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When determining energy levels from several, in cases many, measured and assigned

high-resolution molecular spectra according to the Ritz principle, it is advantageous to

investigate the spectra via the concept of spectroscopic networks (SNs). Experimental

SNs are finite, weighted, undirected, multiedge, rooted graphs, whereby the vertices are

the energy levels, the edges are the transitions, and the weights are provided by

transition intensities. A considerable practical problem arises from the fact that SNs can

be very large for isotopologues of molecules widely studied; for example, the experi-

mental dataset for the H2
16O molecule contains some 160,000 measured transitions and

20,000 energy levels. In order to treat such large SNs and extract the maximum amount

of information from them, sophisticated algorithms are needed when inverting the

transition data. To achieve numerical effectiveness, we found the following efficient

algorithms applicable to very large SNs: reading the input data employs hash codes,

building the components of the SN utilizes a recursive depth-first search algorithm,

solving the linear least-squares problem is via the conjugate gradient method, and

determination of the uncertainties of the energy levels takes advantage of the robust

reweighting algorithm.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

There are several fields of science and technology which
require the availability of detailed information on the
energy level structure of molecules. Computation of accu-
rate thermochemical properties of individual molecules is
based on partition functions and the direct summation
technique [1–3], as simplified models (e.g., the harmonic
oscillator and rigid rotor approximations) are usually not
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sufficiently accurate. Determination of partition functions,
especially at elevated temperatures, requires the availability
of a large number of levels impossible to obtain experimen-
tally or can be inaccurate if obtained via simple, perturba-
tive techniques [4–7] of nuclear motion theory. Modelers in
combustion [8–10], star-formation [11], planetary atmo-
sphere [12], radiative transfer [13], and chemical vapor
deposition [14] research, among others, often need detailed
line-by-line information which often only the joint consid-
eration of elaborate spectroscopic measurements [15] and
sophisticated quantum chemical computations [16–18] can
provide. Recent advances in molecular spectroscopy led to a
considerable increase in the extent of experimental high-
resolution spectroscopic data, i.e., assigned rovibrational
transitions, energy levels, intensities, and line profiles. Some
of these data have been deposited, sometimes in a critically
evaluated and annotated form, in databases (see, for exam-
ple, Refs. [19–24]).
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It is high-resolution molecular spectroscopy which is
able to provide the required information experimentally.
Experiments are based on high-resolution but narrow-
band as well as broad-band but perhaps lower-resolution
techniques. The emphasis of the present paper is on the
accumulation, validation, handling, visualization, and dis-
tribution of the increasing amount of such spectroscopic
information on molecular systems [19–28]. Critical
evaluation involves computer-aided handling of large-
scale databases assembled from all relevant literature
sources. Validation of transitions can be based on linelists,
preferentially obtained from accurate variational nuclear
motion computations. Ultimately, it is the joint utilization
of (spectroscopic) experiments, quantum theory, and
information technology which helps to secure and extend
our firm chemical knowledge on the energy level struc-
ture of molecules [16].

Some of the tasks mentioned in the previous para-
graph can be helped by recognizing that for individual
molecules high-resolution spectra correspond to large-
scale deterministic, undirected, (weighted) graphs
(networks), made up of energy levels as vertices (nodes),
allowed transitions between the levels as edges (links),
and weights related to transition intensities. This way one
defines what we call spectroscopic networks (SNs)
[26,29,30]. The robust organizing principle of SNs is
provided by quantum mechanical selection rules; differ-
ent transitions and transition intensities characterize
different spectroscopic techniques. It is important to
emphasize that even in the experimentally most thor-
oughly studied cases the observable transitions form just
a tiny part of all the transitions allowed [19,20]. The
(sufficiently) complete linelist information about allowed
transitions, corresponding to very large SNs, can only be
determined via sophisticated variational rotational–
vibrational computations [31].

The network-theoretical view of complex SNs, detailed
in Ref. [30], offers certain advantages toward completing
the characterization of high-resolution molecular spectra.
The approximately scale-free property of the overall SN
structure [30] leads to the concept of hubs (nodes with a
large number of links) and thus straightforwardly to the
design of new spectroscopic experiments to improve the
information content of SNs. Well-designed experiments
help to determine a more accurate and more robust SN
with a minimum amount of effort, by preferentially
measuring, with improved accuracy, transitions in which
less accurately known hubs are involved. Detailed com-
parison of measured and first-principles hubs helps to
determine the ‘‘weakest nodes’’ among the energy levels
in an existing experimental SN which, in turn, leads to the
identification of transitions which should preferentially
be investigated in new experiments designed specifically
for their determination. The graph-theoretical view,
through the concept of maximum weight spanning trees,
should also help to connect components in the
measured SN.

Experiments yield relatively small multiedge graphs,
with a considerable number of parallel edges, while first-
principles computations result in very large simple
graphs. The multiedge character of experimental SNs calls
for an algorithm which can invert the experimental
transition information and yield experimental energy
levels (‘‘term values’’) with well-defined uncertainties.
Compared to effective Hamiltonian approaches, still used
widely by spectroscopists, involving fitting of a small
number of parameters within a complex model to mea-
sured spectra, term-value fits involve a large number of
parameters, in the form of energy levels, and an exceed-
ingly simple design matrix, based on the Ritz principle.
Development of such inversion protocols has a long
history in spectroscopy [25,28–42]. It must also be men-
tioned that inversion techniques, and the resulting
weighted least-squares refinements, have helped tremen-
dously other areas of physical chemistry, as well, includ-
ing thermochemistry [43,44], and reaction kinetics
[45,46].

Our own spectroscopic inversion protocol is called
MARVEL [29], standing for Measured Active Rotational–
Vibrational Energy Levels. The design idea of MARVEL is
to separate measurements from models (effective Hamil-
tonians) and to store the basic experimental observables
(rovibronic transitions) and their interdependencies and
update the derived data (energy levels) as often as
needed. It is important to point out here that the original
MARVEL procedure [29] was built upon pioneering work
Flaud, Camy-Peyret, and Maillard published quite some
time ago [35], and also on the Active Thermochemical
Tables (ATcT) approach of Ruscic [43], and a robust
reweighting algorithm [47] advocated by Watson [48].
MARVEL is called active since if measurements of new
transitions become available they can be added to the
network easily and this can be followed by a refinement
of the energy levels yielding improved MARVEL energy
levels and uncertainties.

Since its invention, the MARVEL technique has been
used to handle and validate measured transitions of the
following isotopologues of the water molecule: H2

17O
[19,20], H2

18O [19,20], HD16O [20], HD17O [20], and
HD18O [20]. Out of the millions of transitions which could
technically be detected [49], only relatively few have
been observed and assigned experimentally. Of the
water isotopologues mentioned, the most extensive set
of data is available for HD16O but even in this case only
about 55,000 transitions and 9,000 energy levels
have been scrutinized by experimentalists. MARVEL has
also been used to validate the measured spectra of the
parent isotopologue of the ketene molecule [50], char-
acterized by 3194 validated transitions and 1722
validated energy levels. To treat much larger datasets,
for example that of H2

16O [51], required us to improve all
of the algorithms the original MARVEL code employed.
Here we report our findings concerning the utility of the
algorithms tried and their performance. While the basic
facts concerning the MARVEL protocol and the corre-
sponding code, written in the object-oriented Cþþ lan-
guage, have been described in Ref. [29], details of the
algorithms employed when writing the code have not
been provided. It is our hope that this lack of information
is remedied here for the benefit of those who would like
to develop their own MARVEL-type (active database)
procedures.
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2. The MARVEL algorithm

The fundamental equation of MARVEL [29] is built
upon the Ritz principle, connecting measured wavenum-
bers (transitions) and energy levels

sij ¼ Ei�Ej, ð1Þ

where sij is a measured wavenumber (ij¼1, y, Nt, where
Nt is the number of measured transitions) and Ej is a lower
and Ei is an upper rovibronic energy level (i,j 2 1, y, Nl,
with altogether Nl energy levels taking part in the Nt

transitions). Let dij be the measurement uncertainty
associated with a given transition, sij. The principal input
to MARVEL is a grand list of Nt experimentally measured,
assigned, and labeled transitions with uncertainties and
the aim of MARVEL is to determine the Nl energy levels of
‘experimental quality’ with self-consistent uncertainties.

The principal steps of applying MARVEL to an arbitrary
molecule are as follows. (1) Collection of those measured
transitions into a database which possess correct assign-
ment, self-consistent labels, and proper uncertainties. (2)
Based on the transition data, determination of those
energy levels of the given species which belong to a
component of a particular spectroscopic network (SN).
(3) Within a given SN, set up two vectors containing all
the experimentally measured transitions selected and the
requested MARVEL energy levels, and an extremely sparse
matrix connecting the two vectors, describing the relation
between the transitions and the energy levels. The matrix
contains for each measured line only two non-zero
entries, þ1 and –1 for the upper and lower energy levels,
respectively. (4) Solution of the set of linear equations
corresponding to the chosen pair of vectors and the
inversion (design) matrix. During solution of the set of
linear equations uncertainties in the measured transitions
can be incorporated which results in uncertainties of the
energy levels determined. For further characteristics of
the MARVEL algorithm the interested reader should con-
sult Ref. [29], henceforth called Part I. In summary,
MARVEL is able to yield accurate, reliable, and self-
consistent energy levels utilizing all available experimen-
tal transition information, correctly reflecting the knowl-
edge present in the input data.

3. Reading and storing the SNs

The measured transitions and the corresponding
energy levels in the database can be represented via a
graph with perhaps several components. Therefore, we
need to store the graph(s), or in other words the spectro-
scopic network(s) [30], in the most effective way in the
computer memory to allow their efficient handling.

There are four widely employed data structures for the
representation of graphs in computer memory [52] and
[53]: the adjacency list, the incidence list, the adjacency
matrix, and the incidence matrix. The last two storage
techniques are simple two-dimensional (matrix) repre-
sentations of graphs, without the possibility to store data
characterizing the vertices and edges; therefore, they are
not appropriate for the current application. In the adja-
cency list method vertices are stored as objects and every
vertex object contains the list of adjacent vertices.
Because this information alone is not sufficient for effec-
tive spectroscopic network storage, we employed the
incidence list method.

Using the incidence list method we define both ver-
tices and edges as objects. Vertices store their incoming
and outgoing edges, and edges store their vertices. While
this is certainly not the most memory-efficient algorithm,
experimental SNs have much less than a million links and
an order of magnitude less nodes causing no storage
bottlenecks. This storage technique speeds up the
MARVEL procedure so much that it is worth the extra
space in memory. In MARVEL, we store the transitions
(edges) in a list and the energy levels (vertices) in another
list and each transition object contains the upper and
lower energy levels as pointers and each energy level
object contains a pointer list of those transition objects
which connect to the energy level.

The first step during the determination of the energy
levels is the reading of the transition database. After
reading a line with a format of Eq. (1), a transition object
and two (the lower and the upper) energy levels should
be created. However, before creating the two energy level
objects it needs to be checked whether these energy
levels are in the list of the energy level objects or not, as
it is necessary to avoid the duplication in the list of energy
levels. This step can be very expensive as the size of the
energy level list can be more than 10,000. We can speed
up this checking if we use a hash code algorithm. This
means we create a unique and specific integer number for
each energy level and store these integer numbers in a
separate list and try to find the given energy level (in fact
its hash code) in this integer vector. We used Jenkins’ 96
bit-mix function [54] to create the specific hash key from
the labels of the energy levels. A general choice for
labeling is provided by the usual approximate quantum
numbers, the standard normal coordinates (e.g., v1v2v3 in
the case of water, where v1, v2, and v3 are the stretching,
bending, and antisymmetric stretching quantum num-
bers, respectively) for the vibrational states and the
standard rotational notation (e.g., JKaKc

in the case of an
asymmetric top, such as water) for the rotational states.
Using the Jenkins’ 96 bit-mix function three times for
each energy level, we can create only one unique
and specific integer number from the six quantum num-
bers characterizing the energy levels of the water
isotopologues.

4. Finding components of the spectroscopic network

The exact value of an energy level within an SN can be
determined if and only if there exists a path from this
level to the origin (root) of the graph. In spectroscopic
networks the root is the lowest-energy level within
the given component of the graph (with zero or a
well-defined energy value and zero uncertainty). Due to
the nature of the (experimental) SNs they may contain
transitions or group(s) of transitions which do not con-
nect to the root. Therefore, one has to investigate for each
energy level whether it has a connection to the chosen
root or not.



T. Furtenbacher, A.G. Császár / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 929–935932
In the MARVEL code presented in Part I we used the
shortest path algorithm [52,53] to answer this question.
In graph theory the shortest path problem is one of the
most fundamental network optimization problems;
therefore, several algorithms have been developed
[52,53]. Three variants of the shortest-path algorithm
can be distinguished: the single-destination, the single
source (the inverse of the former), and the all-pairs
shortest-path problem.

We do not need to find all pairs in the graph when
searching a SN; therefore, the all-pairs shortest-path
method is certainly not an optimal one. A widely used
method for the single-source problem is the Dijkstra
algorithm [53]; therefore, we applied this algorithm to
build components of the graph in Part I. After extensive
testing it turned out that this algorithm is not the best
choice for our problem as it results in more information
than actually needed and it uses an unnecessary amount
of computations for at least two reasons. First, the algo-
rithm checks all energy levels in the database and if the
database contains several components, as is often the
case, a lot of effort is wasted. Second, the Dijkstra
algorithm not only determines but also stores information
that is not needed when finding components of the SN. It
must be emphasized that if one wants to examine certain
properties of the SN, such as its diameter (the average
path length in the graph), the Dijkstra algorithm appears
to be an excellent choice.

For finding components of the SN, the depth-first
search (DFS) algorithm [52,53] appears to be a consider-
ably more efficient algorithm than the Dijkstra algorithm.
The DFS algorithm has the very important and useful
property that we can build the whole graph from the
starting vertex without information on the order of the
energy levels included in the transition database. The DFS
algorithm is a systematic way to find all the vertices
reachable from a selected source vertex. The basic idea of
the recursive DFS algorithm can be described as follows.
(1) Choose a vertex as a start vertex and mark it as visited.
(2) Visit all neighboring vertices, and mark them as
visited, using the links of the start vertex. (3) Choose the
previously visited vertices as the new starting points. (4)
Visit all neighboring vertices of these vertices using their
links and mark them as visited. (5) Repeat this until all of
the vertices of the graph have been marked as visited.

As to numerical efficiency, one should compare the
Dijkstra and the DFS algorithms on the example of a large
enough database, like that of H2

16O [51] containing close
to 160,000 edges. Finding all the components with Dijk-
stra’s algorithm may take several minutes, while that
with DFS takes a few thousandth of a second. Therefore,
determining the components of the SN is not a bottleneck
if one employs the DFS algorithm as now, in contrast to
Part I, it requires a trivial amount of CPU time even for the
largest SNs envisioned.

5. Solving the system of linear equations

An over-determined system of linear equations

aX¼ Y ð2Þ
characterizes any given SN, where Y, of dimension Nt, and
X, of dimension Nl�1, contain the measured transitions
(sij) and the energy levels (Ej), respectively, within the
component of the SN considered. The elements of matrix
a, of dimension Nt� (Nl�1), are chosen to be –1, þ1, or 0
according to the following scheme: –1 or þ1 if Ej is the
lower or upper level of the ijth transition, respectively,
and 0 otherwise.

When weights wij ¼ d�2
ij are introduced, Eq. (2)

becomes

AX¼ B, ð3Þ

where A¼ aT wa and B¼aTwY. The dimension of the
extremely sparse A matrix is (Nl�1)� (Nl�1) and
Eq. (3) is a simple system of linear equations, which can
be solved more easily than Eq. (2). If the experimental
errors are both random and are characterized by a normal
distribution, the solution of Eq. (3) satisfies the maximum
likelihood principle. Although a is an extremely sparse
matrix, computation of A and B of Eq. (3) is time
consuming. Thus, it is worth noting that these matrices
can be computed according to the following general
analytical formulae:

A¼

P
k

w1k �w12 �w13 ::: �w1N‘

�w12
P
k

w2k �w23 ::: �w2N‘

::: ::: ::: :::

�w1nT
�w2nT

:::
P
k

wNtk

0
BBBBBB@

1
CCCCCCA

and B¼

P
k

w1ks1k

P
k

w2ks2k

^P
k

wNtksNtk

0
BBBBBBB@

1
CCCCCCCA

ð4Þ

The summation indicated for the diagonal elements of
A means that all uncertainties for transitions in which the
first, second, etc. energy level is involved must be
summed up. The summation has a similar meaning for
B. As the A matrix is large and extremely sparse (wij are
non-zero only in the few cases where the ith and jth
energy levels are connected by a measured transition), we
should store it in a special way taking sparsity into
account. The compressed row and column storage (CRS
and CCS) formats [55] are the most generally used storage
methods for sparse matrices. Therefore, we applied both
the CRS and CCS formats to store the A matrix. In both
methods we store the nonzero matrix elements in three
vectors: val, irow, and icol, where the val vector contains
the values of the nonzero elements. In the CRS method
icol contains the column indexes of the elements in the
val vector and irow(i) shows the positions in val and icol
of the first element of the ith row of the given matrix. The
CCS method is very similar to the CRS method but icol
and irol switch roles.

Values of the energy levels can be determined by
solving Eq. (3). The resulting vector X will contain the
energy values. Uncertainties of the energy levels are
determined as the appropriate diagonal elements of the
inverse of matrix A, ej �

ffiffiffiffiffiffiffiffi
A�1

jj

q
, where ej denotes the
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uncertainty (one standard deviation) associated with the
energy level Ej.

Several effective linear solvers are described in the
literature. There are two main types of them: direct and
iterative [56]. The considerable advantage of the direct
methods is that the elements of the inverse matrix can be
determined analytically. Their disadvantage is that they
are much slower than the iterative algorithms. If we want
to determine uncertainties for a large number of energy
levels we need a very effective direct solver. Because the A
matrix is a symmetric positive definite matrix, we can use
a sparse-adaptive LDLT decomposition as a special type of
Cholesky linear solvers [56,57]. If approximate uncertain-
ties are sufficient, a possible choice can be the precondi-
tioned conjugate gradient method [58–60], one of the
fastest linear solvers. The approximate diagonal elements
can be determined using the expression [61]

ðA�1
Þi,i ¼

1

ai,i
þ

1

a
, ð5Þ

where a is the sum of the elements of matrix A. The
average error of Eq. (5), when compared with the analy-
tical results, is about 5–10%. This error is more than
acceptable as generally even a factor of 2 error in the
uncertainties is enough to decide whether an energy level
is well defined or not. As an illustration, the uncertainty of
a very well defined energy level has an uncertainty
between 1–10�10�6 cm�1, while the uncertainty of an
energy level with an average uncertainty is larger than
1000�10�6 cm�1.

6. Handling of experimental uncertainties

One of the greatest difficulties when working with a
database of the size of a SN is the handling of experi-
mental uncertainties attached to the transitions. The
difficulty results from the incorrectness of the uncertain-
ties of some of the measured transitions, which may be
due to several factors, such as incorrect assessment of
some experimental details, effect of local perturbations,
blending within complex experimental features, misas-
signment, calibration difficulties including misidentified
reference lines, etc. Since in a number of cases uncertain-
ties of the measured transitions are too optimistic, the
uncertainty values are much less than they should be;
Table 1
Characteristics and numerical performance of some of the algorithms employe

Algorithms Features

Reading the input data

With hash code No important difference betw

Without hash code

Building the graph

With DFS Only graph building

With Dijkstra Lots of extra information

Solving linear equations

With CGM Numerically exact

With LDLT Exact

Diagonal elements of the A�1 matrix [Eq. (3)]

With Eq. (5) Working with 5–10% error

With LDLT Exact
therefore, these transitions can distort the values of some
of the energy levels (note that understanding error
propagation is made extremely difficult by the extremely
large number of cycles in SNs). To get realistic energy
values we must have realistic uncertainty estimates.
Therefore, in cases where the uncertainty is incorrect we
must correct it. Thus, we need an algorithm which can
detect these problems and correct their uncertainties to
the appropriate extent.

The robust reweighting algorithm [47], advocated by
Watson [48], seems to be especially well suited for
adjusting of the uncertainties of the measured transitions.
It is based on the following simple adjustment formula:

wij ¼
1

d2
ijþa D2

ij

ð6Þ

where a is a positive number (ar1/3) chosen for the
given problem and Dij is the difference between the
original measured and the computed transition

Dij ¼ sij�ðEi�EjÞ ð7Þ

The choice of a is thoroughly discussed in Ref. [48]. It is
sufficient to say here that the smaller a the slower the
reweighting becomes. We found in our applications that
much smaller values of a than suggested by Watson [48]
work fine and thus as the iterative refinement goes along
we set a to as small values as 0.01.

A major advantage of the robust reweighting algo-
rithm is that it offers a clear choice when the adjustment
of the uncertainties of the lines should be stopped.
Adjustment of the uncertainties of the transitions through
this iteratively reweighted least-squares scheme can be
stopped when the quantity

X
ij

wijD
2
ij

Nt�Nl
ð8Þ

becomes as close to 1 as desired. After applying the robust
re-weighting algorithm, MARVEL results in a database
containing self-consistent and correctly assigned transi-
tions and the seemingly best possible related uncertain-
ties. Energy levels, and their uncertainties, determined
from these transitions are in harmony with the measured
transitions and their uncertainties.
d in the MARVEL code.

Relative CPU times

een the two algorithms 1

8

1

104–105

1

102–103

1

102–103
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7. Numerical results

During the development of the MARVEL code, as
detailed in the previous sections, several different numer-
ical algorithms have been tested. Some of the most
relevant ones are given in Table 1.

It is clear from Table 1 that the algorithms perform
quite differently when employed to analyze and explore
spectroscopic networks. The numerical performance of
the methods can be orders of magnitude different, making
the identification of the best algorithms straightforward.

Of course, not only the relative performance of the
methods is important but also the absolute performance
of the best algorithms. In this respect we’d like to point
out a few numbers related to the handling of a database
containing about 160,000 transition entries and close to
20,000 energy levels. All the numbers below refer to CPU
time on a modern laptop using a single processor. Reading
the data into memory takes a couple of seconds but this
task needs to be performed only once. Once this task is
completed, all the other steps in the MARVEL procedure
take just a fraction of a second. This means that the
efficiency of the present MARVEL procedure is excellent,
and this performance allows one to employ MARVEL
for the assignment and labeling of any experimental
high-resolution molecular spectra with the aid of some
computed results. We plan to report such studies in the
near future.

8. Conclusions

The number of molecules subjected to MARVEL-type
analyses is expected to grow substantially in the near
future. These efforts have special relevance as even the
most sophisticated quantum chemical techniques are not
able to approach the accuracy of experiments for deter-
mining the rotational–vibrational energy levels of poly-
atomic and polyelectronic systems. The same can be said,
though to a much lesser extent, about effective Hamilto-
nian approaches. In favorable cases these can provide data
matching the precision of experiments but their predic-
tive power deteriorates considerably when moving to
energy regimes not characterized by measured transi-
tions. Clearly, the most viable approach to move toward
an information system as complete as possible is to
combine incomplete but highly accurate experimental
information with complete but inaccurate first-principles
results.

The usefulness of MARVEL-type inversion procedures
depends heavily on the numerical performance of them. It
is reassuring in this respect that the best algorithms
applied in this study allow the treatment of indeed very
large spectroscopic networks. The largest network treated
here contains some 160,000 transitions and 20,000 energy
levels and the weighted least-squares determination of
the MARVEL energy levels takes just a fraction of a
second. To achieve this numerical effectiveness, we found
the following algorithms to perform best on SNs. The
input data should be read employing hash codes. Building
of the components of the SN should employ a recursive
depth-first search (DFS) algorithm. Solving the linear
least-squares problem becomes especially fast if the
conjugate gradient method (CGM) is employed. Determi-
nation of the uncertainties of the MARVEL energy levels
can be made efficient by the use of a simplified treatment
(see Eq. (5)). The robust reweighting algorithm is espe-
cially well suited for the adjustment of the uncertainties
of the measured transitions.

It appears that the efficiency of the present MARVEL
procedure is excellent, and this performance allows one to
employ MARVEL for (a) the treatment of the experimental
high-resolution spectroscopic data of any molecule of
interest, and (b) the assignment and labeling of any
experimental high-resolution molecular spectra with the
aid of some computed results and some other experi-
mental results.
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