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ABSTRACT: Variational rotational—vibrational quantum chemical computations are performed for the F-—CH, and F —
CH,D, anion complexes using several reduced-dimensional models in a curvilinear polyspherical coordinate system and utilizing
an accurate ab initio potential energy surface (PES). The implementation of the models is made practical by using the general
rovibrational code GENIUSH, which constructs the complicated form of the exact rovibrational kinetic energy operator in
reduced and full dimensions in any user-specified coordinates and body-fixed frames. A one-dimensional CF stretch, ID(R¢p), a
two-dimensional intermolecular bend, 2D(6,¢), and a three-dimensional intermolecular, 3D(Rcg,0,¢), rigid methane model
provide vibrational energies for the low-frequency, large-amplitude modes in good agreement with full-dimensional MCTDH
results for F"—CH,. The 2D(6,¢) and 3D(R¢p,0,¢) four-well computations, describing equally the four possible CH—F~ bonds,
show that the ground-state tunneling splitting is less than 0.01 cm™". For the hydrogen-bonded CH stretching fundamental a
local-mode model is found to have almost spectroscopic accuracy, whereas a harmonic frequency analysis performs poorly. The
2D(6,¢) and 3D(Rcp,0,¢) rotational—vibrational computations on the T;-symmetric four-well PES reveal that in most cases F—
CH,, behaves as a semirigid C;, symmetric top. For the degenerate intermolecular bending vibrational states substantial splittings
of the rigid rotor levels are observed. For F~—CH,D, the rotational levels guide the assignment of the vibrational states to either
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F—H or F"—D connectivity.

B INTRODUCTION

Molecular complexes stabilized by secondary interactions play
an important role in chemistry. The simplest complexes are
composed of two monomers. Pre- and postreactive dimer
complexes are often formed in bimolecular chemical reactions,
and these complexes sometimes have significant effects on the
reaction dynamics.' > Recently, several experimental and
theoretical studies focused on the F + methane (CH,, CHDj;,
etc.) reaction providing new and sometimes unexpected
insights into fundamental rules governing chemical reactiv-
ity."*™® Recent dynamical computations suggest that the
prereactive van der Waals forces between the reactants,
methane and the F atom, are responsible for the surprising
outcome, ie., enhancement of the DF + CHD, channel by
exciting the CH stretch of CHD;, of this fundamental
polyatomic reaction.' The neutral F—methane complex is
very unstable; its dissociation energy (D,) is only around 160
cm ™"’ Methane binds the F~ anion much more strongly; the
computed D, and D, values of F"—CH, are 2398 + 12 and
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2280 + 20 cm™!, respectively.'” Thus, the F"—CH, anion
complex can be investigated spectroscopically more straight-
forwardly. Early experimental work probed F~—CH, in the CH
stretching region, reporting a CH stretching fundamental of
2535 cm™!, red-shifted by 382 cm™" relative to the v;(a;) mode
of the CH, monomer.'' "> Note that a harmonic frequency
analysis seriously overestimates this hydrogen-bonded CH
fundamental, by about 250 cm™. The stable anion complex
offers an efficient way to probe the neutral system via
photodetachment spectroscopy.'* Recently, the F~—CH,
anion has been used as a precursor to probe the entrance
channel of the F + CH, reaction.">' The anion has a single
hydrogen-bonded C;, equilibrium structure, which slightly
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overlaps with the geometry of the transition state of the neutral
reactive system;ls thus, this important region of the reactive
potential energy surface (PES) can be directly investigated
experimentally.

The first full-dimensional ab initio PES of the F"—CH,
complex was reported by Czakd, Braams, and Bowman'’
(CBB) in 2008, on the basis of a permutationally invariant fit to
a large number of CCSD(T)/aug-cc-pVTZ energy points.
Vibrational configuration interaction calculations performed
using the code Multimode'” and the CBB PES'’ gave 2519
cm ™' '° for the above-mentioned red-shifted CH fundamental,
in good agreement with experiment (2535 cm™")."" Multimode
employs the Eckart—Watson'®'® Hamiltonian and rectilinear
normal coordinates; therefore, it cannot describe the tunneling
dynamics between the four equivalent minima of the PES.
Furthermore, the use of rectilinear coordinates may result in
slow convergence for the low-frequency intermolecular modes.
In 2012, multiconfigurational time-dependent Hartree
(MCTDH)***" computations utilizing curvilinear stereo-
graphic coordinates were performed in full dimensions to
investigate the multiwell dynamics of F"—CH, on the CBB
PES.*> The MCTDH study provided benchmark vibrational
energy levels for the intermolecular modes and the seemingly
unconverged computations resulted in tunneling splittings on
the order of 1 cm™.** Because the MCTDH approach
converges the vibrational energies from bottom to top, the
full-dimensional comgutation of intramolecular vibrations is
currently not feasible.**

In the present work we investigate the multiwell rotational—
vibrational dynamics of F"—CH, and F"—CH,D,, employing
several reduced-dimensional quantum chemical models. The
computations are performed using the fourth-age® code
GENIUSH, a general (GE) rovibrational code with numerical
(N), internal-coordinate (I), user-specified Hamiltonians
(USH).**** Rigid monomer models are frequently used to
study the large—amé)litude intermolecular vibrations of van der
Waals complexes.”*™>* For F"—CH, we can test the perform-
ance of various reduced-dimensional models by comparing the
GENIUSH results with the full-dimensional MCTDH reference
data. Furthermore, we perform for the first time computations
with nonzero total angular momentum, characterized by the
quantum number ] corresponding to the overall rotation of the
system. It is an interesting question whether F~—CH, behaves
as a symmetric top rotor, as expected from the C;, equilibrium
structure(s), or the rotational states correspond to a spherical
top, reflecting the T;(M) molecular symmetry of the four-well
PES. Finally, we present the first rovibrational results for the
F"—CH,D, complex allowing the investigation of isotope
effects and, even more importantly, the consequences of
changing the point-group symmetry of the methane fragment.

B METHODS

A general form of the rotational—vibrational Hamiltonian of a

molecule with D vibrational degrees of freedom can be written
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where § = det(g), g is the mass and coordinate dependent
rotational—vibrational metric tensor, G = g_l, Pi’s are the quasi-

momenta, and V is the potential energy operator. GENIUSH
numerically constructs the exact kinetic energy operator in any
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user-specified coordinate system and body-fixed frame and
computes the rovibrational states using a discrete variable
representation (DVR)31 and an iterative Lanczos>? eigensolver.
The reduced-dimensional models are defined by fixing
coordinates and deleting the corresponding rows and columns
of the g matrix. It is important to note that the constraints
should be introduced in the g matrix before its inversion,
because this corresponds to physically fixing coordinates,
whereas reducing the G matrix means constraining the
momenta. The converged results obtained by the former
approach, used in the present study, do not depend on the
choice of the active coordinates, whereas the latter constraint
can result in different energy levels depending on the
coordinate system employed.**

For the FF—CH, and F —CH,D, complexes we use
curvilinear polyspherical coordinates, which are well suited to
describe the motion of F~ around the methane unit. For the
radial coordinates we employ potential-optimized DVR**~°
(PO-DVR) based on a primitive Laguerre-DVR. For the
angles 6 € [0, 7] and ¢ € [0, 27] Legendre- and Fourier-DVR
are employed, respectively. Because the two-dimensional
angular motion of F~ is fully coupled, we found that PO—
DVRs based on one-dimensional effective potentials are not
efficient for 6 and ¢; therefore, we used primitive grids for the
angles. For the J > 0 rovibrational computations a rotational
basis of 2] + 1 orthonormal Wang functions™ is employed.
Convergence of the energy levels was carefully tested and we
found that 20 radial PO—DVR points and 80 points for each
angular coordinate are usually sufficient to converge the
energies investigated in the present study to better than 0.01
cm™!

We are considering the following reduced-dimensional
models (note that the dimensions of the models refer to the
active vibrational coordinates only; thus, for ] > 0 computations
three additional rotational dimensions exist):

One-Dimensional Intermolecular Stretching, 1D(R¢),
Model. As shown in Figure 1, all the constrained coordinates
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Figure 1. One-dimensional intermolecular stretching model of F~—
CH,.

are kept frozen at their equilibrium values and the F~ ion can
move in one dimension along the C; axis. For F~—CH,D, two
different 1D(Rcg) models are defined, in which either an H or a
D atom is connected to F~.

Two-Dimensional Intermolecular Bending, 2D(6,p),
Model. The 2D(6,¢) model is obtained by fixing the CF
distance at its equilibrium value of 2.958 A and treating CH, as
a rigid monomer with T; symmetry and a CH bond length of
1.104 A. The T, symmetry of the CH, unit was kept to exactly
maintain the equivalence of the four minima in a rigid
monomer model. This is a reasonable approximation, because
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at the C;, equilibrium structure of F"—CH, the two different
types of CH distances differ by only 0.017 A and the bond
angle is distorted by only 1° from the exact tetrahedral angle."
For the F"—CH,D, complex the geometry of the rigid methane
subunit was unchanged, we just replaced two H atoms with D
atoms. Note that, in principle, in the 2D(6,¢) model all the
hydrogen atoms are equivalent. However, we found that it is
practical to define a body-fixed frame in which the hydrogen
atoms are at the vertices of a cube and the three orthogonal
axes are perpendicular to the faces of the cube (Figure 2). This

Figure 2. Two-dimensional 2D(6,¢) and three-dimensional 3D-
(Rep,0,¢) models of F—CH,. In the body-fixed frame the F~ is at 6 =
0 and @ = 0. (Note that in the actual computations the system is
moved into the center of mass frame.) The 2D(6,p) potential
(energies in cm™" and angles in radians) was obtained by fixing R¢y. at
2.958 A and treating CH, as a rigid monomer with T, symmetry and a
CH distance of 1.104 A.

way the Legendre- and Fourier-DVR points, which are
symmetric to 90° and 180°, respectively, describe the motion
of F~ over the four equivalent minima (Figure 2) with the same
precision. This was tested for F"—CH,D,, where we found that
any permutation of the HHDD atoms resulted in the same
energy levels.

Three-Dimensional Intermolecular, 3D(R¢g0,p),
Model. In the 3D(Rcp0,) model all the intermolecular
coordinates are active; thus, this model corresponds to the rigid
monomer models frequently used to study van der Waals
dimers. The properties of this model are similar to those of the
above-described 2D(6,¢) model seen in Figure 2, except that in
the 3D(Rcg,0,¢) model the Rep coordinate is also active.

One-Dimensional CH Stretching, 1D(Rcy), Model. As
shown in Figure 3, in this intramolecular stretching model all
the constrained coordinates are kept frozen at their equilibrium
values and the H-bonded H atom can move in one dimension
along the C; axis. For F"—CH,D, two different models,

1D(Rcy) and 1D(R¢p), are defined, in which either the active
H or D atom is connected to F~, respectively.

Two-Dimensional CH—F Stretching, 2D(Rcy,Rce),
Model. In the 2D(Rcy,Rcr) model the H-bonded CH and
CF stretchings are active along the C; axis and all the other
coordinates are constrained at their equilibrium values. The
resulting 2D (Rcy,Rcp) PES is shown in Figure 3. Note that the
radial PO—DVR points were set to satisfy the Rcy < Rcp
condition. Similar to the former model, for F—CH,D, two
different models, 2D(R¢y,Rcp) and 2D(Rep,Rcg), are defined,
in which F~ is connected to either the active CH or CD bond,
respectively.

B RESULTS AND DISCUSSION

After the above-described reduced-dimensional models have
been implemented into GENIUSH,**** variational rovibra-
tional computations have been performed for the F"—CH, and
F~—CH,D, complexes using the CBB PES."

Intermolecular Vibrations. The intermolecular vibrational
energy levels for several models are presented in Table 1. For
F~—CH, the 1D(R¢p) model gives an intermolecular stretching
fundamental (v;) of 193.6 cm™, in excellent agreement with the
12D benchmark result’® of 194.4 cm™. Anharmonicity has a
small effect on v, , because the harmonic value is 200 cm™.'° In
the 1D(Rcr) model the transitions v, — 2v, and 2v, — 3v; are
184.8 and 1754 cm™!, respectively; thus, again only a slight
anharmonicity is seen. The 3D(Rcp,0,¢) model gives a v, of
182.5 cm™’, slightly underestimating the 12D result. For the
intermolecular bending fundamental (v,) the 2D(6,p) and
3D(Rep,8,¢) models yield 290.2 and 284.5 cm™!, respectively,
whereas the 12D benchmark result is around 272 cm™. Due to
some error cancelation, the 3D(Rcg,0,¢0) v + v, combination
band at 459 cm™ is in good agreement with the 12D result of
461 cm™.,

For the intermolecular modes we can expect slow
convergence when we employ Multimode, a code based on
the Eckart—Watson operator and thus on rectilinear normal
coordinates. Indeed, Multimode provides v, energies of 347,
314, 306, and 300 cm™" using 1820, 6188, 17640, and 21348
basis functions, respectively.'® Knowing the 12D MCTDH
result’” of 272 cm™ and the present 3D(Rcy,0,) result of 285
cm™!, we can conclude that even the largest basis set used in ref
10 was not sufficient to provide a converged result for the v,
mode (of course, the above convergence test taken from ref 10
suggested this). Note that Multimode uses an approximate n-
mode representation (nMR) of the PES and the inverse of the
effective moment of inertia, but this MR converges rapidly
with increasing n and as ref 10 shows the 4MR and SMR v,
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Figure 3. One-dimensional CH stretching, 1D(R¢y), and two-dimensional CH—F stretching, 2D (R¢y,Rcp), models of F"—CH,,. The 1D(Rcy;) and
2D(Rey,Rep) potentials (energies in cm™ and distances in A) were obtained by fixing all the nonactive coordinates at their equilibrium values.
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Table 1. Intermolecular Vibrational Energy Levels (cm™') of the F-—CH, and F"—CH,D, Complexes”

F—CH, F—CH,D,
1D(Rcy) 2D(6,0) 3D(Rerf) 12D" 1D(Rc) 2D(6,) 3D(Repthp)
Vo 0.00 0.00 0.00 0.0 0.00 0.00 0.00
0.00 0.00 0.6 0.00 0.00
0.00 0.00 0.8 19.12 19.11
0.00 0.00 0.9 19.12 19.11
Vg 193.55 182.46 194.4 187.90 177.87
182.46 194.4 177.87
182.46 194.5 196.75
182.46 194.5 196.75
", 290.20 284.54 271.7 226.30 223.70
290.20 284.55 271.7 226.30 223.70
290.20 284.55 271.7 248.92 244.49
290.20 284.55 271.8 248.92 244.49
290.20 284.55 2719 259.38 254.82
290.20 284.55 2724 259.39 254.82
290.21 284.55 272.5 287.22 283.76
290.21 284.56 272.8 287.22 283.76
2v, 378.36 355.82 380.6 367.60 347.49
355.82 380.7 347.49
355.82 380.7 366.05
355.82 380.7 366.05
v+ vy 458.81 460.2 395.22
458.81 460.3 395.22
458.81 460.4 415.63
458.81 460.4 415.63
458.81 461.4 426.07
458.81 461.5 426.07
458.82 461.5 453.78
458.83 461.5 453.78
3v, 553.77 519.22 538.53 508.20
519.22 508.20
519.23 526.26
519.23 526.26
2y, 544.60 533.01 528.7 437.19 431.62
544.61 533.02 528.9 437.19 431.62
544.65 533.05 5289 468.37 460.93
544.67 533.09 529.1 468.38 460.94
2y 567.31 555.26 545.7 482.53 473.08
567.31 555.26 545.8 482.58 473.11
567.32 555.27 545.8 482.66 473.51
567.32 555.27 545.8 482.67 473.52
567.33 555.27 547.7 516.72 507.93
567.33 555.29 547.8 516.74 507.94
567.36 555.31 547.8 535.97 528.55
567.38 555.34 547.8 535.98 528.55

“All results correspond to the CBB PES of ref 10. 30, (250, 250), and (25, 150, 150) grid points were employed for the 1D(Rcg), 2D(6,¢), and
3D(Repb,¢) computations, respectively. bFull-dimensional MCTDH results, taken from ref 22.

energies differ by only 1.4 cm™, indicating that the basis set
effects are more significant for this large-amplitude mode. The
results of this study show that a rigid monomer intermolecular
model using curvilinear internal coordinates can provide good
estimates for these large-amplitude low-frequency modes, well
separated from the other modes of the system.

In a four-well computation the ground vibrational state of
F~—CH, is split into a global ground state of A; symmetry and
a triply degenerate F, state, where we employ the irreducible
representations of the T;(M) molecular symmetry group to
characterize the delocalized vibrational states. The 12D
MCTDH study reported that the ground-state tunneling
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splitting between the A, and F, states does not significantly
exceed 1 cm™".** Our 2D(6,p) and 3D (Rcp,0,p) computations
show that the ground-state splitting is less than 0.01 cm™ and
even for the overtones, e.g, 2u,, the splittings are not larger
than 0.1 cm™'. Thus, the present reduced-dimensional
computations predict tunneling splittings orders of magnitude
smaller than reported in the 12D MCTDH study. The
3D(Repb,p) splittings are fully converged, but obtained from
a rigid monomer model, whereas the MCTDH computations
are full-dimensional, but not fully converged. The 3D(Rcp60,¢)
study provides energies (in cm™' and setting the zero-point
level to 0) for the split ground state as (0.00, 0.00, 0.00, 0.00),
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whereas the B1, B2, B3, and B4 basis sets of ref 22 give (0.0,
32, 32, 34), (0.0, 0.8, 1.0, 1.2), (0.0, 0.4, 0.5, 0.5), and (0.0,
0.6, 0.8, 0.9), respectively. The 3D(R¢p,0,¢) results reproduce
the correct degeneracy of the F, state, whereas the MCTDH
energies are split even for the F, state. The bases from B1 to B3
correspond to increasing size, and as seen above, the splittings
tend to vanish as the basis size is increased, although we cannot
be confident about the rate of the convergence. It is most likely
that the present minuscule splittings would be obtained from a
converged full-dimensional study.

For the F"—CH,D, complex the 1D(R¢y:) model provides a
v, value of 187.9 cm™’, below the v, frequency of F"—CH, by
only 5.7 cm™". The two 1D(R¢z) models, in which either the H
or D atom connects to F~, give exactly the same vibrational
energy levels. This is the expected behavior because in the
1D(R¢p) model the vibrational Hamiltonian depends only on
the total mass of the methane unit; thus, methane can be
viewed as a dummy atom with an effective mass of CH, or
CH,D,. It is important to note that for J > 0 calculations this
dummy-atom picture does not hold and the rotational levels do
depend on the structure and connectivity of the methane unit.
The 2D(0,¢) and 3D(Rcp0,¢) models provide vibrational
states that can be assigned to either the F"—HCHD, or the
F"—DCDH, minima. Thus, the ground vibrational state is split
by 19.1 cm™" and the v, and 2v; states are split by 18.9 and 18.6
cm™, respectively. The lower energies correspond to states
localized around one of the two F"—DCDH, minima. For
example, the 1D(R¢y) v, fundamental of 187.9 cm™ is split into
two 2-fold quasi-degenerate states with energies of 177.9 and
196.8 cm™ corresponding to F"—DCDH, and F"—HCHD,,
respectively. Note that the computation of the rovibrational
levels makes the assignment of a vibrational state to one of the
minima straightforward, as we will discuss later. For the w,
fundamental of F-—CH,D,, the 2D(6,¢) and 3D(Rcp0,¢)
results are close to each other, the latter model gives energies
lower by about 3—5 cm™ (6 cm™ for F"—CH,). For F"—CH,
the eight v, fundamentals are quasi-degenerate around 284.5
cm™', whereas in the case of F"—CH,D, the v, energies span a
range from 223.7 to 283.8 cm™' in the 3D(Rcp0,¢) model
(Table 1).

Hydrogen-Bonded CH and CD Stretching Fundamen-
tals. The spectroscopy of the F"—CH, complex was
investigated experimentally in the CH stretching region."'~"
The most intensive peak in the spectrum corresponds to the
hydrogen-bonded CH fundamental (v,). The measured vy,
value of 2535 cm™ is significantly red-shifted relative to the v,
fundamental of CH, (2917 cm™!)." The ), and @, harmonic
wavenumbers corresponding to the CBB PES are 2782 and
3018 cm™', respectively; thus, the harmonic approximation
seriously overestimates the vy, frequency of the complex and
underestimates the red shift. The present reduced-dimensional
variational results are given in Table 2. The 1D(R¢y) model
gives a vy, value of 2523 cm™, in excellent agreement with
experiment (2535 cm™")"! and the full-dimensional Multimode
result (2519 cm™).'® Thus, as expected and found previously
by Loh et al,,"” this “local-mode” approximation works very well
for the H-bonded CH stretching mode. The coupling between
the CH and CF stretching modes is small, because the
2D(Rey,Rcr) model gives a wavenumber of 2527 cm™. Note
that v, is above the dissociation energy (D, = 2280 cm™") of
F"—CH,; thus, strictly speaking, the CH stretching is a
Feshbach resonance. In the 2D(Rcy,Rcp) model, we could
straightforwardly identify the converged energy level corre-
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Table 2. Hydrogen-Bonded CH and CD Stretching
Fundamentals (cm™') of F-—CH, and F"—CH,D,"

F—CH, F —HCHD, F—DCDH,
harmonic 2782 2807 2044
1D(Res/ep) 2523 2521 1855
2D (RepeosRex) 2527 2517 1905
12D (Multimode)” 2519
experiment” 2535

“All the computed results correspond to the CBB PES of ref 10. bRull-
dimensional Multimode result taken from ref 10. “Measured value
taken from ref 11.

sponding to the v, mode and the vy, wavenumber could be
converged with a precision better than 0.01 cm™ applying the
code developed for bound-state computations. For the F~—
CH,D, complex the 1D(R¢y;) model gives a CH stretching of
2521 cm™, whereas the 1D(R¢p) model gives a CD stretching
of 1855 cm™. The corresponding 2D(R¢yRcp) and 2D-
(RepsRcr) wavenumbers are 2517 and 1905 cm™, respectively,
where the former is again a resonance state, whereas the latter is
a bound state. The harmonic analysis performs very poorly for
the F"—CH,D, complex as well, because the @, CH and CD
fundamentals are 2807 and 2044 cm™' (on the CBB PES),
respectively; ie., wy, overestimates the corresponding local-
mode energies by 286(CH) and 189(CD) cm™".

Rovibrational Energy Levels. The J = 1 and 2 rotational
energy levels in the ground and intermolecular fundamental
vibrational states of the F"—CH, and F"—CH,D, complexes
are given in Table 3.

The 1D(Rcp) model gives J = 1 rotational levels of 0.42(1)
and 5.50(2) cm™ for the ground vibrational state of F"—CH,,
where in parentheses the degeneracies are indicated. Because
the 1D(R¢p) model maintains the prescribed C,, point-group
symmetry, these rotational levels are in nearly perfect
agreement with the energies of a prolate symmetric-top rigid
rotor, whereby A = 529 cm™ and B = C = 021 cm™'
corresponding to the equilibrium structure of F"—CH,. As
seen in Table 3, the 1D(Rcg) J = 2 rotational energies are also
in excellent agreement with the corresponding rigid rotor levels.

In the 2D(0,p) and 3D(R¢p,0,¢0) models F~ moves around
the CH, fragment exploring the T;symmetric four-well PES;
thus, the C;, symmetry is not maintained anymore. The present
calculations show that F"—CH, still behaves as a regular
symmetric top if the ground or stretching vibrational states are
considered. This finding can be explained by the fact that the
global wave functions are localized in the vicinity of the minima.
However, in the case of the intermolecular bending mode the
variational rovibrational computations show substantial split-
tings of the rigid rotor energy levels. The (J=1, K=0) and (J =
2, K = 0) levels appear, as expected, at 0.43/0.41 and 1.28/1.24
cm™!, respectively, using the 2D(6,)/3D(Rcp0,p) models;
ie, these levels correspond to slightly perturbed prolate
symmetric top energies of 2B and 6B. However, the K # 0
rotational levels for the degenerate bending mode are
substantially split and the splittings are proportional to K.
For example, the (J = 1, K = +1) level of about 5.4 cm™" is split
to 0.00 and 10.92 cm™, the (J = 2, K = +1) level of about 6.2
cm™" is split to 0.83 and 11.75 cm™’, and the (J = 2, K = +2)
level of about 21.2 cm™! is split to 10.51 and 32.36 cm™}; thus,
the splittings are always 10.92K cm™". These splittings are due
to terms linear in | of the rovibrational Hamiltonian.
Considerations based on first-order perturbation theory show
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Table 3. Rotational Energy Levels (cm™") Relative to the Corresponding Ground and Fundamental Intermolecular Vibrational
States of F—CH, and F"—CH,D, Indicating the Degeneracies or Quasi-Degeneracies in Parentheses and the Split Rotational

Levels in Bold”

F—CH,D,
F —CH, F —HCHD, F —DCDH,
J=0 J=1 J=2 J=0 J=1 J=2 J=0 J=1 J=2
1D(Rc)
Vo 0.00(1) 0.42(1) 1.26(1) 0.00(1) 0.38(1) 1.14(1) 0.00(1) 0.40(1) 1.19(1)
5.50(2) 6.34(2) 341(2) 4.17(2) 4.24(2) 5.04(2)
21.59(2) 13.27(2) 16.58(2)
v, 193.55(1) 0.41(1) 1.23(1) 187.90(1) 0.37(1) 1.11(1) 187.90(1) 0.39(1) 1.16(1)
5.50(2) 6.32(2) 3.41(2) 4.15(2) 4.24(2) 5.02(2)
21.58(2) 13.26(2) 16.57(2)
2D(0,¢)
vy 0.00(4) 0.43(4) 1.28(4) 19.12(2) 0.38(2) 1.15(2) 0.00(2) 0.40(2) 1.21(2)
5.41(8) 6.26(8) 3.35(4) 4.12(4) 4.16(4) 4.96(4)
21.21(8) 13.04(4) 16.24(4)
w, 290.20(8) 0.00(8) 0.85(8) 259.38(2) 0.38(2) 1.15(2) 226.30(2) 0.40(2) 1.21(2)
0.43(8) 1.28(8) 3.11(4) 3.88(4) 3.23(4) 4.03(4)
10.93(8) 10.51(8) 12.10(4) 12.89(4)
11.78(8) 287.22(2) 0.38(2) 1.15(2) 248.92(2) 0.40(2) 1.21(2)
32.37(8) 3.66(4) 4.43(4) 5.15(4) 5.96(4)
14.23(4) 19.83(4)
3D(RCF10r(/7)

o 0.00(4) 0.42(4) 1.25(4) 19.11(2) 0.38(2) 1.13(2) 0.00(2) 0.39(2) 1.18(2)
5.40(8) 6.24(8) 3.35(4) 4.10(4) 4.16(4) 4.94(4)
21.20(8) 13.03(4) 16.23(4)
v, 182.46(4) 0.41(4) 1.22(4) 196.75(2) 0.37(2) 1.10(2) 177.87(2) 0.38(2) 1.15(2)
5.40(8) 6.21(8) 3.35(4) 4.08(4) 4.15(4) 4.92(4)
21.20(8) 13.02(4) 16.22(4)
vy 284.55(8) 0.00(8) 0.83(8) 254.82(2) 0.38(2) 1.13(2) 223.70(2) 0.39(2) 1.18(2)
0.41(8) 1.24(8) 3.12(4) 3.87(4) 3.15(4) 3.94(4)
10.92(8) 10.51(8) 12.14(4) 12.67(4)
11.75(8) 283.76(2) 0.37(2) 1.12(2) 244.49(2) 0.39(2) 1.18(2)
32.36(8) 3.65(4) 4.40(4) 5.22(4) 6.00(4)
14.19(4) 20.04(4)

“All the results correspond to the CBB PES of ref 10. 30, (100, 100), and (20, 80, 80) grid points were employed for the 1D(Rcg), 2D(6,¢), and

3D(R¢y, 0,¢0) computations, respectively.

that the terms proportional to ] have zero contributions for A,
vibrational states and split the rotational energies by (v)K for
E vibrational states, where &(v) depends on the vibrational
state. The corresponding perturbation theory result for the
splitting, 2 X 2A{K, where { is the Coriolis coupling constant, is
well-known for symmetric tops.*® It is thus obvious that these
large splittings are caused by neither the interaction between
the four minima nor the reduced-dimensions of our models. To
further support this statement, we executed 3D(Rcp0,¢)
GENIUSH computations restricting the angular DVR grid
points into the vicinity of one of the minima and performed 4D
and 6D four-well rovibrational computations augmenting the
3D(Rcp0, ) model by a symmetric CH stretching mode and
by the triply degenerate asymmetric stretching mode,
respectively. These test computations provided qualitatively
the same results as the 3D(Rcp0,¢) four-well computations
did, except that the single-well description reduced the quasi-
degeneracies by a factor of 4.

We also performed some test rovibrational computations for
F~—CH, in which the rotational—vibrational coupling terms in
the G matrix were neglected (Figure 4). The 1D(R¢p) model
gave exactly the same energies with and without the rotational—
vibrational coupling terms in the Hamiltonian. This can be
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readily understood by examining the g and G matrices shown
in Figure 4. In the 1D(Rcp) model both matrices are diagonal;
i.e, the rotational—vibrational coupling terms are zero. The
rotational block of the G matrix shows the inverse of the
moment of inertia of a symmetric top (F"—CH,). Unlike the
1D(Rcg) model, the 2D(6,p) and 3D(Rcp0,¢) rovibrational
computations provide qualitatively different results with and
without rotational—vibrational couplings. When the coupling
terms are neglected, all the rotational energies relative to the
corresponding vibrational levels become 10.29 and 30.88 cm™
for J = 1 and 2, respectively. These values correspond to the
rigid rotor energies of the CH, unit, whose B value is 5.15 cm™
in the 2D(0,¢) and 3D(Rcp0,¢) models. Thus, without
rotational—vibrational couplings F"—CH, behaves as a
spherical top and the rotational energies are independent of
the mass of F~ and distance of F~ from the CH, unit. The g
and G matrices of the 3D(Rcg,0,¢) model are also shown in
Figure 4. One can observe that the rotational block of the G
matrix corresponds to the inverse of the moment of inertia of
the CH, unit; i, all three diagonal elements are 3/(8myr?),
where r is the CH distance and my; is the mass of the H atom.
In the 2D(0,p) and 3D(Rcg0,p) models the rotational—
vibrational couplings have a dramatic effect on the rotational
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Figure 4. G and g matrices for the rovibrational models of F"—CH, with one (R¢p) and three (Rcp0,p) active vibrational coordinates. The
vibrational, rotational, and rotational—vibrational blocks are highlighted with colors black, red, and blue, respectively. M is the mass of CH,(T,); r
and R denote the CH and CF distances, respectively; and 6 and ¢ are the polar angles of F~. For the sake of simplicity the matrices correspond to
the body-fixed frame in which one of the H atoms is in the z axis and another H atom is in the xz plane and then the system is moved into the center
of mass frame. The actual 3D(R¢p,0,) computations are performed in the frame shown in Figure 2.

energies and change qualitatively the rotational spectrum from
that of a spherical top to that of a symmetric top molecule.

As to the FF—CH,D, complex, we can define two different
asymmetric rotors (C, point-group symmetry) having either a
F"—HCHD, or a FF—DCDH, connectivity. Both of them are
very close to the symmetric top limit, because the equilibrium
rotational constants (A, B, C), in cm™, are (3.223, 0.193,
0.190) and (4.046, 0.202, 0.199), respectively. Unlike the
vibrational energy levels, the rotational levels do depend on the
connectivity used in the 1D(Rcg) model. For the ground
vibrational state of F"—HCHD,, the 1D(R¢y) model gives J = 1
rotational energies of 0.38(1) and 3.41(2) cm™!, whereas the
corresponding values are 0.40(1) and 4.24(2) cm™ for F—
DCDH,, where the quasi-degeneracies are indicated in
parentheses. As mentioned earlier, in the 2D(6,¢) and
3D(Rcp0,p) models the vibrational ground state is split by
19.1 cm™". Because the rotational levels for the vibrational state
at 19.1 cm™ are 0.38 and 3.35 cm™', we can assign the
vibrational level of 19.1 cm™ to the F"—HCHD, minimum on
the basis of the 1D(Rgp) rotational energies, where the
connectivity in the model is well-defined. On the basis of
similar considerations we can assign each rovibrational level of
F —CH,D, to either FF—HCHD, or F"—DCDH, structures,
as seen in Table 3. Similar to F"—CH,, the rotational levels in
the ground and stretching excited states can be well
characterized by rigid rotor levels, whereas substantial splittings
of the rigid rotor energies are found for some of the rotational
levels in the intermolecular bending vibrational states.

B SUMMARY AND CONCLUSIONS

Following the full-dimensional vibration-only computations
carried out by the Eckart—Watson—operator-based Multimode
approach in 2008"° and the MCTDH approach in 2012,>* we
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performed reduced-dimensional variational rovibrational com-
putations for F"—CH, and F"—CH,D, using the ab initio CBB
PES."” The CBB PES is invariant under permutation of
identical atoms; thus, the PES describes all four equivalent
minima of the complex. Several reduced-dimensional models
were implemented into the general rovibrational code
GENIUSH,”*** which computes the complicated form of the
kinetic energy operator numerically. Because we used curvi-
linear polyspherical coordinates, our 2D(6,¢) and 3D(Rcg,0,¢)
models could describe the four-well rovibrational dynamics of
the complexes and the low-frequency intermolecular modes
could be fully converged. The present results highlight the
painfully slow convergence of the rectilinear—normal—coor-
dinates-based approaches for the large amplitude intermolec-
ular modes. The 3D(Rcp0,¢) intermolecular rigid monomer
model provides vibrational energies for F"—CH, in good
agreement (less than 15 cm™ differences) with the full-
dimensional MCTDH results. We expect similar accuracy for
the F"—CH,D, complex, which has not been studied thus far.
The present four-well calculations predict negligible tunneling
splittings, less than 0.01 cm™, for the low-lying intermolecular
vibrational states of F"—CH,; thereby setting a significantly
lower upper limit of the splittings than the MCTDH upper
boundary of about 1 cm™. The present results are converged
but of reduced dimensionality, whereas the MCTDH study is
full-dimensional, but not fully converged. Further studies, both
experimental and theoretical, would be required to confirm the
splitting values computed in this study.

Multimode calculations performed by one of us provided
full-dimensional benchmark results corresponding to the CBB
PES for the intramolecular vibrations of the CH, fragment of
the F~—CH, complex.'® The computed Multimode frequencies
were in excellent agreement with the available experimental
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data in the CH stretching region.'"”™"* The present 1D(R¢y)
calculations show that a simple local-mode model provides a
hydrogen-bonded CH stretching fundamental of 2523 cm™, in
excellent agreement with the full-dimensional Multimode result
of 2519 cm™.'* Therefore, our predictions of 2521 and 1855
cm™! for the CH and CD stretching fundamentals, respectively,
of the F"—CH,D, complex are expected to be accurate as well.

GENIUSH allows adding the rotational motion to reduced-
dimensional models;** thus, we have performed computations
for the J = 1 and 2 rovibrational states. For the ground and
stretching vibrational states having A, symmetry within a local
single-well model, the rotational levels of F"—CH, are very
similar to the corresponding prolate symmetric-top rigid-rotor
energies. For the intermolecular bending mode, which has E
symmetry in a single-well description, we found exceedingly
large splittings of the K # O rigid rotor energies. In the 2D (6,¢)
and 3D(Rcg,0,¢) models of F-—CH,D, the vibrational levels
are split into states which can be assigned to either F"—H or
F™—D connectivity. The computed rovibrational energies and
the differences in the rotational constants of the F"—HCHD,
and F"—DCDH, complexes provide a straightforward guidance
to assign the vibrational states to either minimum.
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