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Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for
all isotopologues of the molecular ion H+

3 . The underlying Born–Oppenheimer electronic structure
computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include
diagonal Born–Oppenheimer corrections computed from the accurate electronic wave functions. A
fit to the 41 655 ab initio points is presented which gives a standard deviation better than 0.1 cm−1

when restricted to the points up to 6000 cm−1 above the first dissociation asymptote. Nuclear mo-
tion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in
orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H+

3 ,
H2D+, and HD+

2 are compared with high resolution measurements. The most sophisticated and
complete procedure employed to compute ro-vibrational energy levels, which makes explicit al-
lowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels
of the H+

3 isotopologues considered to better than 0.2 cm−1. This represents a significant (order-of-
magnitude) improvement compared to previous studies of transitions in the visible. Careful treat-
ment of linear geometries is important for high frequency transitions and leads to new assignments
for some of the previously observed lines. Prospects for further investigations of non-adiabatic ef-
fects in the H+

3 isotopologues are discussed. In short, the paper presents (a) an extremely accu-
rate global potential energy surface of H+

3 resulting from high accuracy ab initio computations and
global fit, (b) very accurate nuclear motion calculations of all available experimental line data up
to 16 000 cm−1, and (c) results suggest that we can predict accurately the lines of H+

3 towards
dissociation and thus facilitate their experimental observation. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4711756]

I. INTRODUCTION

However simple the molecular ion H+
3 may appear, it

contains five quantum particles and thus the non-adiabatic
treatment of its spectra within relativistic or even non-
relativistic quantum mechanics is still not within reach. With
the latest developments in the appropriate protocols and
codes, variational non-adiabatic treatments of three-body sys-
tems within non-relativistic quantum mechanics are becom-
ing commonplace. There are certain evolving techniques
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c)Electronic mail: alexander.alijah@univ-reims.fr.
d)Electronic mail: oleg@theory.phys.ucl.ac.uk.
e)Electronic mail: j.tennyson@ucl.ac.uk.
f)Electronic mail: csaszar@chem.elte.hu.

whereby four-particle systems, such as the isotopologues of
the H2 molecule, can be treated in a non-adiabatic and non-
relativistic fashion. Larger systems can also be treated but
only to a rather limited extent.1

When adiabatic quantum mechanical computations,
based on the separation of nuclear and electronic degrees of
freedom, are employed to determine the high-resolution spec-
tra of small molecules, the following factors need to be inves-
tigated when the precision and the accuracy of the computed
results is determined: (a) the electronic and nuclear Hamilto-
nians used for the computations; (b) the accuracy of the fun-
damental constants; (c) the accuracy and precision of the elec-
tronic energies computed over a grid; (d) the size and extent of
the grid; (e) the number of electronic surfaces treated; (f) the
accuracy of the fitting of the PES employing a suitable func-
tional form and interpolating between the computed points;

0021-9606/2012/136(18)/184303/14/$30.00 © 2012 American Institute of Physics136, 184303-1
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(g) the choice of the masses in the nuclear motion compu-
tations; (h) the accuracy and precision of the variational nu-
clear motion treatment; and (i) the treatment of non-adiabatic
effects.

The H+
3 molecular ion has long been used as a bench-

mark system of quantum physical and quantum chemical
interest; for example, a number of PESs have been com-
puted for it using explicitly correlated electronic structure
techniques.2–5 The accuracy of these and other6 PESs devel-
oped for the H+

3 isotopologues can be tested against a mul-
titude of high-resolution spectroscopy data available for the
H3 − nD+

n system.7–22 It turns out that even in the mid-infrared
region (n = 0–3) ab initio transitions significantly more accu-
rate than about 1 cm−1 can only be computed by treatment
of non-Born–Oppenheimer effects. For transitions below
5 000 cm−1, two of the authors developed an accurate ab initio
model,23 which reproduced the spectra of H+

3 and its deuter-
ated isotopologues to better than 0.1 cm−1 on average. How-
ever, a series of subsequent experimental studies on H+

3 ,9–12

H2D+, and D2H+ (Refs. 19–22) which extend the measure-
ments to much higher frequencies have so far proved harder
to model to high accuracy theoretically. These and other ob-
servations scattered in the literature suggest that there are sig-
nificant remaining difficulties with non-Born–Oppenheimer
effects.21 Furthermore, particular care needs to be exercised
with treatment of the system above the barrier to linearity.11, 24

H+
3 is a key astronomical species in the interstellar

medium25 and the atmospheres of gas giants26, 27 and has
even been detected in supernova remnants.28 Its spectroscopic
detection in space relied on ab initio calculations29 which
have since helped to provide tabulations of key transitions,30

extensive line lists,31, 32 partition functions,33 and cooling
functions.34 There are aspects of these data which need im-
proving: for example, the available cooling functions are not
reliable at low temperatures which may be important for stud-
ies of primordial chemistry.35

Our aim is to generate adiabatic PESs with underlying
ab initio, Born-Oppenheimer energies of an accuracy on the
order of 10−8 Eh, which corresponds to sub 0.01 cm−1 and,
for convenience, energies are largely given in cm−1 below.
Such an accuracy level is not achievable with the use of
any of the black-box electronic structure packages employ-
ing basis sets composed of one-electron functions. The need
to move beyond the standard one-electron basis set approach
has presented a long-standing challenge for electronic struc-
ture computations. In the past two decades several computa-
tional quantum chemistry groups responded to this challenge
and became involved in a sort of “a race for the highest accu-
racy” for the H+

3 molecular ion. The need for the high accu-
racy in the H+

3 PES calculations is partially related to a higher
accuracy one wants to achieve in the computational model-
ing of the ro-vibrational spectrum of the H+

3 system. A more
accurate and complete first-principles spectrum would allow
for better assignment of the experimental spectrum, which is
increasingly better measured and characterized. Ultimately,
assignment of the Carrington bands36 is the goal of compu-
tational studies of the rotational-vibrational spectra of H+

3 .
Among the milestones that have been particularly rele-

vant for studies of the high-resolution spectrum of H+
3 iso-

topologues one should mention the PES generated by Meyer
et al.6 (hereafter referred to as MBB) using the full configu-
ration interaction method and, by modern standards, a fairly
small basis set. The MBB PES includes 69 grid points with
the energy reaching up to about 25 000 cm−1 above the bot-
tom of the PES. The accuracy of the MBB PES was later
improved by more precise computations performed with the
CI method involving configuration functions multiplied by r12

pre-factors.3 An even higher accuracy, claimed to be as high
as 0.02 cm−1 at each point of the 69-point grid, was achieved
by Cencek et al.37 in their computations performed with
explicitly correlated Gaussian functions, augmented with adi-
abatic and relativistic corrections. Recently, even further im-
proved energies and more accurate calculations of the H+

3 ro-
vibrational spectrum were reported by Bachorz et al.38 They
produced total energies of H+

3 with a claimed accuracy of
0.02 cm−1 at over 5000 PES points including many located
above the barrier to linearity.

Even though significant progress has been made in the
calculations of the H+

3 ground-state PES, there is still con-
siderable room for improvement, especially in the peripheral
regions of the PES corresponding to dissociative geometrical
configurations. Better electronic structure calculations need to
involve longer, more accurate expansions of the wave function
in terms of the basis functions and more effective optimization
of their parameters. Such an improved optimization applied to
the wave function expanded in terms of explicitly correlated
shifted Gaussian functions (ECSGs) was recently developed
and presented by the Adamowicz group.5, 39 In Ref. 39 the
method was applied for the variational determination of the
H+

3 ground-state energy at its equilibrium structure (an equi-
lateral triangle with a bond length of 1.65 bohr). It was shown
that using up to 1000 Gaussians in the wave function expan-
sion, the best variational energy upper bound ever for this sys-
tem could be obtained. The best result of –1.343 835 625 02
Eh exhibits an unprecedented precision of below 10−10 Eh. In
Ref. 5, Pavanello et al. developed a procedure that allowed
for the energy calculation to be carried out at multiple H+

3 ge-
ometrical points, using for each point the wave function ob-
tained for a nearby point with the Gaussian centers shifted in
the direction of the shifted nuclei. With that procedure they re-
calculated the energies at all 69 MBB grid points and achieved
the accuracy of 5 × 10−8 Eh (about 0.01 cm−1), which is al-
most an order of magnitude improvement over the previous
best literature computations.37

Recently, we have computed a new, ultra-high accuracy
potential energy surface and used it to assign newly observed
H+

3 transitions in the mid-visible region of the spectrum.13

In that study, the fully ab initio calculations presented re-
produced the observed transition frequencies to within about
0.1 cm−1. Here we give full details of this work, show that the
model is equally applicable to the deuterated isotopologues of
H+

3 , and present predicted vibrational band origins covering
the entire visible region of the spectrum. Section II details the
electronic structure calculations, Sec. III discusses our fitting
to the ab initio grid points, and Sec. IV presents the results
of our nuclear motion calculations. Possible future develop-
ments and our conclusions are discussed in Sec. V. Extensive
data have been placed in the electronic archive40 to aid those
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interested in high accuracy spectroscopic and related studies
on H+

3 and its isotopologues.

II. ELECTRONIC STRUCTURE COMPUTATIONS

The adiabatic composite PESs of the H+
3 isotopologues

considered in this work were constructed by the addition
of three independently generated surfaces: (a) the non-
relativistic Born–Oppenheimer (BO) energy surface, (b) the
diagonal Born–Oppenheimer correction (DBOC) surface, and
(c) the relativistic correction (RC) surface. Generation of each
of these surfaces is based on two steps, computation of the ab
initio BO energies, DBOCs, and RCs on a grid of nuclear ge-
ometries, and subsequent fitting with properly chosen fit func-
tions.

A. BO energies

The following two features distinguish our present H+
3

PES computations from the ones published in the literature:
(1) we calculate the BO energies of H+

3 on a grid contain-
ing 41 655 nuclear geometries, the densest and most extended
grid ever used in computations for the H+

3 ion; and (2) the
unprecedented high accuracy achieved in the BO energy cal-
culation at every grid point.

Let us now explain in some detail the approach we use
in the present study to determine BO energies for H+

3 . The
spatial component of the variational wave function, �M (r),
of an n–electron system is expanded in terms of a set of M
ECSGs, {gk}k = 1, . . . M, as

�M (r) =
M∑

k=1

Ckgk(r). (1)

The ECSGs are the following functions:

gk(r) = exp[−(r − sk)′Ak(r − sk)], (2)

where r and sk are 3n dimensional vectors of the electronic
Cartesian coordinates and of the coordinates of the Gaussian
shift, respectively, and the prime denotes the vector transpo-
sition. Ak is a symmetric matrix of the Gaussian exponential
coefficients defined as

Ak = Ak ⊗ I3, (3)

with I3 being the 3 × 3 identity matrix and ⊗ denoting the
Kronecker product. We represent the Ak matrix in the fol-
lowing Cholesky-factorized form: Ak = L′

kLk , where Lk is a
lower triangular matrix. This factorization automatically as-
sures that Ak is a positive definite matrix and gk(r) is a square-
integrable function regardless of the particular choice of the
Lk matrix elements. The Lk matrix together with the shift vec-
tor, sk , uniquely define the kth ECSG basis function, gk.

In the calculation, the proper permutational symmetry
needs to be implemented in the wave function so that it satis-
fies the Pauli exclusion principle. For the ground singlet state
of H+

3 , the spatial wave function needs to be symmetric with
respect to permutations of the coordinates of the two electrons
which is achieved by adding to each gk basis function (1) a

function with permuted coordinates of the shifts vector and
permuted elements of the Ak matrix.

The total variational energy is calculated by solving the
secular equation

HC = SCE, (4)

where the elements of the Hamiltonian and overlap matri-
ces, H and S, are Hkl = 〈gk|Ĥ |gl〉 and Skl = 〈gk|gl〉, respec-
tively. The diagonal matrix E comprises the BO energies of
the ground and excited states. Those energies are functions of
the nonlinear parameters of the ECSG basis functions, i.e., the
Lk matrix elements and the elements of the sk vectors.

Equation (4) is solved every time the nonlinear parame-
ters are changed by the routine that runs the variational energy
minimization. The optimization is carried out by the mini-
mization of the energy functional with respect to the nonlin-
ear parameters. For this purpose we use the truncated Newton
minimum-search routine of Nash.41 The input to the routine
consists of three items: the values of the nonlinear parameters,
the corresponding energy, and the energy gradient. In our cal-
culations the gradient, which comprises the first derivatives of
the energy with respect to the nonlinear parameters, is deter-
mined using the formulas obtained by analytical differentia-
tion of the energy with respect to those parameters. The for-
mulas involve the first derivative of the error function needed
in the potential energy derivatives. The error-function deriva-
tive is obtained by numerical differentiation.42

The use of analytical energy gradients in the variational
energy minimization sets our work apart from other works
where the ECSG basis functions were utilized,37, 38 and where
the gradient was approximated numerically. The efficiency of
the optimization is significantly improved by the use of the
analytical gradient. For instance, the best H+

3 variational BO
energy obtained with our gradient-based method39 is two or-
ders of magnitude more accurate than the one obtained with
the procedure that involved the numerical derivatives.43

B. DBOCs

Beside the ECSG calculation of the total energy, other
molecular properties have also been subjected to ECSG cal-
culations. Properties, such as the transition dipole moments44

and post-BO energy corrections,45 have been computed. The
calculations of molecular properties and post-BO energy cor-
rections are often more sensitive to the shortcomings of Gaus-
sians than the total energy. These shortcomings include that
Gaussians do not properly describe Kato’s cusp condition46

and that they fade too fast at large distances, faster than re-
quired by the asymptotic conditions for the exact solutions of
the Schrödinger electronic equation.

In the BO approximation, the nuclear and electronic mo-
tions are not dynamically coupled. However, as the nuclei
have finite masses, it is important in very accurate calculations
to account for small energy effects that are due to this cou-
pling. Most of the adiabatic correction to the total energy of a
molecular system is recovered by the DBOC. In this work, in
calculating the adiabatic correction we follow the procedure
described in the work of Cencek and Kutzelnigg.47 The pro-
cedure is based on the approach proposed by Handy et al.,48
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which starts with the following expression for the adiabatic
correction, Ead:

Ead = −1

2

K∑
α=1

1

Mα

3∑
iα=1

〈�| ∂2

∂Q2
iα

|�〉, (5)

where Mα is the mass of nucleus α, Qiα is the ith coordinate
of the nucleus α, and K is the number of the nuclei in the
system. In Eq. (5), instead of directly differentiating the elec-
tronic wave function with respect to the nuclear coordinate
Qiα , the derivative is approximated numerically as

∂�

∂Qiα

� �
(
Qiα + 1

2�Qiα

) − �
(
Qiα − 1

2�Qiα

)
�Qiα

. (6)

The calculation of the wave functions at a molecular geom-
etry where the Qiα coordinate of the α nucleus was shifted
by �Qiα (i.e., �(Qiα ± 1

2�Qiα )) involves recomputation of
the linear expansion coefficients through solving Eq. (4). In
this work, the DBOCs have been calculated using �Qiα = 5
× 10−4 bohr. In addition, the calculation of the shifted wave-
function, �(Qiα ± 1

2�Qiα ), involves adjusting the positions
of the ECSGs in the basis set to the shifted position of the α

nucleus. Given optimal nonlinear parameters (Gaussian expo-
nents and centers) for the ECSG basis set at a certain nuclear
configuration, {Qik }, determined by the optimization routine,
the ECSG basis set for the nuclear configuration shifted by
1
2�Qiα needs to be found. As the positions (and the exponen-
tial parameters Lk) of the Gaussians are expected to change
when the nuclear configuration changes, a relation needs to
be found between those two changes to effectively calculate
the derivative (see Eq. (6)). Unfortunately, this relation is not
known in a functional form. This complicates the calculation
of the DBOCs.

To evaluate the derivatives in Eq. (6), six independent BO
energy calculations per atom need to be performed at each
PES grid point. If such calculations were carried out in the
same way as the BO energy calculations, over 255 000 BO
calculations, each involving full optimizations of Lk’s and
sk’s, instead of the 41 655 calculations, would be needed.
This would be computationally unfeasible. Therefore, instead,
along the lines of the work of Cencek et al.,47 a shifting pro-
cedure was devised in this work to determine the shift of the
Gaussian centers for a particular shift of the coordinates of the
nuclei. Below we describe the procedure emphasizing the fea-
tures which make the procedure more general in comparison
to the procedure proposed by Cencek et al.47

Let us first introduce 3 three-dimensional vectors, Q1,
Q2, and Q3, containing the coordinates of the three nuclei of
H+

3 . Next, we introduce three two-electron “ionic” functions,
φI, φII, and φIII, that have the following shifts of the Gaussian
centers:

si =
(

Qi

Qi

)
, (7)

where i is equal to either 1, 2, or 3. The functions are called
ionic because in Eq. (7) both Gaussian centers coincide with
the position of a nucleus. With that we can approximate any
basis function, φk, with a product of the three ionic functions

introduced above

φk = φIφIIφIII = exp

[
3∑

i=1

(−r′Āir + 2rĀisi − s′
iĀisi)

]
,

(8)

where Āi is Ai ⊗ I3. By equating like terms in Eq. (8) one
gets

3∑
i=1

Āi = Āk, (9)

3∑
i=1

Āisi = Āksk, (10)

s′
kĀksk =

3∑
i=1

s′
iĀisi , (11)

where sk is the 3n-dimensional (i.e., six-dimensional for
H+

3 ) Gaussian shift vector. By assuming that Āi = aiĀk ,
Eqs. (9) and (10) become

3∑
i=1

ai = 1, (12)

3∑
i=1

aisi = sk. (13)

With that Eq. (11) is automatically satisfied. Notice that
Eq. (13) is actually composed of two independent equations,
one for the x coordinates and one for the y coordinates. For
nonlinear geometries of H+

3 , Eqs. (12) and (13) are sufficient
to predict the ECSG shift vectors for the new geometrical con-
figuration of the nuclei. The procedure involves the following
steps.

1. For each ECSG construct the three auxiliary functions
φI − III by using the H+

3 nuclear coordinates as the shift
vectors as shown in Eq. (7).

2. Solve the three independent equations, Eqs. (12) and
(13), to obtain the values of the a1, a2, and a3 param-
eters.

3. Determine the new Gaussian shift vector by inverting
Eq. (13) for the new, changed H+

3 geometry, i.e., Qi

± 1
2�Qi .

However, Eqs. (12) and (13) are not independent when
the H+

3 geometry becomes linear. The linear case is dealt with
by making use of those equations in Eqs. (11) and (13) which
do not zero out in this situation. In addition, Eq. (11) needs to
be simplified (approximated) by “decoupling” the parts corre-
sponding to the different electrons in order to make Eqs. (9)–
(11) specific to each Gaussian center. In the “decoupling” we
assume that the off-diagonal terms in Āk are small compared
to the diagonal terms. This turns Eq. (11) into an equation
that constrains the squares of the x coordinates of the Gaus-
sian centers to the square of the corresponding x coordinate of
the α nucleus

a1 + a2 + a3 = 1, (14)
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a1x1 + a2x2 + a3x3 = xα, (15)

a1x
2
1 + a2x

2
2 + a3x

2
3 = x2

α, (16)

where we have assumed that the linear H+
3 lies on the x axis.

With that, even for a linear H+
3 configuration, the system of

equations, Eqs. (9)–(11), is non-singular and can be solved.

III. FITTING OF THE PES

A. The grid

An appropriate choice of the grid is important for the
quality of the surface fit. Traditionally, the energy is calcu-
lated at points located around the stationary points of the po-
tential, which is a good strategy for the construction of a lo-
cal, i.e., non-global, PES. The renowned PES parametrization
by Meyer et al.,6 the MBB surface, is based on 69 artfully
selected configurations around the minimum of the potential
which extend up to 25 000 cm−1. Their parametrization has
been used by others, such as Röhse et al.3 or Jaquet et al.49

Bachorz et al.38 started from the MBB grid to which they in-
cluded three additional sets of configurations. For construct-
ing a global potential energy surface it is essential to have a
grid spanning the complete configuration space. Such a grid
may be constructed in a systematic manner in hyperspherical
coordinates, in particular, in the so-called democratic hyper-
spherical coordinates.50, 51 Of these coordinates, the hyperra-
dius, ρ, describes the overall size of the system, while the two
hyperangles, θ and φ, describe its geometrical shape.

In the present work we have generated a very dense
grid using the following ranges of the parameters and the

corresponding step sizes:

ρ : 1 ≤ ρ ≤ 20, �ρ = 0.1,

θ : 0◦ ≤ θ ≤ 90◦, �θ = 5◦, (17)

φ : 30◦ ≤ φ ≤ 90◦, �φ = 5◦.

These generate a grid consisting of 44 885 points. However,
the configurations with one or more internuclear distances
being smaller than 0.7 a0 were eliminated leaving a total of
42 498 points. An additional 843 points were also discarded
leaving a final grid of 41 655 points.53 Ab initio data for these
points are given in the electronic archive.40 As can be inferred
from the range of the φ angle, these points span only one sixth
of the surface. The remaining parts of the surface were ob-
tained by symmetry considerations. Due to the very small ρ

step size, our grid is much denser than the grid used before by
Viegas et al.,52 which comprised 9985 points. Figure 1 illus-
trates the density of the grid.

B. BO surface

The three lowest singlet states of H+
3 are intrinsically

connected due to avoided crossings between the ground state
and the first excited state and a conical intersection line be-
tween the first and second excited states. Viegas et al.,52

who first constructed global potential energy surfaces of those
three states, showed that the diatomics in molecules, DIM,
approach54 is a good starting point for an accurate description
of the surfaces. In the present work we follow their approach
to generate a global, high-quality potential energy surface of
the electronic ground state. In the DIM approach, the PES is
obtained by diagonalization of the following 3 × 3 matrix,

H(R) =

⎡
⎢⎣

E(R1) + ε(R2, R3) �(R3) �(R2)

�(R3) E(R2) + ε(R3, R1) �(R1)

�(R2) �(R1) E(R3) + ε(R1, R2)

⎤
⎥⎦, (18)

where

E(Ri) = V[H2,X1�+
g ](Ri), (19)

ε(Rj ,Rk) = 1

2
[V[H+

2 ,X2�+
g ](Rj ) + V[H+

2 ,A2�+
u ](Rj )

+V[H+
2 ,X2�+

g ](Rk) + V[H+
2 ,A2�+

u ](Rk)] − 2EH,

(20)

and

�(Rk) = 1

2
[V[H+

2 ,X2�+
g ](Rk) − V[H+

2 ,A2�+
u ](Rk)]. (21)

In the above equations, V denotes potential energy curves
of H2 or H+

2 and EH is the energy of the 1s state of H,
EH = −0.5 Eh, and i, j, and k are the nuclear indices. R1

is the distance between nuclei 2 and 3, etc., and R is a
three element vector with coordinates R1, R2, and R3. In

our approach we use the H2 and H+
2 potentials of Viegas

et al.,52 which are based on the accurate ab initio ener-
gies of Wolniewicz55, 56 (H2(X1�+

g )), Bishop and Wetmore57

(H+
2 (X2�+

g )), and Peek58 (H+
2 (A2�+

u )).
The advantage of the DIM PES representation is that it

correctly describes the degeneracies within the three states
and within the dissociation channels. However, it is not accu-
rate at small distances because only a limited number of the
diatomic states are used and the overlap between the atomic
and diatomic fragments forming H+

3 are neglected.54 The ac-
curacy can be improved by adding a three-body term V (3)(R)
either to the adiabatic or diabatic potential matrices.59, 60 In
the latter approach, which we employ here, care is needed
in order not to spoil the symmetry properties of the DIM
matrix. The terms inserted to the diagonal elements of this
matrix must be identical for the three matrix elements and
fully symmetric with respect to the permutation of the nuclei.
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FIG. 1. Two-dimensional cut of the resulting PES as an illustration of a scope and density of a grid. The plot is in Jacobi coordinates for a fixed angle of 90◦.
Distances are in bohr with the horizontal axis giving the diatomic H-H distance and the vertical axis the distance of the H+ to diatomic center-of-mass.

Hence the diagonal matrix elements are changed to

Hii → Hii + V (3)(R1, R2, R3). (22)

The corresponding corrections to the off-diagonal elements
are

Hij = �(Rk) − 1

2
[Ṽ (3)(R1, R2, R3)]2. (23)

The three-body term in Eq. (23) is squared to make the off-
diagonal element, Hij, negative (see Eq. (21)).

Let us now describe the functional form of the three-body
terms. They are represented as polynomials of the following
three functions of the standard (see Ref. 23, for example) sym-
metry coordinates, Si,

�1 = Sa, �2 = S2
x + S2

y , �3 = Sy

(
S2

y − 3S2
x

)
(24)

known as the integrity basis functions.61 Any product of these
functions is totally symmetric with respect to permutations of
the three nuclei. A detailed discussion on this point can be
found in the book by Murrell et al.62

The three-body terms are then written as

V (3)(R) = P I (�1, �2, �3) T (�1) . (25)

They are products of polynomial PI,

P I (�1, �2, �3) =
∑

i+2j+3k≤I

cijk�
i
1�

j

2�k
3, (26)

and the following range-determining factor:

T (x) = [1 + eγ (x−x0)]−1, (27)

which damps the three-body terms at large distances where
the DIM approximation takes over. The summation in
Eq. (26) includes all possible terms up to order I with respect
to the symmetry coordinates Si. The symmetry coordinates,
Si, are expressed in terms of expansion coordinates R̃i (see
Viegas et al.52 for details), for which we use, following Meyer
et al.,6 the Morse displacement coordinates

R̃i = [1 − e−βα (Ri/R0,α−1)]/βα. (28)
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TABLE I. Parameters of expansion functions: for the two three-body terms,
the order of the polynomial and the resulting number of linear coefficients is
given together with the numerical values of the nonlinear parameters.

Term Order #Coef γ R0 β x0

Diagonal 15 174 0.3 2.50 1.0 10.0
Off-diagonal 13 123 0.3 2.50 1.0 12.0

The analytical expression for the potential energy surface
contains linear expansion parameters cijk of the three-body
terms and nonlinear parameters of the range-determining fac-
tors and the Morse expansion functions. The initial values of
the nonlinear parameters were taken from our previous fit52

and the linear parameters were determined by least-squares
fitting. Next, the nonlinear parameters were adjusted manu-
ally by a trial-and-error procedure. A summary of the pro-
cedure is given in Table I. The ab initio data points used to
generate the fit describe the energy region up to 6000 cm−1

above the dissociation limit. A few configurations have been
omitted as they were found to spoil the overall quality of the
fit. These were asymptotic configurations for which at least
two internuclear distances are bigger than 9.0 a0. Such con-
figurations are well described by the DIM approach without
the three body corrections (i.e., by the pure DIM representa-
tion). In the FORTRAN code, where the PES fit is calculated,
the representation of the potential that includes the three-body
terms is automatically replaced by the pure DIM representa-
tion for asymptotic configurations.

The quality of the fit generated in this work can be eval-
uated based on Fig. 2, which shows the deviation between
calculated points and their representation by the fit. Two fur-
ther figures are given in the electronic archive40 which give

two-dimensional cuts through the full PES. For most con-
figurations, the fit switches correctly to the asymptotic pure
DIM representation. Unphysical behavior is observed for a
few configurations located well above the fitted energy range.
This range would require a description in terms of three elec-
tronic states, which we will attempt in future work.

The overall root mean square, rms = (
∑N

1 (V (i)
− E(i))2/N )

1
2 , for the PES representation obtained from N

= 7840 points with 297 parameters in the fitting function
is rms = 0.097 cm−1. As mentioned, the 7840 points span
only one sixth of the whole PES, the complete surface is
obtained based on 47 040 points. Of the calculated points not
used in generating the fit most correspond to configurations
with high energies. These points will be needed in our future
work concerning the H+

3 metastable states located above the
dissociation threshold.

An important aspect of this fit is the very large number of
ab initio points used, which allows the PES to be fully deter-
mined at all geometries within the region of interest, and its
correct representation at linear geometries. Both these issues
have been discussed in Ref. 63.

C. Correction surfaces

The DBOC points are fitted not globally, but only up
to 30 000 cm−1 as here we only consider nuclear motion
up to this energy. The fit to the symmetric corrections
was performed using polynomials in terms of symmetry
coordinates23 Sa, Sx, and Sy. Ninety-eight parameters were fit-
ted to about 4000 points giving an analytic surface which re-
produced the points with a standard deviation of 0.007 cm−1.
For the mixed isotopologues, the DBOC obeys special
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FIG. 2. An illustration of the quality of the analytical fit of the ground-state H+
3 PES: residuals for the ab initio grid points used in the fit as function of their

energy above the PES minimum. The vertical line marks the dissociation energy.
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FIG. 3. Residuals (observed minus calculated) for all observed states with J = 0, 1, 2, 3 for H+
3 , H2D+, and D2H+. Calculations are performed with the GLH3P

potential, the non-adiabatic model,23 and DVR3D.

symmetry rules64 and an extra surface was fitted using a stan-
dard functional form.23

The data for the relativistic correction were taken from
the work of Bachorz et al.38 and fitted up to 30 000 cm−1

using an analytical surface with six constants23 and a stan-
dard deviation of 0.007 cm−1. This surface was then added to
the symmetric DBOC. These fits are given in the electronic
archive.40 We call our final PES, including the correction sur-
faces, GLH3P.

IV. NUCLEAR MOTION COMPUTATIONS

We used the GLH3P PES in calculations of ro-vibrational
energy levels. Calculations considering both rotational and vi-
brational motion were performed up to 17 000 cm−1, the re-
gion covered by available experimental studies, and for J = 0
up to 25 000 cm−1, to the end of the visible region. The cal-
culations used the BO surface as well as relativistic and adi-
abatic corrections, as well as non-adiabatic corrections which
are discussed below. The studies considered H+

3 , H2D+, and
D2H+. We do not consider D+

3 here as experimental data are
only available for the bending fundamental.

To make direct comparisons with the extensive results
available from high-resolution molecular spectroscopy for H+

3
(Refs. 8–11, and 13) and the mixed isotopologues H2D+ and

D2H+,14–21 a series of variational rotation-vibration computa-
tions were performed using the adiabatic PESs of this study
and exact kinetic energy operators. These computations uti-
lized the DVR3D program suite65 and previously tested basis
sets, the D2FOPI code66–68 with appropriate basis sets to deal
with singularities present in the ro-vibrational Hamiltonian,68

and the Hyperspherical harmonics code.69, 70

Both DVR3D and D2FOPI have been adapted to allow
for both vibrational and rotational non-adiabatic effects.71 Ini-
tially, all nuclear motion calculations used nuclear masses, the
preferred choice when mass-dependent adiabatic surfaces are
available. The variational procedures employed, without the
non-adiabatic corrections, give energies which agree within
0.01 cm−1, in line with previous72 comparisons. In contrast to
the electronic structure calculations, all nuclear-motion calcu-
lations presented here were performed on desktop computers.

The numerical calculations with the hyperspherical har-
monics code of Wolniewicz proceed in two steps: First, for
each value of the angular momentum, J, and each symmetry,
�, the corresponding hyperspherical harmonics are generated
and the potential matrix is set up in this basis, for each hy-
perradial grid point. In the present work, we calculate the ma-
trix at 300 points within 0.5 a0 ≤ ρ ≤ 6.0 a0. In Wolniewicz’s
algorithm,69 the size of the hyperspherical harmonic expan-
sion is controlled by a single input parameter, Kmax, which
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TABLE II. Difference between observed11 and calculated line frequencies for higher J states of H+
3 . Three lines

are reassigned; for these the final column gives the obs.−calc. difference for the previous assignment, which is
also given.

Band Obs. Calc. Obs.−Calc. o.− c., old assig.
Line (v1, v2, l) cm−1 cm−1 cm−1 cm−1

tP(3, 0) (2,2,2) 10322.235 10322.211 0.02
R(6, 6) Unknown 10329.307
nR(2, 2) (0,4,4) 10366.546 10366.433 0.11
nR(2, 1) (0,4,4) 10367.184 10367.038 0.15
nR(3, 3) (0,4,4) 10454.539 10454.394 0.15
P(6, 6) Unknown 10462.405 10462.493 − 0.09
tQ(2, 1) (2,2,2) 10467.800 10467.701 0.10
tQ(3, 1) (2,2,2) 10468.544 10468.442 0.10
R(5, 5) Unknown 10496.287 10496.122 0.17
nP(2, 1) (2,2,2) 10496.571 10496.562 0.01
tR(4, 4) (2,2,2) 10497.078 10496.886 0.19
nP(3, 2) (2,2,2) 10507.396 10507.406 − 0.01
P(4, 3) (2,2,2) 10528.992 10529.038 − 0.05
nP(5, 5)l (2,2,2) 10558.882 10559.012 − 0.13
tQ(3, 0) (2,2,2) 10560.443 10560.363 0.08
tQ(1, 0) (2,2,2) 10568.209 10568.131 0.08
R(4, 3) Unknown 10573.997 10573.837 0.16
nP(1, 1) (2,2,2) 10581.256 10581.218 0.04
nP(3, 3) (2,2,2) 10583.688 10583.719 − 0.03
nP(2, 2) (2,2,2) 10586.424 10586.424 0.00
tR(3, 3) (2,2,2) 10609.077 10608.913 0.16
tR(2, 2) (2,2,2) 10621.634 10621.479 0.16
P(4, 3) (0,5,1) 10624.888 10624.814 0.07
P(4, 4) (0,5,1) 10632.042 10632.078 − 0.04
Q(5, 0) Unknown 10639.058 10638.824 0.23
tR(1, 1) (2,2,2) 10641.024 10640.897 0.13
+6Q(3, 0) (0,5,3) 10657.149 10656.968 0.18
Q(5, 3) Unknown 10666.604 10666.415 0.19
nQ(1, 1) (2,2,2) 10669.815 10669.754 0.06
nQ(2, 1) (2,2,2) 10671.864 10671.801 0.06
nP(4, 4)u (2,2,2) 10686.611 10686.622 − 0.01
tR(4, 3) (2,2,2) 10690.240 10690.062 0.18
tR(3, 2) (2,2,2) 10705.364 10704.971 0.39a

P(3, 2) (0,5,1) 10705.894 10705.756 0.14
Q(4, 3)u (0,5,1) 10710.311 10710.128 0.18
tR(2, 1) (2,2,2) 10725.953 10725.807 0.15
P(3, 3) (0,5,1) 10730.107 10730.035 0.07
tR(1, 0) (2,2,2) 10752.150 10752.042 0.11
P(2, 2) (0,5,1) 10752.369 10752.278 0.09
nQ(3, 2)u (2,2,2) 10760.627 10760.490 0.14
nQ(2, 2) (2,2,2) 10766.108 10766.070 0.04
P(2, 1) (0,5,1) 10766.320 10766.182 0.14
Q(3, 2)u (0,5,1) 10779.136 10779.092 0.04
+6Q(2, 1) (0,5,3) 10789.844 10789.709 0.13
nQ(4, 2)u (2,2,2) 10793.060 10793.021 0.04
P(3, 0) (0,5,1) 10798.691 10798.490 0.20
P(1, 1) (0,5,1) 10798.785 10798.652 0.13
+6Q(3, 1) (0,5,3) 10803.820 10803.595 0.23
tR(3, 1) (2,2,2) 10805.800 10805.622 0.18
P(5, 3)l (0,5,1) 10811.027 10810.882 0.15
P(3, 1)u (0,5,1) 10813.699 10813.528 0.17
+6Q(4, 1) (0,5,3) 10816.758 10816.537 0.22
Q(1, 0) (0,5,1) 10831.677 10831.526 0.15
nR(1, 1) (2,2,2) 10845.089 10844.994 0.09
nQ(4, 3) (2,2,2) 10847.551 10847.629 − 0.08
Q(4, 2)u (0,5,1) 10855.172 10854.962 0.21
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TABLE II. (Continued.)

Band Obs. Calc. Obs.−Calc. o.− c., old assig.
Line (v1, v2, l) cm−1 cm−1 cm−1 cm−1

P(6, 6) (3,1,1) 10874.681 10875.095 − 0.41
nR(2, 1) (2,2,2) 10934.327 10934.204 0.12
tR(3, 0) (2,2,2) 10935.358 10935.113 0.25 −0.12 Q(3, 0)
Q(3, 0) (0,5,1) 10935.631 10935.477 0.15 0.52 tR(3, 0)
Q(1, 1) (0,5,1) 10939.559 10939.374 0.18
P(5, 5) (3,1,1) 10953.026 10953.644 − 0.62a

+6R(1, 1) (0,5,3) 10963.072 10962.870 0.20
Q(2, 2) (0,5,1) 10964.605 10964.418 0.19
+6R(2, 2) (0,5,1) 10964.792 10964.574 0.22
Q(3, 3) (0,5,1) 10968.257 10968.110 0.15
P(4, 3) (3,1,1) 11015.488 11015.619 − 0.13
nR(2, 2)u (2,2,2) 11019.351 11019.157 0.19
nR(3, 1)u (2,2,2) 11024.705 11025.223 − 0.52a

P(4, 4) (3,1,1) 11033.268 11033.421 − 0.15
R(6, 6) Unknown 11036.111
R(1, 1)l (0,5,1) 11044.146 11043.931 0.22
R(5, 5) Unknown 11046.569 11046.415 0.15
R(4, 4) Unknown 11048.996 11048.794 0.20
R(3, 3)u (0,5,1) 11053.686 11053.424 0.26
Q(2, 1)u (0,5,1) 11071.117 11070.892 0.23
P(3, 3) (3,1,1) 11111.798 11111.726 0.07
nR(4, 3) (2,2,0) 11114.428 11114.293 0.14
R(5, 0) Unknown 11114.628 11114.454 0.17
R(3, 2)u (0,5,1) 11195.630 11195.343 0.28
R(1, 0) (0,5,1) 11228.601 11228.321 0.28
R(1, 1)u (0,5,1) 11244.353 11244.085 0.27
R(2, 1)l (0,5,1) 11246.707 11246.405 0.30
Q(3, 0) (3,1,1) 11278.517 11278.537 − 0.02
R(2, 2)l (0,5,1) 11304.480 11304.199 0.28
Q(1, 0) (3,1,1) 11318.080 11318.099 − 0.02
P(6, 6) Unknown 11331.112 11331.214 − 0.10
Q(3, 3) (3,1,1) 11358.855 11358.915 − 0.06
−6P(5, 5)u (0,5,1) 11422.627 11422.689 − 0.06
−6P(4, 4) (0,5,3) 11482.938 11482.967 − 0.03
P(4, 3) (0,5,5) 11494.835 11494.892 − 0.06 −1.33 P(3,3)
R(4, 3) Unknown 12331.180 12330.898 0.28
tQ(1, 0) (0,6,2) 12419.140 12419.124 0.02
P(3, 3) (0,6,2) 12502.614 12502.659 − 0.05
tQ(3, 3) (1,4,4) 12525.302 12525.250 0.05
R(3, 0) Unknown 12536.621 12536.423 0.20
tQ(1, 1) (1,4,4) 12623.171 12623.057 0.11
nR(3, 3) (1,4,2) 12658.335 12658.114 0.22
tR(1, 0) (1,4,4) 12897.888 12897.786 0.10
R(1, 0) (0,6,2) 13056.013 13055.763 0.25
Q(1, 0) (0,6,4) 13597.367 13597.389 − 0.02
R(3, 3) Unknown 13606.093 13605.820 0.27
Q(1, 0) (0,7,1) 13676.446 13676.197 0.25
R(2, 0) hot 10827.764 10827.500 0.26
R(2, 3) hot 11265.189

aProbable misassigned line.

is the maximum value of the grand angular momentum. We
have used here Kmax = 140, which, for J = 0, yields 444
functions of symmetry A′

1, 408 functions of symmetry A′
2,

and 852 functions of symmetry E′. The basis has then been
contracted to a convenient size N as described by Wolniewicz
and Hinze.70 The ro-vibrational eigenvalues are obtained in
the second step, where a system of N coupled equations in

the hyperradius, ρ, is integrated numerically using the ma-
trix Numerov algorithm with a step size of �ρ = 0.01 a0 and
an interval 0.5 a0 ≤ ρ ≤ 6.0 a0. The potential matrices are
interpolated by cubic splines. Numerical tests were made to
guarantee the convergence of the eigenvalues with respect to
boundaries of the integration interval and the step size. More
critical is the number of coupled equations, N. While N = 100
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is appropriate for the lowest eigenvalues (up to 10 000 cm−1),
it has to be increased for the higher ones. We made numeri-
cal tests with N up to N = 250. For the calculations in sym-
metry E′, N = 200 was found to give fully converged results
for eigenvalues up to 30 000 cm−1. Note that there are 129
eigenvalues up to this energy. The calculations in symme-
tries A′

1 and A′
2 can be done with less coupled equations, as

the density of states is lower (86 and 45 states, respectively).
N = 150 was found to be sufficient. Our reported eigenvalues
are converged with respect to all these parameters to 10−9 Eh.

The CPU time on a single processor (Intel Xenon X5650)
is about 12 min for the preparation of the potential matri-
ces, step 1, and roughly 30 s per eigenvalue with N = 100,
100 s with N = 150, 250 s with N = 200 and 400 s with
N = 250 in step 2. The precise CPU time depends on the den-
sity of states and time needed to find upper and lower bounds
for each eigenvalue.

Calculations of ro-vibrational energies up to 30 000 cm−1

(25 000 cm−1 when allowance is made for the zero-point en-
ergy) were performed with and without non-adiabatic cor-
rections. First, the BO surface plus adiabatic corrections was
used. The discrepancy between theory and experiment proved
to be within 2 cm−1 for observed transition frequencies up to
13 000 cm−1 .9–12 As all the parts of the calculations are per-
formed with an accuracy of approaching 0.01 cm−1, the only
possible source of this discrepancy could be non-adiabatic
effects. We therefore used a simple method to allow for non-
adiabatic correction as developed in Ref. 23: the kinetic en-
ergy (KE) operator was modified by using different vibra-
tional and rotational masses. The vibrational mass was taken
as intermediate between nuclear and atomic, and equal to
1.007 537 u, a value taken from studies of H+

2 by Moss.73

For the deuterated species we also employed the formula of
Moss, see Ref. 23 for details. The rotational mass was taken
to be equal to the nuclear mass. As only J up to 3 was con-
sidered, we did not have to modify the rotational mass as for
low J rotational non-adiabatic effects are negligible. The dif-
ference in the two masses leads to an additional kinetic en-
ergy operator term23 which is zero when the two masses are
equal.

Table III gives results of these calculations for transitions
observed in the visible. After re-assigning four previously
misassigned transitions, the maximum deviation is about
0.2 cm−1 and the standard deviation is less than 0.1 cm−1.
Detailed comparison with the newly observed transitions in
the mid-visible region were given in Ref. 13 and are of simi-
lar quality.

The real test of any beyond-Born–Oppenheimer model is
that it should be capable of giving results of similar quality
for all isopotologues of a system. In this context the asym-
metric isotopologues, H2D+ and D2H+, provide a particularly
stringent test since an accurate calculation of the splitting of
the degenerate H+

3 ν2 bending mode upon asymmetric iso-
topic substitution requires non-Born–Oppenheimer terms of
a lower symmetry than the BO PES.74, 75 The results of the
calculations for energy levels up to J = 3 for H+

3 , H2D+, and
D2H+ are given in the electronic archive.40 For H2D+ and
D2H+ we undertook a systematic check on the labelling of the
energy levels using the rigid rotor decomposition procedure.76

TABLE III. Selected calculated transition frequencies of H+
3 in cm−1. Col-

umn I-rotational assignment, II-observed line center,10, 12 III-calculated fre-
quency using the model of Ref. 23, IV-observed – calculated in this model,
V-observed – calculated using a nuclear mass model. Note the four reassigned
lines.

I IIs III IV V

Q(1,0) 10831.681 10831.520 0.16 − 0.80
P(1,1) 10798.777 10798.650 0.13 − 0.84
R(1,0)a 10752.161 10752.040 0.12 − 1.04
R(2,2)b 10752.161 10755.590 − 3.55
P(1,1) 12413.247 12413.280 0.03 − 1.17
R(1,1) 12588.951 12588.910 0.04 − 1.28
R(1,1) 12620.223 12620.080 0.14 − 1.10
Q(1,1) 12373.526 12373.270 0.26 − 1.05
R(1,1) 12381.137 12381.070 0.07 − 1.06
R(1,1) 12678.688 12678.520 0.17 − 1.06
R(1,1)a 13332.903 13332.850 0.05 − 1.32
P(1,1)b 13332.903 13332.393 0.51
Q(1,0) 13638.251 13638.430 0.18 − 1.31
P(1,1) 15058.681 15058.490 0.19 − 1.25
P(1,1) 15130.480 15130.430 0.05 − 1.34
R(1,0) 15450.112 15450.190 0.08 − 1.54
R(1,0) 15643.052 15643.000 0.05 − 1.44
Q(1,1) 15716.813 15716.590 0.22 − 1.34
R(1,0)a 16506.139 16505.920 0.21 − 1.38
P(1,0)b 16506.139 16495.969 − 10.17
Q(1,0)a 16660.216 16660.210 0.00 − 1.55
P(1,0)b 16660.216 16670.796 − 10.58

aNew assignment on the basis of the calculations presented here.
bPrevious assignment.

These largely confirmed the previous labels, even in cases
where these were not particularly secure.21

A summary of differences between the published ob-
served and calculated levels with J = 0, 1, 2, and 3 is pre-
sented in Fig. 3. As seen from the figure, the results for all
isotopologues are of similar high quality. All, however, show
a small, systematic shift which places the calculated levels
slightly too low. This discrepancy could be easily decreased
further by slight reduction in the effective vibrational mass re-
ducing the maximum deviation to about 0.1 cm−1 and a stan-
dard deviation of about 0.05 cm−1. However, this would de-
stroy the purely ab initio character of this model and was not
pursued here. A further reduction in this discrepancy would
require more sophisticated modeling of non-adiabatic effects;
we return to this point below.

Tables II and III compare our ab initio calculations with
observations for various high-lying states of H+

3 . Not only are
our new calculations significantly better than previous studies
but also we are able to make (re-)assignments for a number of
lines which have previously proved problematic. For exam-
ple, the transition at 13 676 cm−1 was reproduced so badly, a
discrepancy of over 3 cm−1, by the previous calculations that
Bachorz et al.38 concluded that the reason of such discrepancy
was not yet known. Our calculations reproduce this line with
an accuracy similar to the others. As indicated in the table,
there are three lines which are probably misassigned. To con-
firm this will require further calculations with higher J levels;
this will form part of a future study.
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TABLE IV. J = 0 vibrational band origins calculated using the hyperspher-
ical method in full symmetry.

v1 v2 � � n E/cm−1

0 0 0 A′
1 0 0.00

0 1 1 E′ 0 2521.30
1 0 0 A′

1 1 3178.29
0 2 0 A′

1 2 4778.15
0 2 2 E′ 1 4997.89
1 1 1 E′ 2 5554.20
2 0 0 A′

1 3 6262.13
0 3 1 E′ 3 7005.97
0 3 3 A′

1 4 7285.56
0 3 3 A′

2 0 7492.78
1 2 0 A′

1 5 7769.23
1 2 2 E′ 4 7870.23
2 1 1 E′ 5 8488.01
0 4 0 A′

1 6 9001.57
0 4 2 E′ 6 9113.04
3 0 0 A′

1 7 9251.91
1 3 1 E′ 7 9653.70
1 3 3 A′

1 8 9968.94
0 4 4 E′ 8 9997.18
1 3 3 A′

2 1 10210.33
2 2 0 A′

1 9 10593.19
2 2 2 E′ 9 10645.31
0 5 1 E′ 10 10862.75
0 5 3 A′

1 10 10923.36
3 1 1 E′ 11 11323.12
0 5 3 A′

2 2 11529.24
0 5 5 E′ 12 11658.31
1 4 0 A′

1 11 11814.52
1 4 2 E′ 13 12079.40
4 0 0 A′

1 12 12146.46
2 3 1 E′ 14 12303.33
0 6 0 A′

1 13 12382.15
0 6 2 E′ 15 12477.39
2 3 3 A′

1 14 12590.53
1 4 4 E′ 16 12697.40
2 3 3 A′

2 3 12832.17
3 2 0 A′

1 15 13288.91
3 2 2 E′ 17 13318.19
1 5 1 E′ 18 13395.20
1 5 3 A′

1 16 13405.25
0 6 4 E′ 19 13592.25
0 7 1 E′ 20 13702.58
0 7 3 A′

1 17 13725.43
1 5 3 A′

2 4 13756.61
4 1 1 E′ 21 14055.01
2 4 0 A′

1 18 14198.51
1 5 5 E′ 22 14218.02
2 4 2 E′ 23 14478.22
0 7 3 A′

2 5 14566.28
1 6 0 A′

1 19 14666.18
1 6 2 E′ 24 14890.47
3 3 1 E′ 25 14901.82
0 8 0 A′

1 20 14909.87
5 0 0 A′

1 21 14940.15
0 6 6 A′

1 22 15080.18
0 8 2 E′ 26 15122.64
3 3 3 A′

1 23 15168.30
0 6 6 A′

2 6 15190.71
2 4 4 E′ 27 15214.80

TABLE IV. (Continued.)

v1 v2 � � n E/cm−1

1 6 4 E′ 28 15335.96
3 3 3 A′

2 7 15373.68
2 5 1 E′ 29 15791.11
4 2 0 A′

1 24 15877.85
4 2 2 E′ 30 15888.28
2 5 3 A′

1 25 15925.04
2 5 3 A′

2 8 15969.60

Finally, Table IV gives our predicted vibrational band ori-
gins for H+

3 for states up to 16 000 cm−1; a full list of the 263
band origins we predict to lie below 25 000 cm−1 is given
in the electronic archive.40 The results presented were ob-
tained with using the Hyperspherical harmonics code since
this works in full symmetry but are closely mirrored by calcu-
lations performed using the programs D2FOPI and DVR3D.
Vibrational assignments have been included where possible;
however, H+

3 is well known to show very strong couplings
leading to an early onset of classical chaos and a loss of ap-
proximate vibrational quantum numbers.77 These predicted
band origins provide a starting point for further, higher fre-
quency experimental studies.

V. SUMMARY AND CONCLUSIONS

We present a highly accurate global PES of H+
3 molecular

ion, which resulted from extra high accuracy non-relativistic
electronic structure BO calculation in a grid of 41 655 points
which give high density coverage of all H+

3 geometries up to
and well above dissociation and global fit of these ab initio
points using three PESs of interacting electronic states. Adi-
abatic corrections to the BO approximation have also been
computed.

We used three independent nuclear motion codes to cal-
culate rotation-vibration lines to compare our calculated line
centers to experimentally known ones. We have done it both
without and with modeling of non-adiabatic effects. Lines
known experimentally are both below and above the bar-
rier to linearity. The calculated discrepancy between theory
and experiment proved to be better than 0.1 cm−1 on aver-
age, once both adiabatic and non-adiabatic corrections to the
Born–Oppenheimer approximation are explicitly included in
the calculation. We are confident that the presented results
will allow us to predict accurately the rotation-vibration levels
of H+

3 in vicinity of dissociation and assist the experimental
observation of the lines close to dissociation.

Overall, for the ground-state PES of H+
3 and its isotopo-

logues, the largest remaining source of error in the prediction
of ro-vibrational transition frequencies lies in the treatment of
non-adiabatic effects and, possibly, inclusion of effects due to
quantum electrodynamics.86

The present work uses the Polyansky–Tennyson23 ap-
proach of a fixed, effective vibrational mass to represent
non-adiabatic effects. Furthermore, this treatment includes
no allowance for rotational non-adiabatic effects which
will result in it becoming increasingly less accurate with
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rotational excitation, J. It is well known from studies on di-
atomic systems that non-adiabatic effects are geometry de-
pendent and, therefore, high-accuracy treatments require the
use of coordinate dependent masses.78, 79 Bunker and Moss80

formulated a method for treating non-adiabatic effects in tri-
atomic molecules but so far studies that have considered
non-adiabatic effects in triatomic systems have been very
limited.81–84 For example, an empirically motivated approach
due to Schiffels et al.82 introduces energy-dependent correc-
tions to the band origins. Recently, ab initio methods for cal-
culating effective, coordinate-dependent rotational and vibra-
tional masses have been proposed.79, 85 A logical follow-up to
the present study is to implement such an approach for the H+

3
system.

In short, this paper presents (a) an extremely accurate
global potential energy surface of H+

3 resulting from high ac-
curacy ab initio calculations and a global fit, (b) very accurate
calculations for all available experimental energy levels up to
16 000 cm−1 above the ground state, (c) results that suggest
we can predict accurately the lines of H+

3 towards dissocia-
tion and thus facilitate their experimental observation.
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