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Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a sim-
ple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of
the molecular ion HgL , for which a global adiabatic potential energy surface accurate to better than
0.1 cm™! exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, 1. I. Mizus, O. L. Polyansky,
J. Tennyson, T. Szidarovszky, A. G. Csaszar, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)],
that the motion-dependent mass concept yields much more accurate rovibrational energy levels but,
unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame.
Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart
embedding corresponding to a reference structure of D5, point-group symmetry is employed. The
vibrational mass of the proton in H7 is optimized by minimizing the root-mean-square (rms) devia-
tion between the computed and recent high-accuracy experimental transitions. The best vibrational
mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron
mass, mE,Vp)LP = Myyep +0.31224 m,. This optimized vibrational mass, along with a nuclear rota-
tional mass, reduces the rms deviation of the experimental and computed rovibrational transitions
by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use
of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational

Hamiltonian, as well. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897566]

. INTRODUCTION

Although in recent years pre-Born—Oppenheimer (BO)
molecular structure theory'”” has made considerable ad-
vances, it remains a huge challenge to compute a large num-
ber of energy levels for even a small system such as the
H;r molecular ion when it is treated as a five-particle quan-
tum system composed of electrons and protons. Thus, the
central paradigm of computational high-resolution molec-
ular spectroscopy of polyatomic and polyelectronic sys-
tems remains the solution of the time-independent nuclear-
motion Schrodinger equation incorporating an adiabatic po-
tential energy surface (PES) obtained from electronic struc-
ture theory.®° The best rovibrational computations can chal-
lenge lower-resolution experiments’ but there are also clear
indications that to approach the accuracy of standard high-
resolution experiments one needs to go beyond the com-
monly accepted approximations, i.e., not only beyond non-
relativistic quantum mechanics'® but also beyond the BO sep-
aration of the electronic and nuclear degrees of freedom. To
wit, even if one has a global PES accurate to considerably bet-
ter than 1 cm™! in the complete configuration space consid-
ered, the rovibrational energy levels determined variationally
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with an exact kinetic energy operator (KEO) and this nearly
“exact” PES may be inaccurate by up to several cm~!.!'-13
These last remaining discrepancies between the ultimate adi-
abatic computational and the experimental rovibrational en-
ergy levels are due to the very nature of the BO separation of
the electronic and nuclear degrees of freedom.

Thus, the next step of nuclear-motion theory to-
ward true experimental accuracy is intrinsically connected
to non-adiabatic “effects” and related corrections. Non-
adiabatic perturbation theory (NAPT), developed for diatomic
molecules,'*'® has been successfully applied for the lowest-
lying energy levels of the H, molecule and its deuterated
isotopologues.'®'® Furthermore, the NAPT-based dissocia-
tion energies of these four-particle systems, corrected for rel-
ativistic and quantum electrodynamics effects, agree within
the stated uncertainties of the most accurate experiments.!’
In principle, it would be possible to extend NAPT to tri- and
polyatomics but to the best of our knowledge only very lim-
ited efforts have been reported toward this goal.'®-?°

One feasible approach to move forward toward poly-
atomics considers the masses of the nuclei as motion-
dependent variables. As an empirical and practical adoption
of some of the results of NAPT on diatomics, second-order
non-adiabatic corrections are described as “mass effects.”?!-22
In particular, an increased vibrational mass, first suggested
by Moss for the H;’ molecular ion,?® where the rota-
tional and vibrational terms are clearly separated in the

© 2014 AIP Publishing LLC
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Hamiltonian, can be introduced to model some non-adiabatic
effects also in triatomics. The corresponding slightly mod-
ified matrix elements for the Hamiltonian were derived by
Polyansky and Tennyson®* and the ensuing rovibrational
Schrodinger equation was solved by them. This Moss-mass
model, as it is often referred to, is an appealing choice for
modelling non-adiabatic effects in polyatomic molecules be-
cause the correction appears to be conceptually relatively
simple,21 it keeps the notion of a PES almost intact, and it
has been employed successfully to improve computed energy
levels in relation to experiments.' 2423 Note that a further ex-
tension of this “motion-dependent mass” concept is the intro-
duction of coordinate-dependent mass surfaces (CDMS) for
both the rotational and vibrational masses.?!??

Motivated by these efforts and the corresponding useful
results, we have considered the question how one could treat
masses as variables in variational nuclear motion computa-
tions in the most general way for polyatomic cases. We be-
lieve no direct solution to this problem exists. The answer we
provide is based on the extension of the fourth-age?® quan-
tum chemical code GENIUSH.?”-28 The GENIUSH protocol
is based on a numerical construction of the kinetic energy op-
erator and its matrix representation for the (quasi-)variational
solution of the Schrddinger equation. This fully numerical ap-
proach allows us to solve the rovibrational Schrédinger equa-
tion using arbitrary internal coordinates, arbitrary embed-
dings, and arbitrary choices of reduced- and full-dimensional
models of molecules. As shown here, the GENIUSH ap-
proach has one further advantage: with only a relatively mi-
nor modification of the existing computer code it is possi-
ble to include arbitrary vibrational and rotational masses and
even coordinate-dependent mass surfaces in variational-type
nuclear-motion computations of polyatomic systems.

Il. SOLUTION OF THE ROVIBRATIONAL
SCHRODINGER EQUATION WITH
MOTION-DEPENDENT MASSES

A. The GENIUSH approach

The GENIUSH code solves the time-independent rovi-
brational Schrédinger equation

(T +V)¥ = E¥ (1)

with the potential energy surface V depending on the nuclear
coordinates and the rovibrational kinetic energy operator writ-
ten in a general form
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where the operators, in atomic units,

0
b= —i— k=12 ....D. 5
D laqk (5)

and

Posa=—iz—= Joa=1(x),2(),3@),  (6)

a
were inserted in the second equation corresponding to the
qy> 45, ---» qp internal coordinates and the o, «,, o5 ori-
entational angles, respectively, and the volume element is
dV = da,da,da,dg,dg, ... dgp. 2" [J,, J,], is the anti-
commutator of J, and J,. If an N-particle system is treated
in full vibrational dimensionality, then D = 3N — 6. We note
that Eq. (3) is mathematically equivalent to the simpler form
given in Eq. (4). If we consider the effect of the differential
operators and remember that g and G,; depend only on the in-
ternal coordinates, we find that the g coefficient remains only
in the pure vibrational terms.
The central quantities G = g~! € RPHI*D+3) apd
g = det g are defined as

N
gu=y mityty, kil=12._..D+3 (7

i=1
with the vibrational and rotational t-vectors

—LeR} i=1,2,...,N, k=1,2,....,D (8)

and

tipra=e,xr; €R? i=12... N, a=1(x),2(y),3(),
9

respectively, whereby e, is a unit vector pointing toward the
a axis of the chosen embedding and r; corresponds to the po-
sition vector of the ith nucleus in this embedding (the center
of mass is at the origin).

In GENIUSH, this general formulation is implemented
in a quasi-variational procedure using discrete variable rep-
resentation (DVR) for the internal degrees of freedom, Wang
functions for the rotational part, a numerical construction for
the kinetic energy terms over the DVR grid, and a Lanczos
iterative eigensolver for the solution of the vibrational®’ and
rovibrational?® Schrodinger equation of the atomic nuclei.

B. Implementation of the motion-dependent mass
concept

In the rigorous derivation of NAPT developed for
diatomics,'> ! two coordinate-dependent coefficients appear.
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These coefficients have been identified as special vibrational
and rotational masses, which are coordinate dependent, and
are associated with the vibrational and the rotational terms of
the kinetic energy operator (there is no rovibrational term in
the case of a diatomic molecule). The earliest practical adop-
tion of this result to polyatomics, in fact for triatomic Hf, was
made by Polyansky and Tennyson.?* For simplicity, they used
constant masses: Moss’ mass>’ was written into the vibration-
only term of the kinetic energy operator, while the nuclear
mass was used in all the operator terms containing the rota-
tional angular momentum operators, i.e., in the rotational and
rovibrational terms.

The GENIUSH approach allows the straightforward im-
plementation of the above non-adiabatic model. The Hamil-
tonian in Eq. (4) is adapted as follows:

D D
-z Z Z (v)) 1/4 A G(V)(g(v))l/Z A (g(v))—l/4
k=1 1=1
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where the symbol 7 is used instead of 7' to indicate the dif-
ference introduced by the use of motion-dependent masses.
Superscripts (v) and (r) indicate that the quantity is eval-
uated with the vibrational and the rotational mass, respec-
tively. The G = (g™)~! matrix is constructed with the vi-
brational masses, m®) = (m(v) e, mg\v,)), and can be written
into blocks

)

(v)
(1:D,1:D) | G(I:D,D+1:D+3)

GV (g:m") =

v) v)
G(D+1:D+3, 1:D) ‘ G(D+1:D+3,D+1:D+3)

x € RPHIXDH) (11)

with g = detg™. Similarly, the G® = (g®)~" matrix is

evaluated with the rotational masses, m® = (m(r) .. (r))
and the corresponding block form is
() T)
G(i.p.1:p) | G(i:p.p+1:043)
G(g;m®) =
G(r) ‘G
(D+1:D+3,1:D)| Y (D+1:D43,D+1:D+3)
X € R(D+3)><(D+3)' (12)

Next, we introduce the compact notation

v) (r)
G.p1.p) | G(\:p.pi1:0+3)

G(g;m™, m?) =

(r)
G(D+1 :D+3,1: D)‘G(D+1 :D+3,D+1:D+3)
€ RP+Ix(D+I) (13)

where the upper left (pure vibrational) block contains the pure
vibrational block of G, while the other three blocks are
taken over from the corresponding blocks of G”.
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In the GENIUSH code, the coefficients of the differential
operators appearing in the kinetic energy operator are com-
puted at every grid point, so for the non-adiabatic version
the quantities {g®, G, ¥} and {g®, G®} are evaluated
at each and every grid point. The vibrational t-vectors are
computed by numerical differentiation using the central dif-
ference formula and increased precision arithmetics (quadru-
ple precision in Fortran). The numerical values of the matrix
G € RPTI*D+ and the real values 3 are stored at ev-
ery grid point and used in the matrix-vector multiplication to
compute eigenvalues and eigenvectors with a Lanczos algo-
rithm. All eigenvalues and eigenvectors corresponding to a
selected J value are computed in a single run irrespective of
their symmetry characteristics.

ll. NUMERICAL RESULTS FOR H

Rovibrational computations have been carried out for
the H molecular ion with the extended GENIUSH code
and using the highly accurate adiabatic GLH3P potential en-
ergy surface.'"'? The rotational mass was the nuclear mass
of the proton, my’ = 1.0072765 u = 1836.1522 m,, while
the vibrational mass was first chosen to be the Moss mass,
mg’) = 1.0075372 u = 1836.6275 m,. Additional conver-
sion factors used throughout the computations are 1cm™!
=219474.63 E, and 1u = 1822.8880 m,.

A. Embedding dependence of the computed
non-adiabatic rovibrational energy levels

In the first set of computations with the newly extended
GENIUSH code, we used valence-type vibrational coordi-
nates (ry, 75, cos@) and an “xxy” bond-vector embedding.*
The matrix representation for the kinetic and potential energy
operators was built on a direct-product grid constructed from
potential-optimized DVR (PO-DVR)*-*! points for the r; and
r, stretch-type coordinates and Legendre-DVR for cos 6.

The rovibrational energies were carefully converged
with respect to the coordinate intervals and the grid size: 30
PO-DVR points optimized over 100 primitive Hermite-DVR
points scaled to the r, , € [0.1, 5.0] bohr interval and 60 (un-
scaled) Legendre DVR points were used. For the increased-
precision numerical differentiation, the step-size was
1073 a.u.?” and the computed energy levels were found to be
stable with respect to small changes of this parameter.

The GENIUSH results obtained were checked against
independent variational results obtained with the D*FOPI



154111-4 Matyus, Szidarovszky, and Csaszar

code’? using Jacobi coordinates as internal coordinates and
a bond-vector embedding. Unlike GENIUSH, D2FOPI does
take advantage of the symmetry of the nuclear motion prob-
lem. Perfect agreement was found between the precise results
of the two independent computations.

In spite of all the extensive numerical efforts, we have
observed a sizeable splitting, larger than 0.001 cm™', for cer-
tain rovibrational (J > 0) energy levels which should have
been obtained as degenerate pairs. After a very careful check
of the GENIUSH implementation and the parameter selec-
tion, we have considered other possible internal coordinates
and more importantly, other possible embeddings of the body-
fixed frame, as a potential reason for this artificial corrup-
tion of the permutational symmetry manifested in the rovi-
brational energy levels. The universality and flexibility of the
GENIUSH approach allows straightforward switching among
different embeddings.?®33 As an alternative to the xxy em-
bedding, we used the bisector embedding, an Eckart em-
bedding corresponding to a reference structure of C,, point-
group symmetry (henceforth called Eckart(C,,)), as well as an
Eckart embedding corresponding to a D5, reference structure
(henceforth called Eckart(Dy5),)). Artificial splittings of certain
degenerate rovibrational energy levels occurred in all cases
except for Eckart(D5,).

In Figure 1, the effect of the various selected embeddings
on the rovibrational energy levels, J/ = 1 — 5, is presented
corresponding to the lowest-energy vibrational level, 00° (the
numerical results used to generate this Figure are deposited
in the supplementary material’*). We note that in Fig. 1
both degenerate energy levels are plotted, and thus any arti-
ficial splitting can be observed. The reference values are ob-
tained with Eckart(D5;,), which reproduces the expected de-
generacies perfectly. It is apparent from the results obtained
that the application of a bisector (or an Eckart(C,,)) embed-
ding improves the results of the xxy embedding. Neverthe-
less, the correct degeneracies and the best agreement with the
experimental results'®337 are obtained when an Eckart em-
bedding corresponding to a D5, reference structure is used.
Deviation from the Eckart(D;,) results increases with J and
depends also on the value of the G label of the energy
levels'> (Fig. 1).

It is common knowledge in computational molecular
spectroscopy that vibration-only eigenvalues are insensitive
to the embedding chosen to represent the rovibrational ki-
netic energy operator. More precisely, although convergence
of the rovibrational energy values does depend on the em-
bedding, the converged results should be embedding inde-
pendent. This is the case in spite of the fact that the mathe-
matical form of most of the rovibrational Hamiltonians is not
permutationally invariant. As shown here for the case of H_+,
if motion-dependent masses are employed in the kinetic en-
ergy operator, as explained in Sec. II, the rovibrational eigen-
values become embedding dependent. The best agreement
with experiment and the best connection with the adiabatic
computations (using the same mass for the different types of
motion), e.g., degeneracy of rovibrational levels, is obtained
if the Eckart(D;,) embedding is employed. These observa-
tions hold for rovibrational levels corresponding to either the
ground or excited vibrational states.

J. Chem. Phys. 141, 154111 (2014)
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FIG. 1. Deviation of the rovibrational energy levels of H;r corresponding
to the lowest vibrational state, 00°, obtained with different embeddings of
the body-fixed frame and the non-adiabatic extension of the GENIUSH code
(the definition of the embeddings is given in the text). In the computations,
the rotational mass was the nuclear mass of the proton, mg) = 1.0072765 u,

while the vibrational mass was the Moss mass, mi,v) = 1.0075372 u.

We explain the special role of the Eckart(D;,) embed-
ding in these computations as follows. Although most of the
molecular Hamiltonians used in practice have a mathematical
form which is non-invariant to the permutation of identical
nuclei, they are mathematically equivalent with a translation-
ally invariant (TI) Hamiltonian (written in translationally in-
variant Cartesian coordinates) if the rotational and vibrational
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masses are the same. It is easy to see that this TI Hamiltonian
satisfies the permutational symmetry of identical nuclei, and
thus the proper degeneracy pattern of the computed rovibra-
tional levels is guaranteed. If we write in some rotational mass
in the rotational and rovibrational terms and some vibrational
mass (different from the rotational mass) in the vibrational
terms of the Hamiltonian according to Sec. II, than we lose
any direct connection with a TT Hamiltonian. Thus, it cannot
be guaranteed that the expected degeneracy of the computed
rovibrational levels is maintained. The Eckart(D5,) Hamilto-
nian is special in the case of H because the three protons
enter the definition of the body-fixed frame equivalently, and
thus we can say that this embedding is permutationally invari-
ant. Then, the rotational, the rovibrational, and the vibrational
terms are independently permutationally invariant (if we as-
sume first that we have permutationally invariant internal co-
ordinates). So, we can use the different rotational and vibra-
tional masses in the Hamiltonian according to the common
recipe, the resulting Hamiltonian remains permutationally in-
variant, and thus we can expect that the computed eigenval-
ues have the proper degeneracy. Since we use the same mass
for the internal degrees of freedom, we are free to switch be-
tween different internal coordinates, and thus the permuta-
tional invariance condition for the internal coordinates is not
necessary.

B. The optimal vibrational mass for H}

Moss determined the optimal vibrational mass of the pro-
ton for the hydrogen molecular ion, HJ, which is m](\zi)ss,p
=My, +0.47531 m,.”* At the same time, he noted that
there was no definitive reason for using a rotational mass dif-
ferent from the nuclear mass. This vibrational mass, thus orig-
inally determined for HY, has become known as the Moss
mass for the proton and was later successfully transferred
for the computation of rovibrational energy levels of H;’,“’z“
while the rotational mass was the nuclear mass according
to Moss’ recipe for Hf .** Although it was noted already in
Ref. 24 that even better agreement with experiment can be
obtained by adjusting the vibrational mass, this was not at-
tempted there.

In this section, we use the non-adiabatic version of the
GENIUSH program and determine the optimal vibrational
mass for the proton of Hj by minimizing the root-mean-
squared (rms) deviation between the computed and the most
recent experimental transitions.>®3” The rms deviation for the
15 observed and computed transitions using different vibra-
tional masses is shown in Figure 2. Fig. 2 shows that there is
a well-defined minimum corresponding to the optimal mass,
mf,i,)t,p = Myyep +0.31224 m. The full list of experimental
transitions used in our work and the deviations of the com-
puted rovibrational energy levels obtained with the nuclear
mass, the Moss mass, and our optimized mass is given in Ta-
ble I (the computed energy levels used for this table are de-
posited in the supplementary material®*). It is apparent that
whereas the replacement of the vibrational nuclear mass with
Moss’ mass reduces the rms deviation only by a factor of 2,
the optimization of the vibrational mass provides more than
an order of magnitude improvement.

J. Chem. Phys. 141, 154111 (2014)
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FIG. 2. Optimization of the vibrational mass for the proton with respect to 15
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connecting the two lowest-energy vibrational states of HZ, 00" and 01, The
non-adiabatic computations were carried out with the GENIUSH program
using motion-dependent masses and an Eckart embedding with a reference
structure of D5, point-group symmetry. The rotational mass was the nuclear

mass of the proton, mg) = 1.0072765 u, throughout the computations.

To understand the qualitative meaning of the numerical
result obtained, we first note that the optimal mass for H;"
is larger than the nuclear mass of the proton by about 1/3 of
an electron mass. Interestingly, it is significantly smaller than
the Moss mass obtained for H;r, which is larger than the nu-
clear mass by about 1/2 of an electron mass. Now, remember-
ing the expressive explanation of second-order non-adiabatic
corrections, according to which the electrons “follow
the nuclei” and hence increase their effective mass, our re-
sult might first appear to be counter-intuitive for an assembly
of two electrons and three protons. The puzzle is quickly re-
solved with the help of a recent work by Diniz et al.,’* in
which a core-mass surface was derived from a simple Mul-
liken population analysis carried out for H7 . Using this mass
surface the authors determined effective masses for each vi-
brational state in an iterative procedure, and they obtained,
for example, mf)v) =m +0.3155 m, for the 00° and

nuc,p

mg’) = My p +0.3189 m for the 01! vibrational state. These
results are in excellent agreement with our vibrational mass
optimized with respect to the most recent experimental tran-
sitions including these two vibrational states.

IV. SOLUTION OF THE ROVIBRATIONAL
SCHRODINGER EQUATION WITH
COORDINATE-DEPENDENT MASS SURFACES

The recent development?? of rotational and vibrational

mass surfaces for H7 calls for the direct solution of the rovi-
brational Schrodinger equation including the full mass sur-
faces, instead of having to rely on iterative solutions as in
Ref. 22.

One of the principal ideas underlying the GENIUSH pro-
tocol is the grid representation of not only the PES but also
the coefficients of the differential operators in the KEO. The
coefficients of the KEO are evaluated on a grid without the ex-
plicit knowledge of their analytic form. With this idea in mind,
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TABLE 1. Comparison of experimental and computed rovibrational transitions, in cm ™!, of H;’. The computed
transitions were obtained with the GENIUSH program accounting for rovibrational non-adiabatic effects. The
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nuclear mass of the proton was m, p = 1.0072765 u = 1836.1522 m,.

I

v,v; ', (J, G){u/l/m}? f)Epr AP(nuc)® Ab(vibopt) AP(Moss)®
01! @3u 000 (33)m 2918.026 —0.203 —0.006 0.097
o1 (5,41 00°  (44)m 2894.490 —0.204 —0.016 0.082
01' @21 00° (3,2)m 2832.196 —0.195 —0.006 0.093
o1l (4,31 00°  (3,3)m 2829.925 —0.199 —0.010 0.089
o' 3,hu 00 (2,1)m 2826.117 —0.201 —0.005 0.097
01' (32u 00° (2,2)m 2823.138 —0.198 —0.003 0.100
o1 (3,11 00°  (2,1)m 2765.544 —0.193 —0.002 0.098
o1' (321 00 (22)m 2762.070 —0.195 —0.004 0.095
01' @2,1u 00° (1,DHm 2726.220 —0.193 0.002 0.103
01! 20m 00 (1,0m 2725.898 —0.195 0.000 0.101
o1 @nl 00° (1,Dm 2691.443 —0.190 0.001 0.101
01' @22m 00° (2,2)m 2554.666 —0.181 0.013 0.115
o' (I,hm  00° (1,1)m 2545.420 —0.181 0.013 0.114
o' (1,oom  00° (1,0)m 2529.725 —0.181 0.011 0.112
01' @,n1 00° (2,Hm 2518.212 —0.181 0.011 0.111
rms' 0.193¢ 0.008¢ 0.101¢

#Vibrational and rotational labels of the upper and lower rovibrational states involved in the transitions, taken from Refs. 36 and

37. The labels are clearly explained in Ref. 13.

bExperimental transitions taken from Refs. 36 and 37. If the same transition was available from both experiments, the average of

the two measurements was used.

¢A¥(nuc) = ﬁExp — P(nuc), where 7(nuc) was computed using the nuclear mass for both the vibrational and the rotational mass,

™ _ 0 _
Mp” = Mp =My

dAD(vibopt) = DEXP — D(vibopt), where D(vibopt) was computed using the optimized vibrational mass (see the text and

Figure 2), my = m(ovp)Lp =m

¢AD(Moss) =

nuc,p

P

m +0.475 31 m_, and the rotational mass was the nuclear mass of the proton, m,” = m

nuc,p

+0.31224 m_, and the rotational mass was the nuclear mass of the proton, m,” = m

)
nue,p’

V) )

— B(Moss), where 7(Moss) was computed using the Moss mass?? for the vibrational mass, My’ = Myjogp =

()

nuc,p’

frms is the root-mean-squared deviation of the experimental and computed transitions.

the implementation of CDMS in the GENIUSH program is al-
most straightforward and the major aspects are summarized in
this section.

The central quantity in our treatment is the rovibrational g
matrix, which is now evaluated with the internal-coordinate-
dependent masses, m;(g), and the vibrational and rotational
t-vectors

N
gu = m@thty, kl=12....D+3 (5

i=1

It is important to remember that the vibrational and rotational

the nuclei, and thus the mass surface enters the expression

1 N
ri(q. m@) = p,(9) — 31 > m@p(@),
k=1

i=12,...,N, (18)

where M(q) = Z;Y=1 m ;(q) and p; denotes the Cartesian co-
ordinates of the ith nucleus in a frame which has axes parallel
to the axes of the body-fixed frame, but its origin is not at the
center of mass. If analytic first derivatives of the mass func-
tion, dm,/dq,, are available, then the vibrational t-vectors can

be calculated as

N
t-vectors are defined as 0 1
Ly =7—1p(q) — —— 19
" =%5g pi(q) M@ m(q)p,(q) (19)
ar; n k=1
tlk—a_’eR3, i=1,2,...,N, k=1,2,...,D (16) 5 A ;

I P ( my P
=B — =3 (SR 0 — pcow) +m —>, (20)

aqn M ; aqn k COM k 861,,

and

tipra=e,xr; €R? i=1,2,... N, a=1(x),2(y), 3(2),
A7)

respectively, and that r; is the translationally invariant Carte-
sian coordinate of the ith atomic nucleus expressed in the
body-fixed frame.

Even if the orientation of the body-fixed frame is not de-
pendent on the masses, its origin is at the center of mass of

with pcoy = Z;.V:l m ;(q)/M(q)p;. Otherwise, the deriva-
tive is calculated by finite differences and the accuracy
and stability must be carefully tested. It might be neces-
sary to call the mass function with increased arithmetic
precision (quadruple precision in Fortran). In the special
case of identical nuclei, i.e., atomic nuclei described with
equal coordinate-dependent masses for any internal struc-
ture (see Ref. 22 for an interesting discussion of identical
or non-identical coordinate-dependent masses for H3+), m,(q)



154111-7 Matyus, Szidarovszky, and Csaszar

=m,(q) = ... =my(q) =: m(q), it is useful to note that
Eq. (18) simplifies to

1 N
rilg. m@) = pi() ~ 5o Y m@p(q)
k=1

1 N
=@ ;pk(q» 1)

Thus, the coordinate dependence of the masses does not en-
ter the vibrational t-vectors in this special case. In general,
the orientation of the body-fixed frame can depend on the
masses, and then it is probably best to calculate the vibra-
tional t-vectors by calling the mass surfaces using increased
arithmetic precision.

Once the rotational and vibrational t-vectors have been
calculated considering the coordinate-dependent mass sur-
faces, the approach is identical with the one explained for the
case of constant but motion-dependent masses. The rovibra-
tional g® and g matrices are evaluated at every quadra-
ture point using the corresponding values of the rotational
and vibrational mass surfaces, m(q) and m"¥)(q), respec-
tively. Then, the hybrid G matrix is constructed according to
Eq. (13), and by remembering that g = det g the kinetic
energy operator is defined similar to Eq. (14).

The observations made for the motion-dependent but
constant masses should also certainly be fulfilled for any
application of motion-dependent and coordinate-dependent
mass surfaces. For identical nuclei, e.g., H or D, we would
use an embedding which respects the permutational symme-
try of the nuclei. It is now left for further consideration if it
is sufficient to define the orientation of such a permutation-
ally invariant frame without having to rely on the coordinate-
dependent masses or if the full inclusion of the coordinate-
dependent mass surface is practical or necessary.

V. OUTLOOK

We can think of at least two important questions which
remained unanswered in this study and left for future work.
First, one might ask if we can have a “paper-and-pencil”
demonstration for the embedding dependence of the com-
puted rovibrational energy levels. Such a demonstration is
probably possible, but it comes with the difficulty that one has
to state something about the computed energy levels while
changing a parameter in the operator. To gain more insight
into this problem, we can think of a perturbational approach
for the difference of the effective non-adiabatic Hamiltoni-
ans in different embeddings or a comparison of effective ro-
tational models.

Second, if we recall the derivation of the classical Hamil-
tonian and its quantization (for example, Ref. 27 shows this
procedure in our own work), one may ask if it is a good idea to
introduce the different rotational and vibrational masses in the
Hamiltonian. Although this has been the common practice in
these types of phenomenological non-adiabatic models, one
might argue that the different masses should be better intro-
duced in the Lagrangian. (In our notation, this means that one
has to construct a composite g matrix similar to the composite
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G matrix introduced in Eq. (13). Then, this composite g ma-
trix would be inverted to obtain G instead of using Eq. (13).)

These questions can probably be answered by carry-
ing out the full derivation of the effective Hamiltonians in
the spirit of Bunker and Moss for di- and triatomics,'#1°
of Schwenke for H,0,%° or most recently of Pachucki and
Komasa for diatomic molecules.'>!'® The derivation for poly-
atomic molecules is probably more complicated than for di-
atomics, but it properly includes the non-adiabatic mass ef-
fects in the rovibrational coupling terms from the beginning.
Finally, we note that either case can be accounted for in the
non-adiabatic extension of the GENIUSH program reported
in this paper, since all the required quantities can be eval-
uated explicitly over a grid in an automated and numerical
approach.

VI. SUMMARY AND CONCLUSION

Second-order rovibrational non-adiabatic effects can be
understood as mass effects corresponding to the simple pic-
ture that a fraction of the electrons follow the rotating-
vibrating atomic nuclei, hence increasing their effective
masses.”! NAPT'>!° provides a rigorous ground for the
derivation of such motion-dependent effective mass functions.
To a good level of approximation the rotational mass function
can often be replaced with a constant nuclear mass value. At
the same time, the vibrational mass function differs more from
the nuclear mass and can be derived either from NAPT or
from a recent simple, intuitive approach based on the standard
Mulliken population analysis of electronic structure theory.?

In either case, the direct solution of the rovibrational
Schrodinger equation with mass surfaces has not been possi-
ble for polyatomic systems. Thus, the purpose of the present
work was the extension of the GENIUSH protocol and code
so that the rovibrational Schrédinger equation can be solved
with motion-dependent mass surfaces.

First, we have considered the case of constant but motion-
dependent, rotational and vibrational, masses for the H;r
molecular ion. We noticed that the computed rovibrational
energy levels are dependent upon the embedding of the
body-fixed frame. Among the tested embeddings it was only
the Eckart embedding with a symmetric triangular reference
structure [Eckart(D5;,)], which remained invariant under the
permutation of the protons. Except for this case of a permuta-
tionally invariant embedding, an artificial splitting appeared
in the computed degenerate rovibrational eigenvalues. The
artificial splitting of the degenerate levels and the deviation
from the Eckart(D5,) results increases with the value of the
rotational quantum number J, and already for J = 5 the devia-
tion was on the order of the expected non-adiabatic correction
itself. These numerical observations suggested that if motion-
dependent (different rotational and vibrational) masses are
used, the eigenvalues are sensitive to the correct permutational
symmetry of the embedding of the body-fixed frame, which,
interestingly, does not manifest itself if the rotational and vi-
brational masses are identical.

Next, we employed an Eckart(D,;,) embedding, provid-
ing the expected degeneracies for the rovibrational states of
HY, and optimized the vibrational mass with respect to 15



154111-8 Matyus, Szidarovszky, and Csaszar

recently measured high-accuracy transitions,’®37 while keep-

ing the rotational mass equal to the nuclear mass of the pro-
ton. The optimal value of the vibrational mass is larger than
the nuclear mass of the proton by about one third of an elec-
tron mass, miy , = Myyep +0.31224 m,. Using this optimal
value the root-mean-square deviation of the computed tran-
sitions from the experimental ones is reduced by an order
of magnitude compared to the results obtained with Moss’
mass. The Moss mass, my , = m + 0.47531 m,, is the
optimal vibrational mass value for the protons in Hj > but it
has been used for modelling second-order non-adiabatic ef-
fects also in Hi .!"->* Our optimized value for the vibrational
mass is in excellent agreement with the vibrational mass pre-
dicted in an iterative approach for the lowest-lying vibrational
states with the core-mass surface of Ref. 22. This good agree-
ment is intriguing, since the core-mass surface has been con-
structed based on a simple Mulliken population analysis.??
Last, the implementation of internal-coordinate-
dependent mass surfaces in the GENIUSH protocol was
investigated. The direct solution of the rovibrational
Schrodinger equation with CDMS is thus possible and the
developments are awaiting for real-life applications. A good
candidate would be the application of the mass surfaces of
Ref. 22. On one hand, the proposed direct solution of the
rovibrational Schrodinger equation allows to test the validity
of the self-consistent iterative approach employed in Ref. 22.
On the other hand, it opens the route toward a systematic
improvement of the theoretical description of second-order
non-adiabatic effects in polyatomic molecules, a significant
development for computational molecular spectroscopy.

nuc, p
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