationally resolved dissociative excitation and 
ionization cross sections  for the system; they obtain results 
accurate to better than 10% and 5%, respectively. These 
uncertainty estimates were derived from considering (a) the 
behavior as function of the size of the CC expansion and (b) 
a smaller contribution due to their approximate treatment of 
nuclear motion. It would seem that the use of extended close-
coupling expansions is the most promising approach for 
obtaining uncertainty quantified results for electron-molecule 
collisions.

The first example of the uncertainty assessment in elec­
tron-molecule collisions is the calculation of cross section for 
photodetachment of the C2H− anion. The analytical model 
used in the theoretical treatment of the process is described 
in [207]. It should be stressed here that the model does not 
account for possible rovibrational resonances that could be 
present in the photodetachment spectrum. Such a model 

Figure 8.  Predictions from a number of calculations for effective 
collision strengths as a function of temperature for electron 
collisions with Fe+ . BSR results [195] are compared with those 
of Nussbaumer and Storey (NS80) [197], Pradhan and Berrington 
(PB93) [198], and Ramsbottom et al [196].
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Figure 9.  Electron impact ionization cross sections for Be+ from 
the (2s) ground state and the (2p) excited states. The predictions 
from several distorted-wave and close-coupling models are 
compared with the experimental data of Falk and Dunn [199]. 
(Reproduced figure with permission from [200]. Copyright 2003 by 
the American Physical Society.)
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would correspond to a low-resolution experiment, similar to 
the one of [208], where rovibrational structure is unresolved. 
Figure 10 shows results of the theoretical calculations using 
the UK R-matrix code [87, 209, 210] with different values of 
several parameters, which control the accuracy of the elec­
tron scattering matrix obtained in the R-matrix code. The 
figure also shows the results of the complex Kohn method 
(see details in [207]) and the available experimental data 
[208]. Although a systematic uncertainty analysis of the 
calculation has not been performed, the R-matrix results 
shown in the figure suggest that the accuracy of the compu­
tation model is of the order of 15% for the cross section far 
from the electronic resonance at 4 eV. The uncertainty in the 
position of the resonance is about 0.15±  eV. The present 
uncertainty analysis does not address the uncertainty of the 
analytical model itself that neglects the mentioned rovibra­
tional resonances. However, in an ideal theoretical study of 
this or a similar process, the uncertainty of the analytical 
model should also be discussed.

The second example is the cross section for dissociative 
recombination of the H3O+ ion with low energy electrons. 
The analytical and computational model for the process is 
described in [131]. Although the DR process also involves 
electron scattering, the employed model is very different 
from the one discussed above: the scattering matrix for 
collisions between an electron and a molecular ion in this 
approach is obtained from ab initio calculations of excited 
Rydberg states of the neutral H3O molecule. Energies of the 
lowest electronic state of H3O+ and several excited elec­
tronic states En of H3O are obtained using the Columbus 
code [215] (see details in [131]). As a second step, effective 
quantum numbers ν Q( )n  of the excited states are computed 

from energy difference En∆ Q( ) between H3O+ and H3O 
energies, where Q refers to a particular molecular geometry. 
Functions nν Q( ) are fit with a simple linear (or quadratic) 
function along Q and coefficients of the linear (or quadratic) 
fit are used to obtain the electron-molecule scattering matrix 
electron energies and, therefore, determine the final DR cross 
section. The electron-molecule scattering matrix for positive 
(relative to the ionization threshold) electronic energies is 
therefore computed from negative energies of Rydberg states 
in the spirit of quantum defect theory. In principle, Rydberg 
states with different principal quantum numbers n could be 
used to perform the fit, to construct the scattering matrix, and 
to calculate the DR cross section. In theory, quantum defects 

nn nµ ν= −  are slightly different for different n, i.e. they are 
energy-dependent. Additional uncertainty of nµ  comes from 
the accuracy of the ab initio calculation. These are the two 
major sources of uncertainty in the calculation of the DR 
cross section  within the discussed analytical model. The 
effect of these uncertainties on the final DR cross section is 
demonstrated in figure  11, where the cross section  is cal­
culated for three different sets of parameters obtained from 
three different manifolds of Rydberg states of H3O. The dif­
ference in the results on the figure is attributed to accuracy of 
ab initio energies of excited electronic states of H3O and to 
the energy dependence of the quantum defects. As in the first 
example, there is an additional source of uncertainty due to 
the employed analytical model, which neglects several pos­
sible processes during a DR event, such as the possibility of 
autoionization once the electron is captured by the ion or the 
influence of rovibrational resonances. This uncertainty is not 
addressed here.

Figure 10.  Theoretical (curves) [211] and experimental (symbols) 
[208] cross sections for C2H− photodetachment. One of the 
shown theoretical curves is obtained using the complex Kohn 
method [207], all other curves are from the UK R-matrix [87, 
209] calculations. The R-matrix results are obtained for different 
values of key parameters controlling accuracy of electron scattering 
calculations at a fixed molecular geometry. Uncertainty of R-matrix 
and complex Kohn results is about 20% for the cross section far 
from the electronic resonance at 4 eV.

Figure 11.  Theoretical (curves) and experimental (symbols)  
[212–214] cross section of dissociative recombination of the 
H3O+ ion with electrons. There are three theoretical curves on the 
figure that are almost indistinguishable in the main graph. The 
inset zooms a part of the presented data such that three curves are 
distinguishable. Uncertainty of calculation within the employed 
analytical model (discussed in detail in [131]) is about 8%. 
Uncertainty of the analytical model itself is much larger because the 
model neglects some important physics, such as autoionization and 
rovibrational resonances present in the DR spectrum.
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6.4.  Charge transfer collisions

We begin the discussion of examples for uncertainty estimates 
in charge transfer collisions with the one-electron sC H 16 ( )−+  
system. This and similar fully stripped ion—neutral hydro­
gen atom collision systems have been the subject of a large 
number of theoretical investigations over many years. In part, 
this is due to their relevance for applications such as charge 
exchange recombination spectroscopy, which is an important 
tool for the diagnostics of fusion plasmas (see, for example, 
[216, 217] and references therein). Another reason for the 
great interest in these systems is their benchmark character. 
Being true one-electron problems, model uncertainties can be 
kept to a minimum and convergence properties of different 
approaches, i.e. numerical uncertainties can be studied.

Figure 12 displays cross sections for charge transfer from 
hydrogen into individual n-shells of the hydrogenlike C5+ 
ion in the low to intermediate energy regimes, in which the 
semiclassical approximation with straight-line trajectories is 
essentially exact. Based on a large set of cross section calcul­
ations carried out in the 1980s and 1990s, Suno and Kato 
constructed recommended data sets that can be fit by simple 
analytical functions [218]. The recommended data are shown 
in figure 12 as solid lines. In addition, one recent representa­
tive is included for each of the following theoretical methods: 
MOCC [219], AOCC [216], TDL [167], and CTMC [220]. 
Experimental data on the n-shell resolved level are not avail­
able for this collision system.

It can be observed that predictions from the three semi­
classical methods, MOCC, AOCC and TDL, are in excellent 
agreement with each other and with the recommended data 
for the dominant n  =  4 and the subdominant n  =  5 channels. 
From this comparison one can conclude that the cross sec­
tion predictions are accurate to within a few percent. For the 
less important n  =  3 and n  =  6 channels the discrepancies are 

slightly larger. Except for the n  =  6 MOCC data point at 2 
keV, however, the overall agreement is still very good.

The CTMC results included in figure 12 agree very well with 
the semiclassical calculations at 50 and 100 keV impact energy. 
At lower energies the discrepancies are larger and different 
variants of CTMC models give different results [217, 220]. 
This suggests that an uncertainty assessment solely based on 
CTMC calculations would be difficult in this regime. However, 
at higher energies and for high n quantum numbers the predic­
tions of the different CTMC variants are all in good agreement 
with each other and can be viewed as the best results currently 
available.

Figure 13 shows n-shell specific charge transfer cross sec­
tions for nC H 26 ( )− =+  collisions. Due to the weaker bind­
ing of the electron in an excited initial state, higher projectile 
n-shells are favored, and overall the cross sections are larger 
when compared to the ground-state case. The CTMC calcul­
ations of Jorge et al (top panel) and Cariatore et al (bottom 
panel) appear to be in good agreement with each other, while 
the AOCC cross sections from [216] tend to overestimate the 
CTMC data as the impact energy and the principal quantum 

Figure 12.  Cross sections for n-shell selective charge transfer in 
C6+ -H(1s) collisions as functions of impact energy. Full lines: 
fits according to [218], MOCC: [219], AOCC: [216], TDL: [167], 
CTMC: [220].
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Figure 13.  Cross sections for n-shell selective charge transfer 
in ( )− =+ nC H 26  collisions as functions of impact energy. Top 
panel: full lines: hydrogenic CTMC, dashed lines: AOCC. (Figure 
reproduced from [217]. Copyright 2014, with permission of 
The European Physical Journal (EPJ).) Bottom panel: full lines: 
hydrogenic-Z-CTMC, dash–dotted lines: microcanonical CTMC 
(both sets of curves are essentially on top of each other), dashed 
lines: AOCC. (Reproduced figure with permission from [220]. 
Copyright 2014 by the American Physical Society.) The AOCC 
cross sections in both panels are from [216].
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number of the final states increase. Even though the two-
center basis used includes a total of 340 states, which is a very 
large number for a semiclassical CC calculation, the overesti­
mation is deemed to be a finite-basis effect, i.e. a convergence 
problem of the AOCC method in this energy range [217, 220].

Figure 14 explores the very low energy regime in which 
straight-line trajectories, and perhaps the semiclassical 
approximation itself, become questionable. For the dominant 
n  =  4 channel in the C6+ -H(1s) collision system this does 
not appear to be an issue and semiclassical CC calculations 
based on curved and straight-line trajectories agree with each 
other and with a fully quantum mechanical HSCC calculation 
on the few-percent level. However, for n  =  5 qualitative dis­
crepancies are observed. They have been traced to both basis-
size limitations of the earlier CC calculations and to trajectory 
effects [222]. Regarding the latter it was found that (i) straight-
line trajectories lead to a strong overestimation of the cross 
section when the calculation is reasonably well converged with 
respect to basis size, and (ii) choosing the optimal curved tra­
jectory involves a certain level of arbitrariness [152, 222]. The 
HSCC method is free of this ambiguity and probably gives the 
best answer. Interestingly, it is in close agreement with an early 
MOCC calculation, which used a relatively small number of 
states and curved trajectories based on an average molecular 
potential [158, 159]. By contrast, a larger MOCC calculation 
based on straight-line trajectories yields significantly higher 
cross sections [219]. Given the absence of other fully quantum 
mechanical calculations and experimental data a quantitative 
uncertainty assessment appears to be difficult in this region.

We now turn to single-electron transfer in the few-electron 
sC H 13 ( )−+  collision system. Figure  15 displays the total 

charge transfer cross section over a wide range of impact ener­
gies, spanning the very low energy, low energy, and interme­
diate energy regimes. A systematic trend can be observed at 
energies below 100 eV, which is where the cross section reaches 

a minimum. Of the four QMOCC calculations included the 
one that uses the most accurate correlated wave functions and 
the largest basis set (a total of ten many-electron molecular 
functions) gives the smallest cross section values and the best 
agreement with the experimental data. Except for the data 
point at the lowest energy of 0.3 eV amu−1 the calculated cross 
section curve lies within the experimental uncertainty. In the 
low energy region, in which the cross section  increases with 
increasing impact energy, the convergence of molecular expan­
sions slows down and above 2 keV amu−1 AOCC expansions 
are deemed to be more accurate [223]. This is supported by 
the close agreement of the calculations of [224, 226] with each 
other and, where available, with experimental data as well. 
Overall, figure 15 illustrates nicely that an uncertainty estimate 
for a complicated collision problem should use the input from 
several calculations based on different theoretical methods.

In figure  16 we show an example for single-electron 
transfer from a many-electron target. The system is 4.54 keV 
amu−1 Ne10+ -Ne and plotted are relative cross sections for 
transfer into specific nl-subshells. Results from one AOCC 
and various TC-BGM calculations are included. All of them 
are on the level of the IEM, but they use different variants of 
effective target atom potentials and statistical methods for 
the calculation of the cross sections. It can be argued that 
what is referred to as BGM-SEC in the figure represents the 
most consistent calculation of single transfer within the IEM 
[232]. However, this is no guarantee for success, since the 
IEM represents a model whose accuracy is difficult to deter­
mine. In lieu of correlated cross section calculations, com­
paring different IEM variants is the best one can do to assess 
the uncertainty of the theoretical results. A somewhat con­
servative estimate would then consist in taking the spread of 
the shown relative cross sections as their uncertainty.

Figure 14.  Cross sections for n-shell selective charge transfer 
in C6+ -H(1s) collisions as functions of impact energy. Full lines 
(‘Present’): HSCC [152]; Fritsch and Lin: AOCC with curved 
trajectories [160]; Kimura and Lin: (modified) AOCC with straight-
line trajectories [221]; Harel et al: MOCC with straight-line 
trajectories [219]; Green et al: MOCC with curved trajectories 
[158, 159]; Caillat et al: AOCC with straight-line trajectories [222]. 
(Reproduced figure with permission from [152]. Copyright 2005 by 
the American Physical Society.)

Figure 15.  Total cross section for charge transfer in C3+ -H(1s) 
collisions as function of impact energy. ‘Present calculation (CH)’: 
QMOCC [223]; ‘Present calculation, eikonal’: MOCC [223]; 
Guevara et al: END [224]; Herrero (CH): QMOCC [225]; Tseng 
and Lin: AOCC [226]; Heil et al: QMOCC [227]; Errea et al: 
MOCC [228]; Bienstock et al: QMOCC [229]. Experimental data 
for atomic hydrogen (Havener (CH)) and deuterium (Havener 
(CD)): [230]. (Reproduced with permission from [223]. Copyright 
2015 IOP Publishing Ltd.)
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An important motivation for studying these nl-distributions 
is that they form the starting point for the calculation of x-ray 
spectra, which in turn are of interest, e.g. for the understanding 
of cometary x-ray emission. In figure 17 we show the modeled 
n-state selective spectra for the hydrogenlike Ne9+ ion pro­
duced in the charge transfer collision. Results from all calcul­
ations shown in figure 16 as well as experimental data from 
[233] are included. Overall, the spread in the theoretical x-ray 
spectra appears to be similar or even smaller than the spread 
in the relative cross sections, implying that error propagation 
is not problematic and the x-ray spectra are rather forgiving 
quantities. However, this is partly due to a mutual normaliza­
tion process used in all of the calculations, and, perhaps to a 
lesser extent, to spectral-line convolutions to Gaussian pro­
files that were applied as well [232]. The ‘widths’ resulting 
from the various curves shown in figure 17 can again be taken 
as theoretical error bars.

The last example of this section concerns a true many-
electron problem: x-ray production after charge transfer in 
7 keV amu−1 Ar17+ -Ar collisions. In this case the available 
measurements [234] cannot discern single versus multiple 
transfer. Given that the latter should be a strong channel 
for such a highly charged projectile ion, it has to be taken 
into account in the theoretical modeling of the measured 
x-ray spectra. In [235] this was done on the level of the 
IEM, and again, different variants of effective potentials 
(response and no-response models) and statistical anal­
yses were used in order to get a qualitative idea of the 

theoretical error bars. Further modeling is required in this 
problem to obtain x-ray emission spectra, because Auger 
processes compete with radiative de-excitation when mul­
tiple electron transfer occurs. Once again, different model 
variants were used for this (assuming flat versus statisti­
cal l-subshell distributions after Auger electron emission) 
and the calculations were assessed by varying the models 
within reasonable bounds.

Figure 18 compares results obtained in this way with 
the experimental x-ray intensities for snp s1 1 2→  transitions 
in the post-collision Ar16+ ion. One can probably take the 
shaded area as the theoretical error bar that results from the 
comparison of the different calculations. Except for n  =  8 and 
n  =  10 the experimental data are within these error bars. There 
is one calculation, however, that is clearly off. It represents an 
x-ray spectrum obtained from neglecting all multiple-transfer 
contributions in the calculation. This suggests that, despite 
considerable model uncertainties, some definite conclusions 
can be drawn from such calculations and comparisons; in this 
case, regarding the important role of multi-electron transfer 
events [235].

7.  Summary, conclusions, and outlook

We have reviewed approaches to uncertainty estimates for 
atomic and molecular data of the kind that occur in plasma 
modeling. Model uncertainty is introduced through the 

Figure 16.  Relative cross sections for nl-subshell selective charge transfer in Ne10+ -Ne collisions at 4.54 keV amu−1. Liu et al: AOCC 
[231], all other results are from TC-BGM calculations [232]. ‘BGM-net’ and ‘BGM-SEC’ refer to different statistical analyses of single 
transfer, while ‘resp’ and ‘no-resp’ calculations do or do not include a time-dependent response potential in the single-particle Hamiltonian. 
(Reproduced figure with permission from [232]. Copyright 2014 by the American Physical Society.)
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treatment of small terms in the Hamiltonian and (more impor­
tantly in general) through the reduction of a many-body 
Schrödinger equation to a tractable model. Numerical uncer­
tainty is due to the representation of the model on a finite mesh 
or basis. Uncertainties propagate from structure calculations 
to predictions of scattering cross sections. We have summa­
rized the main tools for uncertainty assessment of calculations 

for atomic and (small molecule) molecular electronic struc­
ture, electron scattering, and charge transfer in heavy particle 
collisions. Important tools include the method of focal point 
analysis in connection with electronic structure models and, 
of course, standard methods of convergence analysis for the 
numerical uncertainties.

We discussed some examples of computational work on 
scattering calculations in which the authors attempted to pro­
vide a reasonable uncertainty estimate. These examples show 
that the field is not entirely unexplored. On the other hand, 
for every example of a scattering calculation that is accompa­
nied by a thoroughly performed uncertainty estimate there are 
many more where the authors provide their best calculations 
without discussion of the uncertainties. For the case of elec­
tron impact collisions we discussed examples of atomic exci­
tation and ionization where a reasonable uncertainty estimate 
is obtained by careful study of convergence in the structure 
calculation and in the R-matrix formalism.

Calculations of dielectronic recombination in electron-atom 
(ion) collisions are much more complicated than those of excita­
tion and ionization, because very many states and transitions can 
be involved. Uncertainty estimates for calculated dielectronic 
recombination rate coefficients involve not just the convergence 
of the initial and final state structure, but also convergence with 
respect to the number of intermediate states and the number of 
transitions that are taken into account. As a consequence, for the 
dielectronic recombination process in electron-atom collisions 
the provision of uncertainties for calculated data (without rely­
ing on experimental benchmarks) is still wide open.

Figure 17.  X-ray spectra from single electron transfer to the nth shell in Ne10+ -Ne collisions at 4.54 keV amu−1. Experimental data: [233]; 
Liu et al: AOCC [231], all other results are from TC-BGM calculations (see figure 16) [232].
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Figure 18.  X-ray intensities after charge transfer in Ar17+ -Ar 
collisions at 7 keV amu−1. Experimental data: [234]. All theoretical 
results are from TC-BGM calculations (see text) [235].
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The ultimate aim for a constructive theory of uncertainty 
quantification for atomic and molecular data is to develop 
numerical procedures for structure and scattering calculations 
by which reasonable uncertainty estimates are obtained along 
with the primary calculated quantities of interest. The final 
quantities of interest are cross sections (differential cross sec­
tions in general) as a function of collision energy and perhaps 
other collision parameters. The associated uncertainties are 
structured quantities, not just point values, and they must be 
presented in a way that makes it possible to propagate them 
through further atomic data processing (e.g. to obtain effective 
rate coefficients) and through a plasma simulation. This raises 
many new issues that have not been addressed in this review, 
but that we note here as an outlook towards future work.

From an operational point of view, in order to propagate 
uncertainties in atomic data through a plasma simulation (in 
a non-intrusive manner, i.e. without major changes to the 
plasma simulation code) one needs to be able to sample the 
relevant cross sections  with proper account of relevant cor­
relations in uncertainties. For example, uncertainties in cross 
sections for the same process at different collision energies are 
correlated in some way that depends on the energies involved. 
Depending on the application such functional uncertainties 
(as opposed to pointwise uncertainties) may be represented 
by a Gaussian Process, a polynomial chaos expansion, or a 
Monte Carlo sample. The propagation of such uncertainties 
through a dynamical calculation is an issue of major interest 
in the field of Uncertainty Quantification as it is represented, 
for example, in the National Research Council report already 
cited in the Introduction [2]. For a perspective from Statistics 
on Uncertainty Quantification see also, [236] and for a mon­
ograph-length treatment of Uncertainty Quantification with 
special attention to computational fluid dynamics see [237].

In this review we have discussed the state of the art in 
uncertainty assessment for calculated atomic and molecu­
lar data for plasma applications. We conclude with what we 
regard as major issues for future work. First, very broadly, 
we recommend that atomic and molecular physicists develop 
methods and codes for scattering calculations in which uncer­
tainty assessment is integrated with the calculation of the pri­
mary quantities of interest. Second, more narrowly, develop 
uncertainty assessment in a more systematic way for pro­
cesses involving resonances: near-threshold processes and 
dielectronic recombination. Third, develop representations of 
correlated uncertainties in atomic and molecular data that are 
suitable for studies in which those uncertainties have to be 
propagated through plasma simulations. The latter item will 
benefit from a joint effort by atomic physicists and plasma 
modellers.
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