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Vibrational memory in quantum localized states
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The rovibrational eigenenergy set of molecular systems is a key feature needed to understand and model
elementary chemical reactions. A unique class of molecular systems, represented by an 4A′′ excited electronic
state of the [H,S,N]− system comprising several distinct dipole-bound isomers, is found to contain both bent and
linear minima separated by relatively small barriers. Full-dimensional nuclear-motion computations performed in
Jacobi coordinates using three-dimensional potential energy surfaces describing the stable isomers and the related
transition states yield rovibrational eigenstates located both below and above the barriers. The rovibrational wave
functions are well localized, regardless of whether the state’s energy is below or above the barriers. We also show
that the states preserve the memory of the isomeric forms they “originate from,” which is signature of a strong
vibrational memory effect above isomerization barriers.
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I. INTRODUCTION

A foundational concept of chemistry is that many chemical
events involving nuclei occur on potential energy (hyper) sur-
faces (PESs), which arise only within the Born-Oppenheimer
separation of nuclear and electronic motions. A corollary to
this doctrine is that simple PESs—those with few station-
ary points (minima and transition states)—lead, at least at
low excitation, to simple nuclear dynamics, whereas com-
plex PESs—those with a considerable number of stationary
points—lead to intricate dynamic behavior, particularly for
potentials with several wells. If two equivalent wells are
separated by a relatively small barrier, tunneling splitting of
the rovibrational energy levels can be observed, such as for the
ground electronic state of ammonia, NH3 [1]. A nonsymmetric
double-well potential characterizes the ground electronic state
of the [H,C,N] system and the HCN↔HNC unimolecular
isomerization reaction [2–4]. When the system has sufficient
energy for the two wells to “interact,” the states above the
barrier may belong to one or the other well or exist as a
mixture of the two. In 1987, Bacic et al. [5] investigated
the HCN/HNC system in a one-dimensional pseudopotential
where localized rovibrational wave functions were noticed be-
low and above the HCN↔HNC isomerization barrier. Another
interesting case is that of the [H,H,C,O] system, which has two
dynamically important nonsymmetric wells: formaldehyde,
H2CO, which corresponds to the global minimum, and trans-
hydroxycarbene, HCOH, which can tunnel through a barrier
larger than 100 kJ mol−1, simplifying the expected high-
energy dynamics considerably [6]. The acetylene↔vinylidene
isomerization constitutes another interesting example [4].
Herman and Perry [3] studied acetylene isomerization and
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showed recently the creation of new vibrational modes
and intramolecular vibrational-rotational energy redistribution
over multiple time scales when considering levels below and
above the isomerization barrier. Prior to that, Bowman and
co-workers [7] studied this process in a reduced dimensionality
potential that is minimized with respect to other degrees
of freedom, such that the resulting potential contains both
the acetylene and vinylidene minima. Localized vibrational
levels above the isomerization barrier were predicted. Another
relevant study is the combined theoretical and experimental
investigation of Continetti and co-workers [8] into the dis-
sociation dynamics of the tetra-atomic FH2O system. They
provided snapshots of the F + H2O → HF + OH reaction
from wells to barriers. Recent developments in the dynamic
study of molecular collisions allow the nature and behavior
of molecular systems above the dissociation limits to be fully
characterized, which has improved our understanding of the
fundamental processes occurring during molecular collisions.
In these studies, the agreement between the experimental and
first-principles results is striking (see, e.g., Refs. [9–12]).

Occasionally even simple, one-dimensional (1D) physical
models may lead to surprisingly complex dynamic behavior.
Aleiner et al. [13] recently provided an example of unexpected
localization in the case of a 1D gas of short-range interacting
bosons in the presence of disorder. Their work showed that
a 1D gas can theoretically undergo a finite-temperature phase
transition between two distinct states: fluid and insulator. In the
insulating state, bosons are distributed among “lakes” located
exponentially far from one another without the possibility of
hopping between the lakes. These lakes may be connected
to the lobes of the rovibrational wave functions, where the
nuclei are constrained to move, even above the barriers.
Another example for localized bound and unbound states
is the case of GaAs wells [14] observed after injecting
quasimonoenergetic ballistic electrons into GaAs potential
wells of various thicknesses. These experiments showed that
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FIG. 1. Top left: (R)CCSD(T)-F12/aug-cc-pVTZ contour plots of the PES of the SN · · · H− quartet electronic state along the Jacobi
coordinates R (in units of a0, where 1a0 = 1 bohrs = 0.5292 Å) and θ (in units of degrees), where r(SN) is fixed at 2.96 bohrs. The step
between the contours is 50 cm−1. The zero energy corresponds to the energy of the SN−(X3�−) + H(2S) asymptote. Top right: LUMO of SN−

interacting with the 1s atomic orbital of hydrogen. Bottom left: (R)CCSD(T)-F12/aug-cc-pVTZ contour plot of the PES of the SH · · · N− (4A′′)
electronic state along the Jacobi coordinates R (in units of a0) and θ (in units of degrees), where r(SH) is fixed at 2.53 bohrs. Right: HOMO of
SH− interacting with the 2p atomic orbital of N. The step between the contours is 50 cm−1. The zero energy corresponds to the energy of the
SH−(X1�+) + N(4S) asymptote. The red arrows indicate the favorable interactions between the frontier orbitals of SH−/SN− and N/H.

the corresponding spectra are structured for bound states, as
expected, and for the relatively large number of unbound
states located in the virtual region where peaks indicate their
localization [14]. Spectral localizations were also observed in
solid-state quantum dots by Chen et al. [15]. In the literature,
there were several attempts using 1D potential models [2,5,14–
16] to answer the fundamental question of whether simple
localized states exist above barriers and specifically whether
the localization of vibrational states could occur systematically
in chemical systems above a barrier.

To go beyond these previous 1D and reduced dimen-
sionality treatments, we perform full three-dimensional (3D)
potential through the investigation of the 3D PESs of the 4A′′
of the long-lived, weakly bound SN · · · H− and SH · · · N−
isomeric complexes, which can be formed after cold collisions
between SN− and H or SH− + N [17]. These 3D PESs
are first mapped and then incorporated into nuclear-motion
computations. Subsequently, we present a detailed analysis
of the nature of the eigenstates and energies, irrespective of
whether the state’s energy is below or above the potential
barriers. Our analysis shows that the rovibrational wave
functions are localized in character, not only below but also
above the isomerization barriers and exhibit strong memory
effects of the molecular minimum-energy structures.

II. METHODOLOGIES

A. Potential energy surface (PES) generation

The procedure established by Hochlaf and co-workers
[18–23] for the deduction of accurate multidimensional
interaction potentials in van der Waals systems with low
computational cost is used. Specifically, the electronic compu-
tations are performed using the explicitly correlated coupled
cluster method with single, double, and perturbative triple
excitations [CCSD(T)-F12] (approximation b) [24,25], as
implemented in MOLPRO [26]. In these computations, the atom-
centered, fixed-exponent, augmented correlation-consistent
aug-cc-pVTZ Gaussian basis set [27,28] is employed in
connection with the corresponding auxiliary basis sets and
density fitting functions [29,30], which correspond to the
default basis sets of Peterson and co-workers, CABS(OptRI)
(cf. Ref. [17] for more details). For both molecular species, the
3D PESs are calculated for θ angles ranging from 0° to 180°
with a uniform step of 10°. For SH · · · N−, R is varied from
3.7 to 40 bohrs, and the r(SH) distance is varied from 2.51 to
3.11 bohrs. For SN · · · H−, R is varied from 3.1 to 40 bohrs,
and r(SN) is between 2.7 and 3.2 bohrs. In total, 3589 (2593)
ab initio energies are computed for nonequivalent geometries
of SH · · · N−(SN · · · H−). The basis set superposition error
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(BSSE) is corrected at all geometries using the Boys and
Bernardi [31] counterpoise scheme.

B. Analytical representation and description of the PESs

The analytical models of the 3D PESs are obtained using a
fitting procedure based on the reproducing kernel Hilbert space
(RKHS) approach [32]. The interaction energies are expressed
as

V (R,r,θ ) =
NR∑

i=1

Nr∑

j=1

Nθ∑

k=1

bijkq
2,3(Ri,R)q2,3(rj ,r)q1(zk,z),

(1)

where z = 0.5(1 − cos θ ), bijk are linear coefficients and
NR = 41, Nr = 7, and Nθ = 12 denote the number of ab
initio data points calculated along the R, r , and θ Jacobi
coordinates. The expressions of the 1D reproducing kernel
functions q2,3(Ri,R), which vary asymptotically in 1/R4 for
large values of R and of q1(zk,z), are given in [33].

C. Calculations of the rovibrational eigenstates and
wave functions

Two independent methods are used to solve the nuclear-
motion problem: (i) close coupling and (ii) variational compu-
tations. The close-coupling method is incorporated in BOUND

[34], which was used to obtain a first set of rigid rotor-bound
states energies. This method relies on the fact that the coupled
equations needed for scattering calculations are identical to
those for bound states, only differing in the applied boundary
conditions. In these computations, the rotational constants of
the SN and SH molecules were set to B0 = 0.7696 cm−1 and
B0 = 9.325 cm−1 [35], respectively. A 0.1cm−1 convergence
of the first 100 bound-state energies was achieved using
44 and 20 rotational basis functions for the SN · · · H− and
SH · · · N− complexes, respectively. The difference in the size
of the rotational basis set required to reach convergence exists
because the angular variation of the PES is more anisotropic
for SN · · · H− than for SH · · · N−. To verify these results
and obtain the associated wave functions, we independently
perform variational 3D calculations as detailed in previous
studies (see, for example, [18]). The angular part of the wave
function is taken to be the usual |j lJM〉 coupled basis set in
Jacobi coordinates in the space-fixed frame, where j , l, and
J are the quantum numbers associated with the rotation of
the diatom, the relative, and the total angular momentum of
the complex, respectively. M is the projection of J along the
space-fixed z axis. For the radial part, we use a Chebychev
[36] DVR representation of both the intermolecular R and
diatomic r Jacobi coordinates. The DVR grid along R includes
600 points between 3.1 and 30 bohrs for SH · · · N− and 900
points between 3.2 and 22 bohrs for SN · · · H−. A Gauss
Hermite quadrature of ten points is used to calculate the
diatomic vibrational part of the intermolecular potential matrix
elements. The sizes of the rotational basis sets used for
these variational calculations are the same as those of the
close-coupling calculations. Good agreement between the two
calculations is obtained, and the spacing between the bound
states is confirmed.

TABLE I. Calculated rovibrational energy [E(cm−1)] levels
of SN · · · H−(4A′′) for J = 0 and 1, together with their tentative
assignment. Isomer I is for the linear H · · · SN− complex. Isomer
II is for the bent complex. Isomer III is for the SN · · · H− linear
complex. νs corresponds to van der Waals vibrational stretching, and
νb is for van der Waals vibrational bending. These energies are given
with respect to the SN−(X3�−) + H (2S) asymptote energy. Levels
in black exhibit a bent molecule pattern, regardless of whether they
are below or above the potential barriers. Levels in red (stretching)
and blue (bending) correspond to a linear-type molecule, regardless
of whether they are below or above the potential barriers. In the SM
[38], we provide the full set of computed levels up to dissociation. *
denotes an anharmonic resonance.

J = 0 J = 1

Isomer Assignment (νs,νb) E Parity (ε) E Parity (ε)

I (0,0) −832.33 + −830.75 −
–789.48 –

II (0,0) –789.93 + –787.08 –
–786.01 +
−630.83 +

I (0,1) −630.64 −
–550.00 –

II (0,1) –549.95 + –547.71 –
–546.15 +

I (1,0) −540.64 + −539.02 −
–481.27 –

II (1,0)* –480.66 + –479.30 –
–477.17 +

I (0,2)∗ −468.33 + −467.28 −
−387.90 +

I (1,1)∗ −387.76 −
III (0,0) −376.43 + −374.81 −

–369.90 –
II (0,2) –369.99 + –366.90 –

–365.55 +
−333.23 −

I ∗ −332.90 +
I (2,0)∗ −321.62 + −320.09 −
I ∗ −300.46 + −299.86 −

The synthetic microwave–far infrared (μw-far IR) spectra
of SN · · · H− and of SH · · · N− are generated using the recently
developed approach, as described in Ref. [37].

III. RESULTS

A. Nature of the 3D PESs of the SN · · · H− and
SH · · · N− anions

The 3D PESs of the lowest quartet electronic states of
the SH · · · N− and SN · · · H− anions are generated in Jacobi
coordinates r , R, and θ (see Fig. 1), using the state-of-the-art
(R)CCSD(T)-F12/aug-cc-pVTZ level of electronic structure
theory, from which analytical representations of these 3D
PESs are deduced. These surfaces are then used within two
independent nuclear-motion codes to compute the energies and
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FIG. 2. Selected rovibrational wave functions from the SM [38] for SN · · · H− (top) and SH · · · N− (bottom) complexes and their localization
in the corresponding potential (blue curve), where r is relaxed. The horizontal black lines indicate the levels appearing when J � 0, whereas
the red horizontal lines represent those appearing only when J � 1. R is in units of a0 and θ is in units of degrees. E is the energy in units of
cm−1.

wave functions for both anionic systems [18,34]. The results
independently confirm the observed features.

The 3D PESs of SN · · · N−(4A′′) and of SH · · · N−(4A′′)
(Fig. 1) are both strongly anisotropic. The less-structured PES
belongs to SH · · · N−(4A′′) and includes one potential well
with a bent arrangement (re = 2.71 bohrs, Re = 5.60 bohrs,
and θe = 78.0◦) (1 bohr = 1a0 = 0.5292 Å). The pure
electronic dissociation energy is De = 839.8 cm−1. Both
collinear arrangements correspond to transition states (TSs)
for r = 2.71 bohrs, R = 7.60 bohrs, and θ = 0◦(De =
266.5 cm−1), and r = 2.61 bohrs, R = 5.80 bohrs, and
θ = 180◦(De = 582.7 cm−1). The SN · · · H−(4A′′) system
exhibits a highly unusual PES with three minima (denoted as I,
II, and III; cf. Fig. 1) and two transition states. The most stable

form (I) corresponds to a linear H · · · SN− configuration (re =
2.90 bohrs, Re = 5.60 bohrs, θe = 0◦,De = 1247.5 cm−1).
The minimum of the intermediate stability (II) has a
bent structure (re = 3.00 bohrs, Re = 4.35 bohrs, θe =
78.0◦,De = 1161.68 cm−1), and the third minimum again
corresponds to a linear structure (III), SN · · · H− (re =
3.00 bohrs, Re = 5.25 bohrs, θe = 180◦,De = 727.2 cm−1).
The linear and bent structures are separated by two
transition states, one with r = 3.00 bohrs, R = 6.20 bohrs,
θ = 42.0◦, and De = 416.6 cm−1 (between I and II) and
the other characterized by r = 3.00 bohrs, R = 7.35 bohrs,
θ = 128.0◦, and De = 109.9 cm−1 (between II and III). These
potential barriers, connecting both bent and linear minima
and exhibiting qualitatively drastically different rovibrational
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FIG. 3. Selected rovibrational wave functions from the SM [38] for SN · · · D− (top) and SD · · · N− (bottom) complexes and their localization
in the corresponding potential (blue curve), where r is relaxed. The horizontal black lines indicate levels appearing when J � 0, whereas the
red horizontal lines represent those appearing only when J � 1. R is in units of a0 and θ is in units of degrees. E is the energy in units of cm−1.

energy-level structures, are relatively low, making the 4A′′
electronic state of the [S,N,H]− system a unique tool to
investigate the characteristics of eigenstates located below
and above the transition barriers.

Whereas the formation of a potential well for the SH · · · N−
charge-induced complex is expected, the existence of three
isomers for SN · · · H−, especially with bent and linear equi-
librium structures and similar relative energies, is unique
among molecular systems. As shown in Fig. 1, the favorable
interactions between the outermost orbitals of the SH/SN and
N/H monomers result from the lateral overlap between the
N(2p) atomic orbital (AO) and the highest occupied molecular
orbital (HOMO) of SH−, which leads to one potential well. By
contrast, the H(1s) AO may interact with the lone pair of S, the
lone pair of N, or the σ lowest unoccupied molecular orbital

(LUMO) of SN−, resulting in the three observed minima.
Moreover, because all stationary points of both complexes
are located below their respective lowest dissociation limits,
the rovibrational levels lying above the transition barriers are
bound and may exhibit large-amplitude motions extending
over several minima. The complex potential shape observed
has unique consequences for the spectroscopy of these weakly
bound systems, as detailed below.

B. Vibration-rotation energy-level structure

The full set of rovibrational levels for the SH · · · N−,
SD · · · N−, SN · · · H−, and SN · · · D− complexes, up to disso-
ciation, are reported in Tables S1–S4 and Figs. S1–S12 of the
Supplemental Material (SM) [38] for total rotational angular
momentum quantum numbers J = 0 and 1. We also specify the
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parity ε (+ or −), which characterizes the symmetry of each
rovibrational wave function with respect to space inversion.
Along with J, ε is a good quantum number regardless of the
equilibrium structure of the molecule because the symmetry
leading to J and ε relies on the properties of space rather than
those of the molecular system [39–41].

For SH · · · N− and SN · · · H−(II), the pattern of the rovibra-
tional energy levels within the corresponding potential wells is
that of a bent asymmetric-top molecule. For the bound states
located below the barrier, SN · · · H−(I) and SN · · · H−(III)
are linear-type molecules. More intriguing is the energy-level
structure above the barriers: the rovibrational energy levels
assigned to the linear isomers I and III exhibit the well-known
rovibrational pattern of a linear molecule (see Table I for a
list of the energies and assignments of the lowest rovibrational
levels for J = 0 and 1 of SN · · · H−). The bending levels with
odd values of the bending mode (νb) are missing for J = 0 and
appear for J = 1, where they possess two parity components,
as for linear molecules, instead of three (for J = 1), as for
asymmetric-top molecules. This behavior is confirmed for
higher J values, where the linear-type levels form a pair with
parity + and −, whereas the bent-type levels present (2J + 1)
components. The simpler SH · · · N− case also conserves this
rovibrational-level pattern. The (2J + 1) components of this
asymmetric bent-type structure are also evidenced below and
above the barriers, as is SH · · · N− (II). Regarding the states of
the deuterated species, we observe qualitatively highly similar
energy-level structures (see SM [38] for more details).

For SN · · · H− and SH · · · N− and their deuterated iso-
topologues, the rovibrational wave functions are mainly
“concentrated” above the corresponding potential wells (see
SM [38]). Some of the wave functions are depicted in
Figs. 2 and 3. A clear nodal structure exists, regardless
of whether the corresponding rovibrational state’s energy
is below or above the barriers, making the assignment of
the states straightforward. The wave functions thus show
a “lock-in-mode” character over a large range of energies
above the respective isomerization barriers. This indicates
their localization, and we still observe a “bent-type” molecule
for SH · · · N− and SN · · · H−(II) and a “linear-type” molecule
for SN · · · H−(I) and SN · · · H−(III). Accordingly, the states
conserve the memory of the equilibrium molecular type of the
corresponding potential well above which they are located.
We find that this vibrational memory effect is independent
of the H/D exchange because we observe it for both H- and
D-containing species.

IV. DISCUSSION

The nuclear-motion simulations provide insight into the
energy-level structure above the potential barriers of com-
pounds represented by multidimensional potentials. Many
molecular systems have several isomeric forms. The spectra
of these systems present unusual characteristics because of
their complex nuclear motions. This is expected for microwave
(μw) and infrared (IR) spectra of the rovibrational transitions
involving levels located below the potential barriers. However,
for states located above the barriers, it is unclear how
transitions corresponding to large-amplitude motions can be
described. The present study presents a simple interpretation of

FIG. 4. Simulated μw-far IR spectra of SN · · · H− and of
SH · · · N−, with different isomers used as starting points: (a) linear
H · · · SN− (Isomer I); (b) bent SN · · · H− (Isomer II); (c) linear
SN · · · H− (Isomer III); (d) SH · · · N−. The inset in (d) shows the
transitions populating the levels above the potential barrier. The
spectra are normalized to the most intense band. They are issued
from the corresponding lowest J = 1, ε = – level. The zero energy
is taken as the position of the J = 1, ε = – level of SN-H− (Isomer II)
in (a–c) and the J = 1, ε = – level of SH-N− in (d). Most transitions
populate levels located above the potential barriers. ν is the frequency
in units of cm−1.

the spectra since the analysis relies only on the structure of the
isomer used as a starting point. For illustration, Fig. 4 shows
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the simulated μw-IR spectra of SN · · · H− and SH · · · N−, with
different isomers used to generate the spectra. For instance,
we display the low-frequency part of the simulated μw-far
IR spectra of SN · · · H− and of SH · · · N− where the linear
H · · · SN− (Isomer I), the bent SN · · · H− (Isomer II), the
linear SN · · · H− (Isomer III), and the bent SH · · · N− isomers
are used as a starting point, i.e., we considered transitions
from their ground vibrationless level. For these simulations,
we used a temperature T = 10 K. These spectra are structured
with distinct P, Q, and R branches. The transitions populating
the levels located above the potential barriers have appreciable
nonzero intensities.

Vibrational-rotational spectroscopy is routinely used in
chemistry, physics, astrophysics, materials sciences, and
biochemistry to understand the structure and dynamics of
molecular systems and probe reaction processes. Baraban
et al. [4] recently illustrated how vibrational modes can be
distinguished between those actively involved in isomerization
and those that are passive bystanders above an isomerization
barrier and revealed that it is possible to obtain high-resolution
vibrational information on the isomerizing levels all the way
to the barrier and beyond. However, Baraban et al. also noted
that a limitation of their analysis is the lack of treatment by
a multidimensional analysis. Our findings suggest that the
expansion to multidimensions in the potential does not destroy
such structure-potential correspondence. Moreover, our work
demonstrates the existence of a vibrational memory effect.
This is made possible by the qualitatively drastically different
energy-level sets supported by bent and linear molecular
systems. This study provides the extension of such behavior
in molecular physics, where the potential wells are disordered
in two or three dimensions.

V. CONCLUSIONS

Through the analysis of the eigenenergies and wave
functions of the rovibrational states of a polyatomic molecular
system located below and above the potential barriers, we
show that these wave functions are well localized and that
they preserve the memory of the isomeric forms they originate
from. We also demonstrate the existence of a strong vibrational
memory effect above isomerization barriers. These findings
may help our understanding of the quantum localizations,
in one dimension, observed for some molecular systems, for
short-range interacting bosons, for electrons in GaAs potential
wells, and in solid-state quantum dots. This work extends these
findings to multidimensional potentials.
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