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Abstract Several approximately variational grid-based representation techniques
devised to solve the time-independent nuclear-motion Schrödinger equation share a
similar behavior: while the computed eigenpairs, the only results which are of genuine
interest, are accurate, many of the underlying Hamiltonian matrix elements are inac-
curate, deviating substantially from their values in a variational basis representation.
Examples are presented for the discrete variable representation and the Lagrange-mesh
approaches, demonstrating that highly accurate eigenvalues and eigenfunctions can
be obtained even if some or even all of the Hamiltonian matrix elements in these grid-
based representations are inaccurate. It is shown how the apparent contradiction of
obtaining accurate eigenpairs with far less accurate individual matrix elements can be
resolved by considering the unitary transformation between the representations. Fur-
thermore, the relations connecting orthonormal bases and the corresponding Lagrange
bases are generalized to relations connecting nonorthogonal, regularized bases and the
corresponding nonorthogonal, regularized Lagrange bases.
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1 Introduction

During the last decades the use of grid-based techniques [1–36] almost revolutionized
the variational-type quantum chemical treatment of nuclear motions. Grid-based rep-
resentation techniques allowed the development of much improved algorithms, in turn
yielding more efficient quantum mechanical nuclear motion computations. Applica-
tion of these algorithms contributed to an improved understanding of (a) highly excited
(ro)vibrational states of molecules, [37–56] studied experimentally via high-resolution
molecular spectroscopy, and (b) quantum reaction dynamics [12,57–64]. It is gener-
ally appreciated that grid-based techniques are not strictly variational. This is due
to the fact that the variational principle for the eigenenergies holds if the Hamilto-
nian matrix elements are evaluated “exactly”. This can be achieved either by their
analytic computation, corresponding to what is called the variational basis representa-
tion (VBR), or by highly accurate numerical procedures, whereby arbitrarily accurate
quadrature schemes are employed, as in a finite basis representation (FBR). In more
approximate and apparently more useful schemes, like in the discrete variable repre-
sentation (DVR), [1–4] quadratures and basis functions are entangled and one looses
the monotonic convergence of the eigenvalues offered by the variational principle.
Nevertheless, the much improved numerical behavior of the DVR more than offsets
this inconvenience.

Based on earlier work, [2,3] the DVR technique was introduced to quantum
chemistry by Light and co-workers [4,8,14,15] for the efficient variational quantum
mechanical treatment of nuclear motions. It has been used in a number of variational
computational spectroscopic studies, even to determine full rotational-vibrational
spectra of triatomic molecules, involving a large number of converged eigenvalues
and eigenvectors [37,38,50,52,53]. It was recognized very early on that the Hamilto-
nian matrix elements produced by a DVR representation are occasionally inaccurate by
a much larger amount than first expected. For example, following criticism by Carter
and Meyer [65] on some of the protocols employed in Ref. [37], in 1993 Henderson,
Tennyson, and Sutcliffe (HTS) [38] reinvestigated the quadrature approximation of
treating the radial singularity during the computation of the vibrational eigenspectrum
of H+

3 by a DVR technique. A numerical observation of HTS was that

˜M (2)
β,β = 3M (2)

β,β , (1)

where M(2) is the diagonal matrix of r−2 over spherical oscillator basis func-
tions [66] evaluated using the DVR approximation and ˜M(2) is a symmetric matrix
obtained by the usual transformation of the exactly evaluated matrix of r−2 to the
DVR representation. HTS wrote that this is “an observation for which we have no
explanation”.

The Lagrange-mesh (LM) method, another approximately variational technique
for solving the Schrödinger equation, was introduced by Baye and Heenen [16] in
1986. It has been applied to a wide variety of problems in atomic, molecular, and
nuclear physics, [19–29] yielding consistently highly accurate results. This accuracy
is achieved despite the fact that the Gaussian quadrature approximation employed in
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calculating the matrix elements of the potential energy operator and the overlap inte-
grals in a Lagrange basis is not very accurate, as has been demonstrated in a number of
numerical investigations, for example by Baye et al. [29]. In relation to the numerical
examples studied, these authors stressed [29] that “the Gauss approximation is far less
accurate on individual matrix elements than on energies and wave functions. ...The
simplest mesh is the regularized Laguerre mesh with full use of the Gauss approxi-
mation. The eigenvalue problem is not generalized and the accuracy is excellent. This
might arise from the consistent use of the Gauss approximation in all terms. This
striking accuracy remains unexplained.”

In a recent paper [52] three of us investigated different DVR representations to deal
with singularities present in the triatomic vibrational kinetic energy operator given in
orthogonal internal coordinates of the two distances—one angle type. It was shown
that the quadrature approximation worked almost as well as the exact DVR expres-
sions. This accuracy was observed despite the fact that many of the matrix elements
related to the singularity were computed very inaccurately.

In the following sections, especially in Sect. 2, the high accuracy of some of the grid-
based methods is explored. In Sects. 3–5 explanations are provided to the above-men-
tioned observations. Furthermore, in Sect. 4 some relations fundamental for standard,
orthonormal Lagrange bases are generalized to nonorthogonal, regularized Lagrange
bases.

2 On the accuracy of DVR matrix elements

It is important to stress at the outset that in all DVR computations, with or without
nonvariational behavior in the eigenvalues, the computed matrix elements of coordi-
nate operators are inexact. This can be shown perhaps most simply for the following
one-dimensional test case.

Consider the eigenvalue equation ĤHO� = ε� with 2ĤHO = −d2/dq2 + q2,
and form its DVR by employing the N Gauss–Hermite DVR basis functions defined
in Ref. [67] and related to the N -point Gauss–Hermite quadrature and the first N
eigenfunctions of the harmonic oscillator Hamiltonian ĤHO. To obtain the DVR the
matrix elements of the kinetic energy operator as well as those of the overlap matrix
are calculated exactly by analytical formulae [16,19,67]. The matrix elements of the
potential energy operator are calculated approximately by employing the N -point
Gauss–Hermite quadrature resulting in a diagonal potential energy matrix with diago-
nal elements Vii = q2

i /2, i = 1, 2, . . . , N , where qi denotes the i th Gauss–Hermite
quadrature point [67]. If the potential energy matrix is calculated in the DVR basis
exactly, one finds that it is no longer diagonal. It has nonzero off-diagonal elements
Vi j = 1/4, i �= j , and even the diagonal elements Vii = q2

i /2 + 1/4 differ from
those obtained by the Gaussian quadrature approximation [67]. Clearly, the Hamil-
tonian matrix in the approximate DVR deviates substantially from that in the VBR,
corresponding to calculating all matrix elements exactly in the DVR basis. Yet, by
solving the approximate DVR matrix eigenvalue equation all but the highest eigen-
value is obtained with very high precision [9]. This contradiction can be resolved as
follows.
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The N DVR basis functions can be related to the first N eigenfunctions of
the harmonic oscillator by an orthogonal transformation matrix T [2,3,8,9,31].
The orthogonal transformation of the DVR matrix eigenvalue equation by T results in
a new matrix eigenvalue equation leading to the same eigenvalues as the DVR. This
new matrix representation can be also obtained [3,8,31] by using the first N eigen-
functions of the harmonic oscillator as basis functions, when the matrix elements of
the kinetic energy operator are calculated exactly, and those of the potential energy
operator are calculated by the N -point Gauss–Hermite quadrature. This representation
is called the finite basis representation (FBR). The FBR and the DVR are equivalent
representations in the sense that they lead to the same eigenvalues. Since an N -point
Gaussian quadrature gives exact result for any integrand which is a polynomial of
degree less than or equal to 2N − 1, [68] all but the N N th element in the FBR of the
harmonic oscillator Hamiltonian are exact. This and the equivalence of the FBR and
DVR explain why the DVR gives highly accurate eigenvalues and eigenfunctions in
spite of the inaccuracy of the DVR matrix elements.

3 Explanation of the observation of HTS

The numerical observation of HTS mentioned in the Introduction can be explained as
follows. The exact matrix elements to the operator x−1 = r−2 in a DVR basis based
on generalized Laguerre polynomials Lγ

n (x), with γ > 0, can be obtained analytically
by the approach described in Ref. [67] as

(x−1)i, j = δi j
γ + 1

γ xi
+ (1 − δi j )

1

γ
√

xi x j
(2)

From this expression Eq. (1) follows immediately once noted that HTS set γ = 1/2
in Table 4 of Ref. [38].

The ratio of 3 introduced in Eq. (1) and made apparent in Eq. (2) is not unique to
the spherical oscillator DVR basis with γ = 1/2. In a recent study [52] we employed
Bessel-DVR functions [69] defined as

χi (r) = (−1)i+1 ri
√

2r

r2 − r2
i

J1/2(Kr), i = 0, 1, 2, . . . , N − 1, (3)

where J1/2(Kr) is a Bessel function of the first kind and K = Nπ/Rmax. The set of
Bessel grid points is defined as ri = (i + 1)π/K ; thus, all the grid points are in the
interval 0 < ri ≤ Rmax, where Rmax is a free parameter used to define the range of the
r coordinate. When employing the Bessel-DVR basis the analytic matrix elements of
the r−2 operator are obtained as

(r−2)i, j = (−1)i+ j
(

3r−2
i δi j + 2

rir j
(1 − δi j )

)

, (4)
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whereas the standard DVR approximation provides a diagonal matrix with elements

(r−2)i, j � r−2
i δi j . (5)

Eqs. (4) and (5) clearly show that an observation similar to that of HTS holds
analytically for the Bessel-DVR basis, as well. Although the analytic matrix represen-
tations of r−2 with the spherical oscillator and the Bessel DVR bases, Eqs. (2) and (4),
respectively, show a considerable formal similarity, the actual grid points and thus the
numerical matrix elements are, of course, different.

Note, finally, that the inaccuracy of the matrix elements of coordinate operators
(Sect. 2) does not explain the breakdown of a DVR calculation when a singularity is
present (Sect. 5).

4 The accuracy of the Lagrange-mesh method

The Lagrange-mesh (LM) method is a subset of the DVR methods [8,9,15,31,32,67]
for which the Lagrange conditions provide high accuracy. In the particular case of
a truncated standard orthogonal polynomial basis and the corresponding Gaussian
quadrature grid the DVR and the LM methods are identical. This identity and a simple
analysis of the accuracy of the Gauss–Hermite DVR of the harmonic oscillator eigen-
value equation help elucidating the reasons behind the high accuracy of the eigenvalues
and eigenfunctions resulting from a Lagrange-mesh representation.

Similar arguments can be applied to explain the high accuracy of the Lagrange-mesh
method in the case of more complicated Hamiltonians, whenever the Lagrange-mesh
and DVR methods are identical, i.e., in the case of orthogonal polynomial bases and the
associated Gaussian quadrature grids. When the DVR and Lagrange-mesh methods are
different, which happens, for instance, for the case of the nonorthogonal polynomial
bases studied in Ref. [29], the analyis may be generalized as follows.

Let the basis sets and the quadrature in which the FBR and LM representations
are to be formed be defined. Therefore, the task is to find the transformation matrix
relating the two basis sets and to check the accuracy of the matrix elements in the
FBR. If the transformation matrix is invertible, the FBR and LM representations are
equivalent, that is they lead to the same eigenvalues. If, in addition to this a sufficient
number of the Hamiltonian and overlap matrix elements in the FBR are accurate, then
accurate results will be obtained by using either representation. The transformation
from the FBR to the Lagrange-mesh representation spreads the error localized on
only a small number of matrix elements in the FBR to all the matrix elements in the
Lagrange-mesh representation, but the accuracy of the approximating eigenvalues and
eigenfunctions remains the same as that in the FBR. A worked-out example should
make these general arguments transparent.

Consider the one-dimensional Hamiltonian

Ĥ = − d2

dx2 + l(l + 1)

x2 + V (x), (6)
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where l = 0, 1, . . ., and V (x) is a potential energy function. Let the nonorthogonal,
regularized basis be

ϕ̂n(x) = x Ln(x)e−x/2, n = 0, 1, . . . , N − 1, (7)

where Ln(x) is the nth normalized Laguerre polynomial. The related regularized
Lagrange–Laguerre basis is

f̂i (x) = x

xi
fi (x) = (−1)i x−1/2

i
x L N (x)

x − xi
e−x/2, i = 1, 2, . . . , N , (8)

where

fi (x) = (−1)i x1/2
i

L N (x)

x − xi
e−x/2, (9)

and xi is the i th zero of the N th Laguerre polynomial. This is one of the examples
studied numerically, with various choices of V (x), in Ref. [29].

The FBR and the LM representations of Ĥ are formed in the ϕ̂ and f̂ bases, respec-
tively, by employing the N -point Gauss–Laguerre quadrature, whose quadrature points
are just the xi s and the quadrature weights are defined as

λi = exi

[

xi

(

d L N (x)
dx

)2

x=xi

]−1

, (10)

when calculating matrix elements of V (x) + l(l + 1)x−2 and the overlap integrals.
The matrix elements of the operator −d2/dx2 are calculated exactly by employing
analytical formulae in both representations.

The basis functions ϕ̂n(x) are polynomials of degree n +1 multiplied by the weight
function exp(−x/2). The basis functions f̂i (x) are polynomials of degree N multiplied
by the weight, since

x L N (x)

x − xi
= x

N
∏

j=1; j �=i

(x − x j ). (11)

The Gaussian quadrature approximation to the centrifugal term gives the exact
matrix elements [29]. Therefore, it suffices to check the accuracy of the quadrature
approximation to the matrix elements 〈ϕ̂m |V |ϕ̂n〉 and 〈 f̂ j |V | f̂i 〉.

The polynomial degree of the relevant integrands is m + n + 2 + deg(V (x)) and
2N + deg(V (x)), respectively, where deg(V (x)) denotes the degree of the polyno-
mial best approximating V (x) in the range of configuration space of interest. Since
the number of Gaussian quadrature points is N and 2N −1 < 2N +deg(V (x)), none
of the matrix elements in the Lagrange-mesh representation can be exact. In contrast,
with a given deg(V (x)) and a sufficiently large N , m +n +2 +deg(V (x)) ≤ 2N −1
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can occur for certain values of m and n (recall that m, n = 0, 1, . . . , N − 1) and a
number of matrix elements in the FBR can be exact.

As to the overlap matrix elements, one must consider the integrals 〈ϕ̂m |ϕ̂n〉 and
〈 f̂ j | f̂i 〉. Since 2N > 2N − 1, none of the matrix elements of the overlap matrix in
the Lagrange-mesh representation can be exact. On the contrary, all elements but the
diagonal element m = n = N − 1 of the overlap matrix are exact in the FBR, since
m + n + 2 ≤ 2N − 1 for all allowed values of m and n, save the case m = n = N − 1.

In the particular example V (x) = x2 considered in Ref. [29], most of the matrix
elements of V (x) and the overlap matrix are exact in the FBR, whereas there are no
exact matrix elements in the corresponding LM representation. The numerical results
presented in Ref. [29] show that the Lagrange-mesh representation gives highly accu-
rate results. This may be unexpected if one simply considers the numerical [29] and
the above analytical results on the accuracy of matrix elements of the Lagrange-mesh
representation. Were the FBR and LM representations equivalent, they would lead
to the same eigenvalues. This would readily explain the “unexpected” accuracy of
eigenpairs calculated by the Lagrange-mesh representation, since most of the matrix
elements in the FBR have been shown to be exact, and thus the FBR leads to eigenpairs
of high accuracy. To show the equivalence of the two representations it suffices to find
the matrix transforming from the Lagrange basis f̂ to the ϕ̂ basis.

The standard Lagrange–Laguerre basis functions fi (x) can be expressed as [16]

fi (x) = λ
1/2
i

N−1
∑

n=0

ϕn(xi )ϕn(x), (12)

where

ϕn(x) = e−x/2 Ln(x). (13)

Substitution of Eqs. (12) and (10) into the defining equation, Eq. (8), of the regularized
Lagrange–Laguerre functions gives

f̂i (x) = 1

xi

N−1
∑

n=0

Tni ϕ̂n(x), (14)

where

Tni =
[

xi

(

d L N (x)

dx

)2

x=xi

]−1/2

Ln(xi ). (15)

Since Tni is just the ni th element of the N by N orthogonal matrix T transforming
between standard Gauss–Laguerre DVR and the corresponding Laguerre polynomial
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basis functions, Eq. (14) can be inverted to obtain

ϕ̂n(x) =
N

∑

i=1

Tni xi f̂i (x). (16)

Therefore, representations of an eigenvalue equation formed in the ϕ̂ and f̂ bases are
equivalent and lead to the same eigenvalues, regardless of the approximation invoked
when calculating the matrix elements, and regardless of the fact that the approxima-
tion may give accurate matrix elements with one of the basis sets while failing to give
accurate matrix elements with the other.

The relationship between the regularized basis functions f̂i and ϕ̂n of Eqs. (14) and
(16), respectively, can be rewritten as

f̂i (x) = 1

x2
i

λ
1/2
i

N−1
∑

n=0

ϕ̂n(xi )ϕ̂n(x) (17)

and

ϕ̂n(x) =
N

∑

i=1

λ
1/2
i ϕ̂n(xi ) f̂i (x). (18)

These equations suggest the following generalization of the equations relating ortho-
normal bases and the corresponding Lagrange bases to nonorthogonal, regularized
bases.

Let ϕn(x), n = 0, 1, . . . , N − 1 be a truncated orthonormal basis satisfying the
equations

N−1
∑

n=0

ϕ∗
n (xi )ϕn(x j ) = λ−1

i δi j (19)

N
∑

i=1

λiϕ
∗
n (xi )ϕm(xi ) = δnm, (20)

with grid points xi , i = 1, 2, . . . , N , and where superscript ∗ denotes complex con-
jugation, δi j and δnm denote Kronecker-delta symbols, and λi is defined by Eq. (19)
when i = j . Furthermore, let ϕ̂n(x) = r(x)ϕn(x) be a nonorthogonal set of functions
obtained by multiplying ϕn(x) with a function r(x), requiring only that the regularizing
function r(x) satisfies r(xi ) �= 0, i = 1, 2, . . . , N . Then, the equations

f̂i (x) = 1

r2(xi )
λ

1/2
i

N−1
∑

n=0

ϕ̂∗
n (xi )ϕ̂n(x), (21)
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define nonorthogonal, regularized Lagrange functions. Remarkably, the reverse rela-
tionship has exactly the same form as that of the corresponding relation of orthonormal
bases, i.e.,

ϕ̂n(x) =
N

∑

i=1

λ
1/2
i ϕ̂n(xi ) f̂i (x). (22)

5 On the DVR of essential singularities

In many practical applications, e.g., during the computation of the energy levels of
Coulombic systems, [19,36] energy levels of the spherical oscillator, [52] quantum
dynamics studies, [35] and (ro)vibrational spectra of molecules employing internal
coordinates, [30,38,52] singular terms in the Hamiltonian [30,70–72] have to be
confronted. A common singular term, also present in most of the above-mentioned
examples, is the term r−2 with r ∈ [0,∞). Partly motivated by failures of certain
DVR schemes to treat singularities, several useful alternative strategies have been
advanced for treating singularities in grid-based applications; [38,72–76] however,
these approaches are not discussed here. It is more relevant for the present discussion
to note that when applying the diagonal DVR approximation for the calculation of
matrix elements of r−2, numerical computations show in some cases accurate results
with fast convergence [21,52].

5.1 The case of a complete basis set

Assuming a complete set of basis functions, it is straightforward to prove the validity
of applying the quadrature approximation for singular operators of the form r−n with
n ∈ 1, 2, . . ., and r ∈ [a, b]. What needs to be shown is that the matrices of the
singular operators are diagonal in the DVR representation, which can be thought of as
a unitary transformation method [2,3]. This can be proven by showing that the matri-
ces of the singular operators are the powers of the inverse of the coordinate operator
matrix, since a matrix and its inverse, and the powers of its inverse, share the same set
of eigenvectors.

For n = 1 this can be shown as follows. Let Qi j = 〈i |x | j〉 and Ri j = 〈i |x−1| j〉,
where |i〉 is the i th basis function, x is the coordinate operator, and 〈g|h〉 is the usual
inner product between the elements g and h defined in the Hilbert space of the given
quantum mechanical system. Assuming an orthonormal basis and using the identity
relation

∑∞
k=1 |k〉〈k| = Î ,

(QR)i j =
∞
∑

k=1

Qik Rkj =
∞
∑

k=1

〈i |x |k〉〈k|x−1| j〉 = 〈i |xx−1| j〉 = 〈i | j〉 = δi j = Ii j .

(23)
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Thus, R is the inverse of Q, they have the same eigenvectors, and R is diagonal in the
DVR.

For n > 1 the following can be said. Let R(n)
i j = 〈i |x−n| j〉. Assuming an orthonor-

mal basis,

(R)
(n)
i j = 〈i |x−n| j〉 =

∞
∑

k1,k2,k3,...,kn=1

(R)ik1(R)k1k2(R)k2k3 . . . (R)kn j = (Rn)i j (24)

holds and the matrices of the singular operators with n > 1 are the powers of R. Thus,
they also have the same eigenvectors as the coordinate matrix Q and they are diagonal
in the DVR.

5.2 The case of incomplete basis sets

When using an incomplete basis set, the considerations of Sect. 5.1 are not feasible,
because

∑N
k=1 |k〉〈k| �= Î . However, following the idea of Dickinson and Certain [3]

as reviewed, for example, by Light and Carrington, [15] one can provide an approxi-
mation to the error arising from the use of diagonal DVR matrices.

Let us take the set of {Pl(x)}N−1
l=0 functions, defined in the [a, b] interval of the

coordinate, which are normed and orthogonal with respect to the real weight function
w(x). Let us also assume for the set of functions to have a corresponding quadrature
with quadrature points {λi }N

i=1 and real quadrature weights {wi }N
i=1, which are exact

in representing the orthogonality of the above functions, i.e.,

b
∫

a

w(x)P∗
k (x)Pl(x)dx =

N
∑

i=1

wi P∗
k (λi )Pl(λi ) = δkl . (25)

A straightforward example for {Pl(x)}N−1
l=0 is a set of the first N of some classical

orthogonal polynomials [80] defined in the interval [a, b], and {λi }N
i=1 and {wi }N

i=1
arise from the corresponding Gaussian quadrature rules. In this case the integrals cal-
culated with the quadrature are exact for integrands of w(x) weight function times a
polynomial of order up to 2N − 1. A very useful and practical way for obtaining a
set of quadrature points for a given orthonormal basis is to diagonalize the coordinate
matrix.

To move forward, let our incomplete basis set of N functions be defined as {φl(x) =√
w(x)Pl(x)}N−1

l=0 . Then, the exact matrix elements (VBR representation) of the f (x)

operator are

FVBR
kl =

b
∫

a

φ∗
k (x) f (x)φl(x)dx . (26)
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The approximate matrix elements (FBR representation) calculated within the quad-
rature approximation are

FFBR
kl =

N
∑

i=1

wi

w(λi )
φ∗

k (λi ) f (λi )φl(λi ), (27)

while the matrix elements in the diagonal DVR approximation are

FDVR
i j = f (λi )δi j . (28)

Let us define next the matrix Tsl = [ws/w(λs)]1/2φl(λs) ∈ C N×N , which is unitary
if Eq. (25) holds,

(TT†)i j =
N

∑

s=1

TisT∗
js =

b
∫

a

w(x)P∗
j (x)Pi (x)dx = δi j . (29)

With the help of the T matrix and a little algebra, one can derive the following
relation,

FDVR
i j =

N
∑

s=1

f (λs)δisδ js =
N

∑

s=1

f (λs)
(

TT†
)

is

(

T†T
)

js

=
N

∑

s,k,l=1

f (λs)Tik(T†)ks(T†) jlTls

=
N

∑

s,k,l=1

f (λs)TikT∗
skT∗

jlTsl =
N

∑

k,l=1

T∗
jlTik

N
∑

s=1

f (λs)T∗
skTsl

=
N

∑

k,l=1

T∗
jlTik

N
∑

s=1

ws

w(λs)
φ∗

k (λs) f (λs)φ(λs)

=
N

∑

k,l=1

T∗
jlTikFFBR

kl =
(

TFFBRT†
)

i j
. (30)

Thus, the diagonal DVR is a unitary transform of the FBR, the eigenvalues are
the same in the two representations. This means that during the computation of the
eigenvalues the error of the diagonal approximation using N basis functions is equiv-
alent to the error arising from calculating the matrix element integrals with an N -point
quadrature.
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5.3 Sample computations

In nuclear motion Hamiltonians singularities arise when building an internal coor-
dinate system on a manifold. If the Jacobian of the transformation vanishes, certain
members of the coordinate system seize to exist. If the wave function does not vanish
at a singular geometry than the wave function is in the wrong space. However, as
shown below, this may not cause unsurmountable difficulties for the actual nuclear
motion computations.

As perhaps first discussed in Ref. [30], if the wave function becomes vanishingly
small nearby a singular geometry it is possible to deal with singular terms with suitable
schemes of numerical integration or by choice of a suitable DVR, whereby points in
the vicinity of the singularity are avoided during computation of the singular matrix
elements. If, however, the wave function does not vanish at the singular geometry, the
situation becomes somewhat more complex, as is the case for the H+

3 molecular ion
when the vibrations are treated in the Jacobi coordinate system.

Sample computations concerning the common singular term r−2 with r ∈ [0,∞)

often arising in practical applications in one and three dimensions have been per-
formed. Eigenenergies for the spherical oscillator model problem (1-D) and for the
vibrational energies of the H+

3 molecule (3-D) show that when basis functions with
proper boundary conditions, i.e., satisfying the boundary conditions implied by the
physical system, are used, the diagonal DVR approximation is adequate to get con-
verged eigenstates. The 1-D case is treated in detail in Ref. [52] so it is not elaborated
further in here.

Some relevant numerical results for the vibrational energies of the H+
3 molecular

ion are presented in Fig. 1 and Table 1, obtained using the Hamiltonian given in Eq. (1)

Fig. 1 Pictorial representation of the convergence of the even-parity vibrational states of the H+
3 mol-

ecule. The computations were performed with (Diag-DVR) or without (Exact-DVR) using the diagonal
DVR approximation for the r−2 singular terms in the Jacobi coordinate system and employed 105 and 100
PO Bessel-DVR functions for the two distance-type and 35 Legendre basis functions for the angle-type
coordinates. Absolute deviations from the fully converged eigenenergies obtained with 120, 120, and 51
basis functions applying the Exact-DVR technique are shown
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Table 1 Average relative errors, in %, of the eigenvalues and matrix elements of the singular operator r−2

with r ∈ (0, ∞) in an FBR, obtained with Gaussian approximation, taken with respect to the appropriate
VBR values

Eigenvalues Matrix elements

0.6 26 39 50 59 67 74 80 86 92 97

0.7 39 41 50 59 67 74 80 86 92 97

0.9 50 50 52 59 67 74 80 86 92 97

1.1 59 59 59 60 67 74 80 86 92 97

1.4 67 67 67 67 68 74 80 86 92 97

1.8 74 74 74 74 74 75 80 86 92 97

2.4 80 80 80 80 80 80 81 86 92 97

3.5 86 86 86 86 86 86 86 87 92 97

6.1 92 92 92 92 92 92 92 92 93 97

25.1 97 97 97 97 97 97 97 97 97 98

Matrix elements of the singular operator were computed using 100 basis functions based on spherical oscil-
lator functions. The values presented in the table were obtained through averaging every 10 eigenvalues
and the corresponding 10 × 10 matrix elements

of Ref. [52] and the corresponding volume element. The 3-D test computations [52] of
the vibrational energy levels up to near dissociation were carried out using Jacobi coor-
dinates and a direct product basis set, applying potential optimized (PO) [31,78,79]
Bessel-DVR basis functions for the stretching-type coordinates and Legendre polyno-
mials for the angle-type coordinate. This choice of the Hamiltonian, volume element,
and basis functions, exhibiting the appropriate boundary conditions, ensures that (a)
the eigenfunction (wave function times the stretching coordinates) vanishes at the sin-
gularity; and (b) the numerical procedure yields correct eigenvalues. Figure 1 shows
the absolute error of non-converged even-parity vibrational energy levels, with respect
to the converged results, obtained either via using the diagonal DVR approximation
or via computing all the matrix elements of the r−2 radial singular terms analytically.
As can be seen in Fig. 1, the error of the vibrational eigenenergies are nearly identical
in the two cases, the diagonal DVR approximation can be applied for the evaluation of
singular operator matrix elements. This general result can be of great help to reduce the
cost of computations limited by computer power, such as (ro)vibrational calculations
on larger molecules.

As detailed above, the error in the eigenvalues obtained with the diagonal DVR
approximation are about the same as the error of eigenvalues obtained in the FBR
using Gaussian quadrature for evaluating matrix elements. Table 1 presents the case
of spherical-oscillator basis functions [52] (with the same boundary conditions as the
PO Bessel-DVR functions). The spherical oscillator basis functions have boundary
conditions such that the integrands in the integrals defining the matrix elements of
the r−2 singular operator are not singular. However, when one uses Gaussian quadra-
ture for computing the integrals it is necessary to defactor the weight function of the
Gaussian quadrature, which causes the integrand to become singular. As expected, the
matrix elements of the r−2 singular operator obtained in the FBR through Gaussian
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quadrature have huge relative errors with respect to the VBR. Nevertheless, the eigen-
values show much less deviation from the VBR eigenvalues. This observation is related
to the applicability of the diagonal DVR approximation for evaluating matrix elements
of the r−2 singular term.

6 Summary

Henderson et al. (HTS) [38] found numerically a simple analytical relationship
between certain exact Hamiltonian matrix elements and those obtained by a DVR and
offered no explanation for it. The accuracy of the Lagrange-mesh method has been
considered astonishing [21] yet unexplained by Baye et al. [21,29]. Szidarovszky et al.
[52] found that even when singular integrals are computed inaccurately with a DVR
the numerical difficulties may not compromise the quality and convergence of the
related eigenvalues. In this paper a partial explanation is offered for the paradox of
obtaining highly accurate eigenpairs from inaccurate Hamiltonian matrices.

The explanation offered exploits the following well known but perhaps not always
appreciated facts about grid-based representation techniques. (1) The transformation
of a matrix representation of an eigenvalue equation by an invertible transformation
leaves the approximate eigenvalues unaffected. Such a transformation amounts to
transforming from an initial truncated basis to another finite basis. (2) The initial rep-
resentation can lead to accurate approximate eigenpairs if most of the matrix elements
in the initial basis are accurate, or if there exists another truncated basis related to
the initial one by an invertible transformation, in which most of the matrix elements
are calculated accurately by the same method of integration as the one employed in
calculating the matrix elements in the initial basis.

The observation of HTS has been explained analytically. Interestingly, a highly
similar result can be given for the case of the Bessel-DVR functions.

An example studied numerically in Ref. [29] has been worked out in detail to
make the general arguments of the explanation of the high accuracy of the Lagrange-
mesh method transparent. In addition, the relations connecting orthonormal bases
and the corresponding Lagrange bases have been generalized to relations connecting
nonorthogonal, regularized bases and the corresponding nonorthogonal, regularized
Lagrange bases.

It is straightforward to show the utility of the DVR approximation if a complete set
of basis functions is used. For an incomplete basis set, the situation is more difficult.
Since the diagonal DVR is a unitary transform of the FBR, the eigenvalues carry the
error of computing the matrix elements with the quadrature approximation instead
of using analytical formulae. Although this could imply the breakdown of the diago-
nal DVR approximation for singular operators, the numerical examples involving the
singular term r−2 show it otherwise.

Finally, note an interesting and related property of the optimal generalized finite
basis and discrete variable representations studied by Szalay [9,77]. By relating the
optimal generalized FBR of a quantum mechanical Hamiltonian to a non-Hermitian
effective Hamiltonian matrix, [77] it can be shown that eigenvalues corresponding
to an optimal generalized FBR/DVR with potential optimized grids can have orders
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of magnitude higher accuracy than those resulting from a fully variational compu-
tation employing the “same” truncated basis, while the matrix elements of the two
representations are extremely different.
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