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a b s t r a c t

It is shown that the use of an Eckart-frame embedding with a kinetic energy operator expressed in cur-
vilinear internal coordinates becomes feasible and straightforward to implement for arbitrary molecular
compositions and internal coordinates if the operator is defined numerically over a (discrete variable rep-
resentation) grid. The algorithm proposed utilizes the transformation method of Dymarsky and Kudin to
maintain the rotational Eckart condition. In order to demonstrate the applicability and flexibility of our
approach the non-rigid ammonia molecule is considered and the corresponding rotational–vibrational
energy levels and wave functions are computed using kinetic energy operators with three different
embeddings. Two of them fulfill the Eckart conditions corresponding to a trigonal pyramidal (C3v) and
a trigonal planar (D3h) reference structure and the third one is a non-Eckart frame. The computed energy
levels are, of course, identical, and the structure of the three different wave-function representations are
analyzed in terms of the rigid rotor functions for a symmetric top. The possible advantages of one frame
representation over another are discussed concerning the interpretation of the rovibrational states in
terms of the traditional rigid rotor labels.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Conditions defining a set of rotating molecule-fixed axes help-
ing to describe vibrations and rotations of semirigid and nonrigid
polyatomic molecules are basic to nuclear motion theory [1–3]. It
was Eckart [4] who formulated the equations leading to an optimal
separation of the two types of motion (yielding zero rotational–
vibrational coupling at a reference structure). The translational
Eckart condition is

XN

a¼1

mara ¼ 0; ð1Þ

where ma and ra stand for the masses and instantaneous position
vectors of the N nuclei under examination. This condition keeps
the nuclear center of mass at the origin of the body-fixed coordinate
system and can be satisfied trivially for arbitrary values of N. The
rotational Eckart condition,

XN

a¼1

maðra � aaÞ ¼ 0; ð2Þ
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where aa gives the position of the ath particle in the reference con-
figuration chosen, results in a set of more complex equations. This is
the condition which reduces the coupling of vibrations and rota-
tions. Fulfilling the rotational Eckart condition, Eq. (2), can be inter-
preted as finding a T (pseudo)rotation matrix which transforms the
r0a initial position vectors into the ra ¼ Tr0a position vectors corre-
sponding to the Eckart frame.

Following Eckart [4], Pickett and Strauss [5] derived a procedure
for finding the T transformation matrix. An important shortcoming
of the methods of Eckart as well as that of Pickett and Strauss is the
need for computing the inverse of an intermediate matrix which
can be singular for certain nuclear arrangements. A third method,
free of this singularity problem, has recently been introduced by
Dymarsky and Kudin [6]. This is the technique utilized in the pres-
ent study.

As the Eckart frame minimizes the rotational–vibrational
coupling, several authors attempted to derive Eckart-embedded
kinetic energy operators (KEO) for use in nuclear motion theory,
including computational molecular spectroscopy. For rectilinear
vibrational coordinates (including normal coordinates), the theory
has been worked out by Watson [7,8]. The Eckart–Watson KEO has
been successfully applied for nuclear-motion computations of N-
atomic molecules in several groups [9–15], including our own
[16–18]. However, this KEO is only suitable for treating semirigid
molecules. For curvilinear internal coordinates, analytic Eckart for-
mulae and Eckart-embedded KEOs have been derived for triatomic
[19–21] as well as more general planar molecules [22,23]. These
operators are capable of treating molecules exhibiting arbitrary
(either small or large amplitude) motions. Nevertheless, drawbacks
of the Eckart-embedded KEOs expressed in internal coordinates are
as follows: (a) the operators have a rather complex form, which
makes their implementation less desirable, and (b) analytical Eck-
art KEOs have been derived only for special cases. It is worth noting
at this point that flexible reference configurations, as opposed to
the choice of a rigid, e.g., equilibrium structure, have been
introduced in several spectroscopic models, including the
Hougen–Bunker–Johns approach [24] and several of its extensions
and variants [25–27]. It is also important to note that the Casimir
condition [28,29] provides an alternative expression to minimize
the coupling between vibrations and rotations.

In summary, it has remained a challenge to construct general
Eckart-embedded KEOs expressed in arbitrary curvilinear coordi-
nates. It is our belief that one particularly useful way forward is
to construct the KEO not analytically but numerically, i.e., on a grid.
This approach has been followed for quantum chemical computa-
tions by several groups [30–36], without considering the Eckart
embedding but employing other flexible reference configurations.
It should also be mentioned that McCoy and co-workers imple-
mented a numerical Eckart-embedded KEO and used it for the
examination of the SO2 and H2CO molecules by canonical Van
Vleck perturbation theory [37]. Merging the Dymarsky–Kudin
scheme with the numerical construction of KEOs is a principal
aim of the present study. Another important objective of the pres-
ent paper is to examine the rovibrational energy levels and wave
functions of the flexible NH3 molecule with the use of Eckart-
embedded KEOs. Special emphasis is placed on the analysis of
the differences resulting from the choice of the equilibrium (C3v)
versus planar (D3h) reference geometries. For this analysis the rigid
rotor decomposition (RRD) scheme [38,39] is utilized.

2. Theory

The algorithm GENIUSH (General code with Numerical, Internal-
coordinate, User-Specified Hamiltonians) [35,36] provides the
starting point of this discussion. In GENIUSH the KEO is constructed

numerically and represented on a discrete variable representation
(DVR) grid [40]. To set up the KEO in the Eckart embedding it is suf-
ficient to transform the nuclear geometries corresponding to each
different grid point into the Eckart frame. To minimize the length
of this section the interested reader is referred to the noted publica-
tions for details and only the most important novel aspects are dis-
cussed below besides the brief summary of the Dymarsky–Kudin
scheme.

2.1. Theory of the rotational Eckart condition

The initial step in the method advocated by Dymarsky and Ku-
din [6] is the definition of a matrix A,

Aij ¼
XN

a¼1

ma r0a
� �

iðaaÞj; i; j ¼ 1;2;3; ð3Þ

computed with the r0a actual and aa reference position vectors,
where i and j denote Cartesian indices. If a T pseudorotation
(TT = T�1) matrix acts on the initial coordinates r0a and transforms
them into the ra ¼ Tr0a Eckart coordinates, the elements of the
resulting symmetric S matrix can be expressed as

Sij ¼
XN

a¼1

maðraÞiðaaÞj ¼ ðTAÞij: ð4Þ

The symmetric nature of S is assured by the rotational Eckart con-
dition, Eq. (2).

The next step is the introduction of the A1 = ATA and A2 = AAT

symmetric matrices, and the solution of the eigenproblems

A1ui ¼ kiui; ð5Þ

and

A2vi ¼ kivi;

where i = 1, 2, 3. It can be proved that the eigenvalue sets of A1 and
A2 coincide. After considering the

S2 ¼ STS ¼ ATTTTA ¼ A1 ð6Þ

and

S2 ¼ SST ¼ TAATTT ¼ TA2TT ð7Þ

relations, we get

A1T ¼ TA2: ð8Þ

Therefore, the T transformation matrix can be constructed accord-
ing to the

T ¼
X3

i¼1

ui � vi ð9Þ

formula, where ui and vi share the same ki eigenvalue for i = 1, 2, 3.
Except for special cases there are eight different T transformation
matrices differing in the relative signs of the ui and vi eigenvectors.
Dymarsky and Kudin [6] suggested the use of the

ui � vi P 0; ð10Þ

with i = 1, 2, 3, and

u3 ¼ u1 � u2

v3 ¼ v1 � v2
ð11Þ

conditions to find the T transformation matrix which is closest to
the identity matrix and represents a pure rotation (detT = 1).
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2.2. Construction of the Eckart-embedded kinetic energy operator

The general form of the rotational–vibrational Hamiltonian of a
molecule with D vibrational degrees of freedom can be written as
[35,36]

bH ¼ 1
2

XDþ3

k¼1

XDþ3

l¼1

~g�1=4p̂ykGkl~g1=2p̂l~g�1=4 þ bV ; ð12Þ

where ~g ¼ detðgÞ; G ¼ g�1, the p̂k operators are the quasi-momenta
and bV is the potential energy operator. GENIUSH uses either the
matrix representation of the Podolsky form or a more commonly
used rearranged form [35]. Although the direct usage of the Podol-
sky form implies the insertion of a larger number of truncated res-
olutions of identity during the construction of the matrix
representation of the KEO, it requires the evaluation of only the first
derivatives of the body-fixed Cartesian coordinates with respect to
the internal coordinates, which is a clear advantage of this repre-
sentation. In this work we used the Podolsky form, because the
truncated resolutions of identity and thus the matrix representation
of the numerical KEO were found to be appropriate and accurate en-
ough in the vibrational basis set employed. The KEO expressed in
internal coordinates needs the

gij ¼
XN

a¼1

ma
@rT

a

@qi

@ra

@qj
ð13Þ

matrix elements of the well-known g matrix [41] expressed in
terms of the 3N � 3 qi generalized (3N � 6 vibrational and 3 rota-
tional) coordinates.

Within the framework of GENIUSH, the g matrix is evaluated by
the numerical computation of the so-called t-vectors, @ra

@qi
, by the

method of central differences at the (q1, . . . , qD) DVR grid points gi-
ven in arbitrary internal coordinates. For that we take finite steps in
the selected qi internal coordinate and compute the Eckart-embed-
ded Cartesian nuclear position vectors for the internal coordinate
sets (q1, . . . , qi + �/2, . . . , qD) and (q1, . . . , qi � �/2, . . . , qD), respec-
tively. This is done according to the following procedure: (a) com-
putation of the initial r0aðq1; . . . ; qi þ �=2; . . . ; qDÞ and
r0aðq1; . . . ; qi � �=2; . . . ; qDÞ Cartesian coordinates with respect to an
arbitrary initial embedding, (b) shifting the origin into the nuclear
center of mass, and (c) transformation of the nuclear position
vectors into the ra(q1, . . . , qi + �/2, . . . , qD) and ra(q1, . . . ,
qi � �/2, . . . , qD) Eckart coordinates by the previously described
method. The Eckart-embedded t-vectors are computed as

@ra

@qi
ðq1; . . . ;qDÞ¼

raðq1; . . . ;qiþ�=2; . . . ;qDÞ�raðq1; . . . ;qi��=2; . . . ;qDÞ
�

: ð14Þ

The implementation of this transformation within the GENIUSH
protocol presented no significant difficulties. The only pitfall during
the numerical construction of the Eckart-embedded t-vectors is the
possible instability of the numerical differentiation. If two slightly
different initial r0a vectors, generated by an incremental and a dec-
remental displacement in terms of an internal coordinate, are not
transformed by the same subcase of the eight possible Eckart trans-
formations, the resulting t-vector will be erroneous. Thus, to assure
the stability of the numerical differentiation, the same Eckart sub-
case must be selected for the two vectors mentioned. To achieve
this, the criteria represented by Eqs. (10) and (11) are maintained
within the GENIUSH program.

Finally we note that any of the possible sign combinations for ui

and vi could be selected for the construction of a (pseudo)rotation
T matrix to obtain Eckart Cartesian coordinates. As long as the
same convention is used during the course of a computation the
correct rovibrational eigenvalues and eigenvectors are obtained.

2.3. The rigid rotor decomposition (RRD) approach

The rigid rotor decomposition (RRD) [38,39] approach is a tool
for the interpretation of variationally computed rovibrational en-
ergy levels and wave functions. The initial step is the evaluation of

hWij/jRki ð15Þ

overlap integrals, where Wi is the rovibrational wave function to be
labelled by either exact or approximate vibrational and rotational
quantum numbers, while /j and Rk denote variationally determined
vibrational and rigid-rotor wave functions, respectively. After
finding the dominant /aRb contribution in Wi, it is straightforward
to label Wi with the vibrational labels of /a and the rotational labels
of Rb.

3. Computational details

As one of the objectives of the present study is the examination
of the effect of the choice of the body-fixed frame on the determi-
nation of the rovibrational energy levels and wave functions for the
flexible NH3 molecule, these have been computed with the GENI-
USH program with three different embeddings. To start with, Eck-
art frames with C3v (equilibrium) and D3h (planar) point-group
symmetry reference structures (see Table 1) have been utilized.
Furthermore, we employed a non-Eckart frame (called ‘traditional’
(trad.) frame henceforth) defined as follows: (a) the origin of the
body-fixed frame is placed on the first atom (N); (b) the z axis is
directed toward the second atom (X, a dummy atom); (c) the xz
plane is defined by the first three atoms (N, X, and H1); (d) the y
axis is oriented according to the right-hand rule; and (e) the origin
is shifted to the center of mass of the nuclei. The RRD computations
utilized symmetric top eigenfunctions for all the embeddings as
the NH3 molecule is a symmetric top.

The PES of NH3 employed in this study is taken from Ref. [42]. It
corresponds to the PES called spectroscopic in that study. Atomic
masses, mH = 1.007825 u and mN = 14.003074 u, were employed
throughout the nuclear motion computations. The set of internal
coordinates chosen for the rotational–vibrational computations is
summarized in Table 2. According to Ref. [35], we used the stepsize
� = 10�5 for the numerical evaluation of the t-vectors. Our compu-
tational studies have employed the six-dimensional (active inver-
sion, 6D) and the three-dimensional stretch-only reduced
dimensional (inactive inversion, 3D) computational models. In
the case of the 3D stretch-only model values of the constrained an-
gle coordinates were fixed at their equilibrium values

Table 1
Cartesian coordinates, in Å, of the C3v and D3h Eckart reference structures used in this
work.

a Eckart (C3v) Eckart (D3h)

(aa)x (aa)y (aa)z (aa)x (aa)y (aa)z

N 0.0 0.0 0.067544 0.0 0.0 0.0
H1 0.936899 0.0 �0.312826 0.994378 0.0 0.0
H2 �0.468449 �0.811378 �0.312826 �0.497189 �0.861157 0.0
H3 �0.468449 0.811378 �0.312826 �0.497189 0.861157 0.0

Table 2
Z-matrix representation of the internal coordinates of NH3. Symbol X refers to a
dummy atom.

N
X N 1.0
H1 N r1 X h
H2 N r2 X h H1 b1

H3 N r3 X h H1 �b2
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b1 = b2 = 120� and h = 106.36�. Besides the pure vibrational energy
levels and wave functions rovibrational energy levels and wave
functions for the first ten vibrational states were computed by
GENIUSH for rotational quantum numbers J = 1 and 2 with the
6D and 3D models. In the case of the 6D model 25 and 8 Her-
mite-DVR basis functions have been employed for the h inversion
and the other vibrational coordinates, respectively; thus, the over-
all size of the vibrational basis equals 25 � 85. For the 3D model 30
Hermite-DVR basis functions for each of the active vibrational
coordinates have been utilized resulting in a vibrational basis of
dimension 303. For each internal coordinate these Hermite-DVR
basis functions were generated by potential optimization done in
the basis of 80 primitive Hermite-DVR functions. We found that
this basis allowed the insertion of approximate resolutions of
identity among the different operators present in the KEO; thus,
the Podolsky form of the general rovibrational KEO can be applied
in a straightforward manner.

For testing the convergence of the computed results we also
used some auxiliary basis sets of size 20 � 65, 30 � 105 (6D), and
353 (3D). Based on these tests we can conclude that energy levels
reported in this study are converged to 0.01 cm�1 or better,
whereas RRD coefficients given in Tables 3 and 4 are converged
to a few 0.0001 units.

4. Results and discussion

In this section we demonstrate the applicability of the numeri-
cally constructed KEO using the Eckart embedding and internal

coordinates in a variational procedure. Using the GENIUSH pro-
gram we solve the internal-coordinate rovibrational Schrödinger
equation with Eckart embedding for a more than three-particle
system for the first time. To challenge our implementation we
chose the ammonia molecule as an example and are aiming to de-
scribe its famous inversion tunneling with a full rovibrational mod-
el using a trigonal pyramidal (C3v) Eckart reference structure. Since
we can easily switch between different body-fixed frames in the
GENIUSH program, we also run computations with a trigonal pla-
nar Eckart reference structure of D3h symmetry. This Eckart
embedding is known to provide a working model for the ammonia
inversion with the Eckart–Watson Hamiltonian as well [43,44], in
contrast to the equilibrium C3v reference structure. In addition to
these two Eckart frames we use a ‘traditional’ embedding. Besides
the demonstration of the flexibility and applicability of our numer-
ical approach for various embeddings including the challenging
Eckart one, we also compare the numerical results corresponding
to the three different numerically constructed rovibrational
Hamiltonians.

The converged energy levels are, of course, identical for the dif-
ferent KEOs. Furthermore, for both the 3D and 6D models the con-
vergence rate of the rovibrational energy levels was similar for all
the embeddings. What is more interesting is the structure of the
rotational–vibrational wave function representation, which can
be analysed by inspecting the RRD coefficients. In what follows,
we collect our major observations for the RRD analysis in the hope
that one or the other representations of the KEO facilitates the
interpretation of the calculated rovibrational states in terms of
the conventional rigid rotor labels.

Results of the RRD analysis of the rotational–vibrational states
computed with different body-fixed frame embeddings (for the
6D and 3D models) are summarized in Tables 3 and 4 for J = 1

Table 3
Absolute values of the dominant net RRD coefficients, Eq. (16), for the 6D
rovibrational model of NH3. The rovibrational energy levels shown in this table
belong to the selected mþ2 ð932:48 cm�1 ;A01 symmetryÞ and
m�4 ð1627:29 cm�1; E00 symmetryÞ vibrational band origins and are referenced to the
zero-point vibrational energy level (7430.28 cm�1). J denotes the total angular
momentum quantum number and K is the absolute value of the projection of the total
angular momentum on the molecule-fixed z axis. The designations Eckart (C3v), Eckart
(D3h) and ‘trad.’ stand for the Eckart frames with C3v (equilibrium) and D3h (planar)
point-group symmetry reference structures, and for the ‘traditional’ frame, respec-
tively. Energy levels corresponding to irreducible representations A01 and A001 are
unfeasible due to the fermionic nature of protons and they are listed here only for the
sake of completeness.

E/cm�1 Crve VBO J K RRD coefficients

Eckart (C3v) Eckart (D3h) trad.

948.64 E00 mþ2 1 1 0.9978 0.9994 0.9951
948.64 mþ2 1 1 0.9978 0.9994 0.9952
952.62 A02 mþ2 1 0 0.9957 0.9988 0.9992

1640.54 E0 m�4 1 1 0.9960 0.9988 0.9900
1640.54 m�4 1 1 0.9960 0.9988 0.9898
1646.33 A01 m�4 1 1 0.9989 0.9997 0.9906
1647.16 A02 m�4 1 1 0.9885 0.9935 0.9847
1647.69 E00 m�4 1 0 0.9905 0.9962 0.9967
1647.69 m�4 1 0 0.9905 0.9962 0.9967

976.96 E0 mþ2 2 2 0.9957 0.9984 0.9814
976.96 mþ2 2 2 0.9957 0.9984 0.9814
988.88 E00 mþ2 2 1 0.9892 0.9970 0.9934
988.88 mþ2 2 1 0.9892 0.9970 0.9937
992.85 A01 mþ2 2 0 0.9871 0.9964 0.9976

1666.16 A002 m�4 2 2 0.9921 0.9977 0.9621
1666.16 A001 m�4 2 2 0.9923 0.9978 0.9622
1678.50 E00 m�4 2 2 0.9877 0.9871 0.9514
1678.50 m�4 2 2 0.9876 0.9871 0.9517
1681.37 E0 m�4 2 1 0.9780 0.9918 0.9843
1681.37 m�4 2 1 0.9779 0.9917 0.9837
1686.40 A02 m�4 2 1 0.9893 0.9971 0.9890
1688.64 E00 m�4 2 0 0.9724 0.9830 0.9847
1688.64 m�4 2 0 0.9721 0.9830 0.9848
1688.88 A01 m�4 2 1 0.9725 0.9793 0.9720

Table 4
Absolute values of the dominant net RRD coefficients, Eq. (16), for the 3D stretch-only
rovibrational model of NH3. The rovibrational energy levels shown in this table belong
to the selected m1 (3390.93 cm�1, A1 symmetry) and m3 (3567.56 cm�1, E symmetry)
vibrational band origins (VBO) and are referenced to the zero-point vibrational energy
level (5783.63 cm�1). J denotes the total angular momentum quantum number and K
is the absolute value of the projection of the total angular momentum on the
molecule-fixed z axis. The designations Eckart (C3v), Eckart (D3h) and ‘trad.’ stand for
the Eckart frames with C3v (equilibrium) and D3h (planar) point-group symmetry
reference structures and for the ‘traditional’ frame, respectively.

E/cm�1 Crve VBO J K RRD coefficients

Eckart (C3v) Eckart (D3h) trad.

3406.86 E m1 1 1 1.0000 0.9999 1.0000
3406.86 m1 1 1 1.0000 0.9999 1.0000
3411.25 A2 m1 1 0 1.0000 0.9998 1.0000

3582.59 E m3 1 1 0.9999 0.9998 0.9999
3582.59 m3 1 1 0.9999 0.9998 0.9999
3583.87 A2 m3 1 1 1.0000 0.9996 1.0000
3584.29 A1 m3 1 1 1.0000 1.0000 1.0000
3587.72 E m3 1 0 0.9999 0.9996 0.9999
3587.72 m3 1 0 0.9999 0.9996 0.9999

3434.34 E m1 2 2 1.0000 0.9998 1.0000
3434.34 m1 2 2 1.0000 0.9998 1.0000
3447.50 E m1 2 1 0.9999 0.9995 1.0000
3447.50 m1 2 1 0.9999 0.9995 1.0000
3451.89 A1 m1 2 0 0.9999 0.9994 1.0000

3609.02 A2 m3 2 2 0.9998 0.9995 0.9998
3609.02 A1 m3 2 2 0.9998 0.9995 0.9998
3611.98 E m3 2 2 0.9994 0.9991 0.9977
3611.98 m3 2 2 0.9994 0.9991 0.9977
3622.90 E m3 2 1 0.9997 0.9989 0.9997
3622.90 m3 2 1 0.9997 0.9989 0.9997
3623.76 A1 m3 2 1 0.9997 0.9983 0.9998
3625.02 A2 m3 2 1 0.9998 0.9995 0.9998
3628.04 E m3 2 0 0.9991 0.9982 0.9988
3628.04 m3 2 0 0.9991 0.9982 0.9988
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and J = 2, respectively. NH3 is a symmetric-top molecule and it has
one- and two-fold degenerate vibrational band origins (VBOs). It is
thus worth introducing four RRD cases defined by the properties of
the vibrational and rigid-rotor functions of the dominant RRD sub-
space: (a) one-fold degenerate VBO with K = 0; (b) one-fold degen-
erate VBO with K – 0; (c) two-fold degenerate VBO with K = 0; and
(d) two-fold degenerate VBO with K – 0, where K = jkj and k is the
projection of the total angular momentum on the molecule-fixed z
axis. Rigid-rotor states sharing the same K value are degenerate;
thus, for cases (a), (b), (c), and (d) the dimension of the correspond-
ing RRD subspaces are one, two, two, and four, respectively. For a
given RRD subspace the net RRD coefficient can be defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

X
k2fK;�Kg

jhWij/jRkij2
r

ð16Þ

for an n-fold degenerate VBO (i.e., the /j vibrational eigenfunctions
have the same eigenvalue) and for either one-fold (K = 0) or two-
fold (K – 0) degenerate Rk rigid-rotor functions. After finding the
dominant net RRD coefficient one can assign n (K = 0) or 2n
(K – 0) Wi rotational–vibrational states with the vibrational quan-
tum numbers of the n-fold degenerate VBO and the K value of the
rigid-rotor function(s). Finally, it is important to note that varia-
tional rotational–vibrational states of NH3 assigned with a two-fold
degenerate VBO and K – 0 are not four-fold degenerate, as the
D3h(M) molecular symmetry group [3] contains only one- and
two-dimensional irreducible representations.

In the case of the 6D model, rovibrational states associated with
the mþ2 ð932:48 cm�1Þ and m�4 ð1627:29 cm�1Þ VBOs are presented
in Table 3. For the mþ2 VBO, we get one-fold and two-fold degener-
ate rovibrational states for K = 0 and K – 0 values, respectively. For
the m�4 VBO of E00 symmetry, rovibrational levels with K = 0 values
exhibit two-fold degeneracies, while for K – 0 quantum numbers
the corresponding four rovibrational levels are split according to
a 2 + 1 + 1 pattern. In the 6D model the inversion of NH3 is active
and for the majority of the examined rovibrational states the D3h

Eckart embedding slightly outperforms the other two in terms of
the largest dominant net RRD coefficient. Clearly, the ‘traditional’
embedding results in the smallest dominant RRD coefficients. This
result is similar to that obtained during a similar study for H16

2 O
[39]. Nevertheless, that study also showed that beyond a certain
excitation energy and J quantum number the Eckart embedding
will also fail to provide a dominant RRD coefficient larger than
0.7 and thus it is not significantly better than the traditional
embedding. The K = 0 results color this picture somewhat in that
it is the ‘traditional’ embedding that results in the largest RRD coef-
ficients. This is a somewhat counterintuitive result and we cannot
offer an explanation for it.

For the 3D model rovibrational states associated with the m1

(3390.93 cm�1, A1 symmetry) and m3 (3567.56 cm�1, E symmetry)
VBOs are given in Table 4. Here the same symmetry and splitting
considerations hold for the rovibrational states, the only difference
is that the C3v(M) molecular symmetry group is used instead of
D3h(M). In this case the inversion of NH3 is inactive, and the C3v

Eckart and ‘traditional’ embeddings give dominant net RRD contri-
butions of similar quality for most of the rovibrational states exam-
ined by us, while the D3h Eckart embedding performs slightly
worse than the other two.

Generally, for both the 6D and 3D models, differences between
the three embeddings in terms of the absolute value of the domi-
nant net RRD coefficients are found to be negligible, and the
RRD-based assignment procedure has been successful for all the
examined rovibrational states. However, for increasing rovibra-
tional excitations, differences in the RRD analysis between the dif-
ferent embeddings become more pronounced. Based on these
arguments and our results, for models exhibiting active inversion

the D3h Eckart frame, and for models without inversion, the C3v

Eckart frame seem to be more adequate.

5. Summary

It is shown in this paper that the use of a general Eckart-embed-
ded kinetic energy operator (KEO), expressed in arbitrary curvilin-
ear coordinates, becomes possible if the KEO is constructed
numerically and represented on a (discrete variable representation
(DVR)) grid. This new approach exhibits the following significant
advantages: (a) applicability to arbitrary internal coordinates and
molecular compositions, and (b) no complicated analytical deriva-
tions are required. The implementation of Eckart-embedded KEOs
expressed in arbitrary internal coordinates presented no significant
difficulties within our in-house GENIUSH program.

This study employed the flexible NH3 molecule as a test case for
comparing rotational–vibrational energy levels and wave functions
computed with and without the use of Eckart-embedded KEOs. For
the 6D and the 3D stretch-only models of NH3 we executed varia-
tional rotational–vibrational computations with ‘traditional’ and
Eckart (utilizing reference geometries of C3v and D3h point-group
symmetries) body-fixed frame embeddings. The rigid rotor decom-
position (RRD) analysis of the rotational–vibrational states of NH3

showed no substantial differences between the three embedding
choices and the RRD-based labeling procedure has been successful
for all the examined rovibrational states. However, based on the re-
sults of this study, for models exhibiting active inversion (6D mod-
el in this case) the D3h Eckart frame, and for models without
inversion (3D model), the C3v Eckart frame was found to be more
adequate.

To supplement the results of the present paper we can recall
some of the relevant results of our previous study [39] employing
basically the same approach for H16

2 O, whereby much higher rovi-
brational states with much higher J values were studied employing
several embeddings. That study clearly proved that while at low
excitation the Eckart embedding outperforms the ‘traditional’ ones,
above some excitation level either in the vibrations or the rotations
even the Eckart embedding does not ensure a clear separation of
vibrations and rotations, as evidenced by the lack of a dominant
RRD coefficient and an overly heavy mixing of basis states.
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