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In a recent publication �J. Chem. Phys. 127, 084102 �2007��, the nearly variational DEWE approach
�DEWE denotes Discrete variable representation of the Watson Hamiltonian using the Eckart frame
and an Exact inclusion of a potential energy surface expressed in arbitrarily chosen coordinates� was
developed to compute a large number of �ro�vibrational eigenpairs for medium-sized semirigid
molecules having a single well-defined minimum. In this publication, memory, CPU, and hard disk
usage requirements of DEWE, and thus of any DEWE-type approach, are carefully considered,
analyzed, and optimized. Particular attention is paid to the sparse matrix-vector multiplication, the
most expensive part of the computation, and to rate-determining steps in the iterative Lanczos
eigensolver, including spectral transformation, reorthogonalization, and restart of the iteration.
Algorithmic improvements are discussed in considerable detail. Numerical results are presented for
the vibrational band origins of the 12CH4 and 12CH2D2 isotopologues of the methane molecule. The
largest matrix handled on a personal computer during these computations is of the size of
�4·108�� �4·108�. The best strategy for determining vibrational eigenpairs depends largely on the
actual details of the required computation. Nevertheless, for a usual scenario requiring a large
number of the lowest eigenpairs of the Hamiltonian matrix the combination of the thick-restart
Lanczos method, shift-fold filtering, and periodic reorthogonalization appears to result in the
computationally most feasible approach. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3187528�

I. INTRODUCTION

The detailed line-by-line information provided by high-
resolution rovibrational spectroscopic experiments for small-
to medium-sized molecules, such as water, carbon dioxide,
ozone, and methane is a requisite for several scientific and
engineering applications and thus has been included in infor-
mation systems.1 The information in these databases has
been used in the modeling of planetary atmospheres �includ-
ing that of Earth� and in combustion research. Experimental
and empirical approaches yield accurate but extremely in-
complete spectroscopic information.2 On the other hand,
state-of-the-art �nearly� variational quantum chemical ap-
proaches can result in the complete spectral information, but
the accuracy lacks significantly behind that of experiments.
Therefore, the experimental and computational approaches
are complementary to a large extent and must live together
for the foreseeable future, and further development of accu-
rate computational quantum chemical techniques is not only
desirable but also highly useful.

Due to recent developments in electronic structure tech-
niques and fitting algorithms, precise representations of the
potential energy surface �PES�3,4 and the electric dipole mo-
ment surface �DMS�5 can be constructed for small- to
medium-sized molecules. Upon the numerically exact solu-

tion of the nuclear motion problem using such accurate
�semi�global PESs, rovibrational energy levels are computed,
which may approach spectroscopic accuracy. Using the cor-
responding wave functions and the DMS, transition intensi-
ties and thus, in principle, a complete rovibrational spectrum
can be generated. In the majority of cases, the accuracy of
variationally computed energy levels does not exceed that of
experiments.2 On the other hand, the accuracy of theoretical
transition intensities can often compete with that of the ex-
perimental data. Shortly, the most important applications of
variational nuclear motion methods in spectroscopy involve
the computation of many �hundreds and thousands of� energy
levels, wave functions, and transition intensities.

The precise computation of �nearly� complete rovibra-
tional spectra �positions and intensities� of medium-sized
molecules is still an extremely challenging task requiring
sophisticated algorithms and their efficient implementation.
The viable protocols can be classified as belonging to at least
three classes. The first class of feasible variational �ro�vibra-
tional approaches involves tailor-made Hamiltonians and
computer programs. These programs are suitable for a given
number of nuclei and bonding arrangement and use an ana-
lytic kinetic energy operator.6–14 Obviously, there have been
attempts to use universally defined sets of coordinates and
explicit kinetic energy operators based on them. This second
class of methods involves spherical polar coordinates15 or
Watson’s rectilinear internal coordinates16 and the Eckarta�Electronic mail: csaszar@chem.elte.hu.
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frame.17 The Watson Hamiltonian,16 as it is usually
called,18–20 corresponds to the latter choice and has numer-
ous implementations,21–29 though seemingly only one of
them29 has, at present, the capability to perform a numeri-
cally exact computation of �ro�vibrational eigenpairs corre-
sponding to a given PES for molecules with more than four
nuclei. There have also been initiatives toward developing
universal �ro�vibrational codes that are applicable to species
with an arbitrary number of nuclei with user-defined body-
fixed frames and internal coordinates.30–33 This third class is
based on a completely numerical approach for computing the
Hamiltonian matrix and thus does not require the knowledge
of the explicit form of the kinetic energy operator for differ-
ent molecules and different frames and coordinates.

Each of the above approaches requires the diagonaliza-
tion of �Hamiltonian� matrices in order to compute �ro�vibra-
tional eigenvalues and eigenvectors. One strategy results in
lower-dimensional but nonsparse and non-direct-product ma-
trices. Other strategies, based on direct-product bases, pro-
duce often enormous dimensional but sparse matrices with a
special structure. In order to compute the required many
�thousands of� eigenvalues for medium-sized molecules, an
iterative eigensolver �the usual choice is the Lanczos34–36

technique� must be implemented, adapted specifically to the
features and requirements of theoretical �ro�vibrational spec-
troscopy.

In a previous paper from two of the authors �Part I�,29

the representation of the vibrational part of the Watson
Hamiltonian using the Eckart frame was discussed on a
direct-product grid employing the discrete variable represen-
tation �DVR� and Hermite polynomials as a basis. Eigenval-
ues and eigenvectors were computed using a Lanczos eigen-
solver. The approach was called DEWE, standing for the
Discrete variable representation of the Watson Hamiltonian
using the Eckart frame and an Exact inclusion of a PES
expressed in arbitrarily chosen coordinates. In this paper, we
discuss considerable improvements in the eigenvalue and ei-
genvector determination with DEWE, which allows the com-
putation of hundreds of eigenpairs of five-atomic molecules
in a single run.

The structure of the manuscript is as follows. First, the
known background theory of DEWE is summarized. Then, the
most CPU-demanding part of the algorithm, the multiplica-
tion of the Hamiltonian matrix with a vector, is presented,
which was not detailed in Part I. Computational requirements
and scaling properties are also reviewed. Second, the pos-
sible spectral transformation techniques are discussed. This
is important as the original Hamiltonian matrix is often trans-
formed in order to map the required range of its spectrum to
the largest eigenvalues of another matrix and/or to produce a
matrix with specific spectral properties, which are expected
to be more favorable for an iterative eigensolver. In the pre-
sented applications the lowest eigenvalues and correspond-
ing eigenvectors are determined. The computation of interior
eigenpairs are also considered, which could make the evalu-
ation of thousands of eigenpairs a “trivially” parallel task.
Third, the treatment of Lanczos vectors expanding the Kry-
lov subspace is considered. Due to the finite precision arith-
metic of the codes used for programming on digital comput-

ers, the orthogonality of the Lanczos vectors is maintained
artificially. Sophisticated reorthogonalization techniques
were adapted in order to minimize the CPU and most impor-
tantly the input/output �I/O� operations originating from the
required reading and writing of the Lanczos vectors stored
on the hard disk. In order to keep the storage requirements of
the Lanczos vectors manageable, the iteration may be re-
started periodically. The paper ends with applications of the
DEWE code for the 12CH4 and 12CH2D2 isotopologues of the
five-atomic methane molecule.

II. BACKGROUND THEORY OF DEWE

In Part I, the DEWE approach was described in consider-
able detail. Nevertheless, it is necessary to recall the notation
and certain features of the DEWE protocol in order to under-
stand what follows in this article. In DEWE �a� the DVR of
the Watson Hamiltonian, corresponding to Eckart’s body-
fixed frame17 and Watson’s rectilinear internal coordinates,16

is employed using a direct-product Hermite-DVR grid and
�b� vibrational energy levels and wave functions are obtained
by computing the eigenpairs of the real symmetric Hamil-
tonian matrix by means of a Lanczos iterative eigensolver.

Watson’s rectilinear internal coordinates are introduced
as

Qk = �
i=1

N

�
�=x,y,z

�mili�k�xi� − ci��, k = 1, . . . ,3N − 6, �1�

where mi is the mass associated with the ith nuclei, ci� are
the reference coordinates, and xi� are the instantaneous Car-
tesian coordinates in the Eckart frame. The usage of the Eck-
art frame and Watson’s orthogonality requirement16 imposes
the following conditions on the elements li�k specifying the
actual rectilinear internal coordinates:

�
i=1

N

lik
T lil = �kl, �

i=1

N

�milik = 0, and �
i=1

N

�mici � lik = 0 . �2�

Upon any choice of c and l satisfying the requirements given
in Eq. �2�, the vibrational Hamiltonian can be written in the
Watson form16 as

Ĥvib =
1

2�
��

�̂�����̂� +
1

2 �
k=1

3N−6

P̂k
2 −

�2

8 �
�

��� + V , �3�

where the quantities introduced have their usual meaning
�see Part I�.

Normalized Hermite polynomials, Hj�q�, are employed
to construct a basis for the matrix representation of the Wat-
son Hamiltonian. Instead of using spectral functions, the cor-
responding DVR functions are employed. Construction of
the Hermite-DVR grid points and matrices of the derivative
operators are discussed in detail in Part I.

Matrix representation of Ĥvib on a direct-product
Hermite-DVR grid can be facilitated by introducing the trun-
cated resolution of identity between �̂� and ��� and between
��� and �̂�,
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Hvib =
1

2�
��

������� +
1

2 �
k=1

3N−6

Pk
2 −

�2

8 �
�

��� + V , �4�

where ����� ,�=x ,y ,z� and V�RN�N are diagonal matri-
ces. N is the size of the direct-product grid, N=�i=1

3N−6Ni,
where Ni denotes the number of grid points corresponding to
the ith vibrational degree of freedom. In order to compute
eigenpairs of the symmetric Hamiltonian matrix given in Eq.
�4� a Lanczos iterative eigensolver is employed in DEWE.

The Lanczos technique34–36 is a widely used iterative
method for the computation of a set of eigenvalues and
eigenvectors of large �and often sparse�, real symmetric ma-
trices. Let us denote the matrix in question by A�RM�M and
choose an initial vector q1 of norm unity. Set �0=0, q0=0,
and then the Lanczos iteration can be described as

Do j=1,2 , . . . ,m
�a� q j+1=Aq j

�b� � j = �q j ,q j+1�
�c� q j+1=q j+1−� jq j −� j−1q j−1

�d� � j = �q j+1� if � j =0 then Stop
�e� q j+1=q j+1 /� j

End do
After step m the following recurrence is valid for the

Lanczos vectors:

AQm = QmTm + �mqm+1em
T , �5�

where the columns of Qm contain the first m Lanczos vec-
tors, em is the last column of the identity matrix Im, and
Tm=Qm

T AQm�Rm�m is a symmetric tridiagonal matrix with
the elements � j �j=1, . . . ,m� on the diagonal and
� j �j=1, . . . ,m−1� below and above the diagonal. The eigen-
values of Tm are the Ritz values. If the eigenvectors of Tm

are denoted by yi �i=1,2 , . . . ,m�, the vectors vi=Qmyi are
the Ritz vectors. The Ritz values and vectors are the
Rayleigh–Ritz approximations to the eigenvalues and eigen-
vectors of A from the subspace spanned by the Lanczos vec-
tors Qm with typically m�M.

At this point, a couple of important properties of the
Lanczos algorithm are worth emphasizing. First, the eigen-
values of Tm �m=1,2 , . . .� converge to the largest eigenval-
ues of A. Therefore, instead of introducing Hvib directly in
the Lanczos iteration, a spectral transformation is carried out
using a filter function, A�=F�A�, so that the required eigen-
values of A are the largest eigenvalues of A�. The required
range is often the lowest end of the spectrum. Second, ex-
plicit knowledge of the matrix A is not required. Even if a
spectral transformation step is introduced in the algorithm,
only the multiplication of A with a vector is needed. Third,
the Lanczos vectors remain orthogonal among each other
only if exact arithmetics is used. Due to round-off errors,
resulting from the use of finite arithmetics, the orthogonality
is satisfied only at the beginning of the iteration. The loss of
orthogonality results in copies of eigenvalues and spurious
values in the computed spectrum. To avoid the computation

of these annoying features, the orthogonality of Lanczos vec-
tors must be artificially maintained.

III. MULTIPLICATION OF THE HAMILTONIAN MATRIX
WITH A VECTOR

One of the prime features making iterative eigensolvers
useful in the DEWE protocol is the fact that the Hamiltonian
matrix of Eq. �4� does not need to be constructed explicitly;
only its product with a vector is required. What makes DEWE

applicable to larger computations is that the product of the
Hamiltonian matrix, Hvib, with a vector, x, is computed as

y = Hvibx =
1

2�
�
	���

�

������x�
 +
1

2 �
k=1

3N−6

Pk
2x + V�x , �6�

where the parentheses indicate the order of the operations,
and

V� = V −
�2

8 �
�

���, �7�

Pk = − iI1 � I2 � ¯ � Ik−1 � Dk
�1�

� Ik+1 � ¯ � I3N−6

� RN�N, �8�

Pk
2 = I1 � I2 � ¯ � Ik−1 � Dk

�2�
� Ik+1 � ¯ � I3N−6

� RN�N, �9�

and k=1,2 , . . . ,3N−6. Ik�RNk�Nk denotes a unit matrix;
Dk

�1� and Dk
�2��RNk�Nk are the matrices of �� /�Qk

and �2�2 /�Qk
2 in DVR. In Hermite-DVR Dk

�1� and Dk
�2� are

antisymmetric and symmetric matrices, respectively. For
convenience, let us introduce the notation Nl=� j=1

l−1Nj. It is
also useful to introduce a composite index n that can be
expressed as n=1+�k=1

3N−6�nk−1�Nk using the subindices
�n1 ,n2 , . . . ,n3N−6�.

The matrix-vector multiplication algorithm is described
on Scheme 1. This algorithm requires the storage of 10N
64-bit real numbers. The multiplication with the matrices ��

and Pk
2 can be carried out only by using the 	kl

� elements, the
quadrature points q, and the Dl

�1� and Dk
�2� matrices, which

have negligible storage requirements. The number of multi-
plicative operations is �1+12D�D+1�+14DN��N, where
D=3N−6, and N� is a representative number for the number
of points along a vibrational degree of freedom
�N1 ,N2 , . . . ,N3N−6 can have different values�.

In the matrix-vector multiplication algorithm, the main
loop is organized for the elements of the product vector,
which is thus computed directly �not iteratively�. This makes
this algorithm straightforwardly parallelizable with OPENMP

�Ref. 37� �as indicated on the sketch of the algorithm�. The
parallel speed-up on a SUPERMICRO server machine equipped
with two quadcore Xeon processors is nearly ideal up to four
cores. A graph showing the speed-up up to eight cores is
presented in the supplementary material.38
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IV. IMPROVEMENTS IN THE EIGENPAIR
DETERMINATION

A. Spectral transformations

The conventional Lanczos algorithm converges to the
largest eigenvalues of a matrix. The convergence rate of the
Lanczos iteration is determined by the relative separation of
the eigenvalues, 
i= �Ei+1−Ei� / �Emax−Emin�.

39

In order to compute the lowest or interior eigenvalues
instead of the largest ones, the original matrix is transformed
so that the required eigenvalues become the largest eigenval-
ues of the transformed matrix. There are several possibilities
to set up such a spectral transformation.40–42 The cost of the
transformation and the spectral properties of the resultant
matrix can be very different.

In the present work, polynomial, exponential, and shift-
invert transformation techniques were studied. In Fig. 1 a
pictorial overview is given about the different transformation

techniques by visualizing the spectral properties of the trans-
formed matrices with respect to the original spectrum. The
relative separation 
i of the eigenvalues corresponding to the
transformed matrices are given and discussed in detail in the
supplementary material. In what follows the most important
technical aspects are discussed separately for the different
cases considered.

It is worth noting that the converged eigenvectors of the
transformed and the original matrices are the same. If neces-
sary, the eigenvalues of the original matrix Ei

0 can be recov-
ered by computing the expectation value of the original ma-
trix for the eigenvectors, e.g., Ei

0= �vi�H�vi.

1. Polynomial filtering

The family of polynomial spectral transformation
techniques43,44 can be written in general as

Scheme 1

Initialization: Introduce a ∈ R, b ∈ R3×3, c ∈ R3, yα ∈ RN (α = x, y, z), and set a = 0,

b = 0, c = 0, yα = 0 (α = x, y, z).

(a) Computation of the term
�

1
2

�3N−6
k=1 P2

k + V�
�

x

Do n = 1, . . . ,N ← OpenMP

y[n] = V�[n] x[n] +
�3N−6

k=1

�Nk

j=1 D
[2]
k [nk, j] x[n + (j − nk)Nk)]

End do

(b) Computation of the term 1
2

�
αβ παµαβπβx

Do n = 1, . . . ,N ← OpenMP

Do l = 1, . . . , 3N − 6

a =
�Nl

j=1 D
[1]
l [nl, j] x[n + (j − nl)Nl]

yα[n] = yα[n] +
��3N−6

k=1 ζα
kl q[k, nk]

�
a, α = x, y, z

End do

End do

Do n = 1, . . . ,N ← OpenMP

a = 0

Do l = 1, . . . , 3N − 6

bαβ =
�Nl

j=1 µαβ[n + (j − nl)Nl] yβ[n + (j − nl)Nl], α, β = x, y, z

cα =
�Nl

j=1 D
[1]
l [nl, j] (bαx + bαy + bαz), α = x, y, z

a = a +
�

α

��3N−6
k=1 ζα

kl q[k, nk]
�

cα

End do

y[n] = y[n] − a/2

End do
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Pn�H,�,�,�� = ��I − ��H − �I�2�2n+1, n = 0,1,2, . . . , �10�

where the parameters �, �, and � can be tuned in order to
map the required range of the original spectrum to the largest
eigenvalues of Pn�H ,� ,� ,��. Two special cases of the fam-
ily of polynomial filters given in Eq. �10� were used in the
present work, a shift-fold �SF� and a shift-square �SQ� filter-
ing. Polynomial filters can be easily implemented. The num-
ber of matrix-vector multiplications in a single spectral trans-
formation step is 2�2n+1�.

The largest eigenvalue of P0�H ,−1 ,Emax
0 ,0�

= �H−Emax
0 I�2 is the smallest eigenvalue of H. Spectral prop-

erties of this SF transformation are visualized on Fig. 1�a�.
The relative separation of the eigenvalues corresponding to
the transformed matrix �for details see the supplementary
material� is increased by SF if Emax

0 3Emin
0 and only the

lowest eigenvalues of H are to be computed. Ideally, the
relative separation of the eigenvalues of the SF-transformed

matrix can be twice as large as that of the original one, i.e.,

i

SF�2
i
0. Furthermore, the relative separation of the origi-

nal spectrum 
i
0 can be increased by decreasing the largest

eigenvalue of the original matrix, e.g., by means of an ap-
propriate truncation of the direct-product grid. Upon the
computation of the lowest levels, this further increases the
relative separation of the eigenvalues of the transformed ma-
trix as well, thus increasing the convergence rate of the
Lanczos iteration. The largest eigenvalues of P0�H ,1 ,� ,��
=�I− �H−�I�2 are the eigenvalues of H from the neighbor-
hood of �, where � is a point from the required spectral
range and �=max��H−�I�2� /2. Spectral properties of this
transformation are visualized on Fig. 1�b�. As apparent from
Fig. 1�b�, the high end of the transformed spectrum is very
dense leading to slow convergence. One can demonstrate
that the relative separation of the transformed eigenvalues is
much smaller than that of the original ones for the interesting
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(a) Shift-fold (SF) filter
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�2

2

4

6

(b) Shift-square (SQ) filter
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(c) Exponential filter
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(d) Shift-Gaussian filter
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(e) Invert filter
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5

(f) Shift-invert filter

FIG. 1. Schematic representation of different spectral transformation techniques. Line positions of the original and transformed spectra are represented on the
x- and y-axes �red and blue circles�, respectively. The graphs of the transformation functions are also plotted at discrete points �brown circles� on the x-y plane.
See the text for the mathematical definition of the filters presented on plots �a�–�f�.
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spectral range. Furthermore, folding �squaring� the original
spectrum around an interior point � makes the transformed
spectrum nearly doubly degenerate, which worsens the con-
vergence of the Lanczos iteration.

2. Exponential filtering

Compared to the polynomial filters, the use of an expo-
nential function can provide more advantageous spectral
properties to the transformed matrix.39,45,46 A family of ex-
ponential filters can be introduced as

Tn�H,�,�� = e−���H − �I�n−�̄I�/�, n = 1 or 2, �11�

where �̄= ��max+�min� /2 and �= ��max−�min� /2, where the
notations �max=max��H−�I�n� and �min=min��H−�I�n�
were used.

Exponential functions of matrices can be dealt with ef-
ficiently by using a Chebyshev expansion, as suggested
originally by Tal-Ezer and Kosloff47 for the complex case
and later adapted, for instance, by Yu and Nyman,39,45,46 for
real functions. Let us introduce the notation

f�H� = Tn�H,�,��; �12�

then

f�H� � �
l=0

L

AlTl�H�� , �13�

where H�= �H− H̄� /�H, H̄= �Emax
0 +Emin

0 � /2, �H= �Emax
0

−Emin
0 � /2, Emax

0 and Emin
0 are the largest and smallest eigen-

values of H, respectively, Tl is the lth Chebyshev polynomial
of the first kind, and the expansion coefficients

Al =
2 − �l0

�
�

−1

+1 f�E�Tl�E�
�1 − E2

dE �14�

can be computed numerically by Gaussian quadrature. The
accuracy of the expansion can be increased by including
higher degree Chebyshev polynomials. In each transforma-
tion step, the number of multiplications of the original matrix
with a vector is L, the largest degree of Chebyshev polyno-
mials included in the expansion.

The largest eigenvalue of T1�H ,� ,0�=e−��H−H̄I�/� is the
smallest eigenvalue of H. As demonstrated on Fig. 1�c�, the
lowest end of the spectrum is mapped to the largest well-
separated eigenvalues of the transformed spectrum. In prin-
ciple, the relative separation of two close-lying levels can be
increased to close to one �note that 0�
i�1� by choosing
an appropriately large �. In practice, however, the increasing
number of terms in the expansion in Eq. �13� and the finite
numerical representation can limit this possibility. Apart
from the technical difficulties, the transformation
T1�H ,� ,0�, given in Eq. �11�, allows to speed up the con-
vergence of the Lanczos iteration by increasing � at the ex-
pense of an increase in the cost of the transformation. The
larger � becomes, the higher the order of the terms to be kept
in the Chebyshev expansion, resulting in more matrix-vector
multiplications in a single transformation step.

The largest eigenvalues of T2�H ,� ,��=e−���H − �I�2−�̄I�/�

correspond to the eigenvalues closest to �, an interior point
in the original spectrum. The spectral properties of the trans-
formed matrix are visualized on Fig. 1�d�. Due to the expo-
nential filter, the relative separation of close-lying eigenval-
ues could be increased to a value close to one by choosing a
sufficiently large �. However, similar to the SQ case, due to
the folding of the original spectrum, the transformed spec-
trum becomes nearly doubly degenerate, which worsens the
convergence rate of the Lanczos iteration.

3. Shift-invert filtering

The required eigenvalues can be mapped into well-
separated eigenvalues by shifting and inverting the original
Hamiltonian matrix,40

I+�H,�� = �H − �I�−1, �15�

I−�H,�� = ��I − H�−1. �16�

The largest eigenvalues of I+�H ,�� or I−�H ,�� are the ei-
genvalues closest to � but respectively larger or smaller than
�. The advantageous spectral properties of this filtering can
be observed on Figs. 1�e� and 1�f�.

In practice, I+�H ,�� and I−�H ,�� are introduced in the
Lanczos iterations simply by means of matrix-vector multi-
plications, which can be computed by using iterative linear
solvers, e.g., the conjugate gradient method �CGM�, the gen-
eralized minimal residual method, or the quasi-minimum re-
sidual method.36 In DEWE the CGM has been tested for the
computation of the lowest end of the spectrum using a
simple diagonal preconditioning.48

The cost of the transformation, which is determined by
the number of multiplications done with the original matrix
H, strongly depends on the spectral properties of H and the
spectral density of H around �. Several applications and im-
provements in the transformation algorithm have been
published;49–52 however, construction of an efficient and in
some sense black-box method, for instance, a method that is
efficient for any spectral range of a rotation-vibration Hamil-
tonian matrix, still remains a challenging task. The spectral
properties of the transformed matrix suggest that once such a
shift-invert transformation is set up, the Lanczos iteration
converges fast.

For the computation of the lowest eigenvalues,
I+�H ,0�= �H�−1 can be used. The convergence rate can be
improved if I+�H ,��Emin

0 �= �H−�I�−1 is employed. For the
computation of interior eigenvalues of H, the I+�H ,�� and
I−�H ,�� transformations can be used with Emin

0 ���Emax
0 .

In contrast to the polynomial and exponential filters, here the
original spectrum is not folded around the interior point �;
thus the inconvenient near double degeneracy is not intro-
duced in the transformed spectrum.

This functional form was seemingly suggested for the
computation of interior eigenvalues first in 1980.40 Since
then this filter has been recognized as the one that produces
the most favorable spectral properties for the computation of
a few eigenvalues. However, to carry out such a spectral
transformation efficiently for any � remains challenging.
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To summarize this section, the choice of the spectral
transformation is a rather delicate question, and the optimal
choice seems to depend strongly on the application. By
choosing an appropriate form of the spectral transformation,
the required spectral range of the Hamiltonian matrix can be
computed in the Lanczos iteration. In each Lanczos step the
original matrix is transformed, which requires to carry out a
certain number of multiplications of the Hamiltonian matrix
with a vector. This matrix-vector multiplication is generally
the most CPU-intensive part of the computation; thus, the
number of matrix-vector multiplications required determines
the “cost” of a specific spectral transformation. On the other
hand, the spectral properties of matrices corresponding to
different spectral transformation methods can be very differ-
ent. The relative separation of eigenvalues of the matrix in-
troduced in the Lanczos iteration strongly influences the con-
vergence rate of the iteration.

To compute the few lowest or a few interior points of a
spectrum, the most efficient spectral transformation tech-
nique seems to be the shift-invert filtering. Its cost, i.e., the
number of matrix-vector multiplications, strongly depends
on the spectral properties of the original matrix. This method
becomes very expensive as the spectrum becomes dense in
the required range.

Thus, a good strategy to compute several hundred eigen-
pairs is to settle for a less efficient but also less expensive
spectral transformation method, such as the SF filter. The
less efficient the spectral transformation method, the larger
the iteration number of the Lanczos method and the larger
the effort of the handling, i.e., storing and maintaining the
orthogonality, of Lanczos vectors. Specific reorthogonaliza-
tion and restarting methods, which have been found to per-
form the best in the computation of a large number of vibra-
tional energy levels and wave functions, are discussed in the
next section.

B. Building the Krylov subspace

In exact arithmetics Lanczos vectors are orthogonal by
construction;36,53 however, in the presence of round-off er-
rors, this orthogonality is lost. Several approaches have been
put forward to remedy this problem. The loss of orthogonal-
ity manifests itself in the appearance of spurious eigenvalues
and copies of correct ones.

Cullum and Willoughby35 suggested an algorithm that
removed the extra and spurious eigenvalues a posteriori
from the computed spectrum. This approach avoids the reor-
thogonalization of Lanczos vectors and thus their storage;
however, the computation of spurious and extra levels wastes
CPU time. Furthermore, if eigenvectors are also required, the
storage of Lanczos vectors cannot be avoided. Wang and
Carrington54 used a method in which the orthogonality is not
maintained among the Lanczos vectors and the technique
suggested by Cullum and Willoughby was adapted for the
computation of eigenvalues. If eigenvectors were also re-
quired, they were computed in a second run using Lanczos
vectors.

In contrast to the approach used by Wang and Car-
rington, in DEWE we prefer to obtain eigenvalues and eigen-

vectors from a single calculation. To achieve this we store
the Lanczos vectors, but in order to avoid redundant storage
of information, �semi�orthogonality is maintained among the
Lanczos vectors throughout the calculation. Lanczos vectors
can be very large, and if many eigenpairs are required, a
large number of such vectors must be stored �typically on the
hard disk�. Thus, efficient reorthogonalization algorithms and
restarting strategies of the Lanczos iteration were sought and
implemented.

1. Orthogonality of Lanczos vectors

Reorthogonalization procedures require the knowledge
of all previous Lanczos vectors that, in most cases, can be
stored only on the hard disk. Careful choice and implemen-
tation of the reorthogonalization procedure are important to
minimize the number of I/O operations. To quantify the level
of orthogonality two terms can be defined.53,55 Full orthogo-
nality means that the dot product of different Lanczos vec-
tors is not larger than the round-off error �u, whereas the
term semiorthogonality is used if the dot product of different
Lanczos vectors is not larger than ��u.

Full orthogonality among Lanczos vectors can be main-
tained by reorthogonalizing the new Lanczos vector against
all previous ones in each Lanczos step. This brute-force pro-
cedure will be referred to as full reorthogonalization �FRO�.
Reorthogonalization is carried out in DEWE by using a nu-
merically stable version of the Gram–Schmidt procedure
�modified Gram–Schmidt procedure�.56

It has been demonstrated that the requirement of full
orthogonality can be alleviated and semiorthogonality of
Lanczos vectors53,55 is sufficient in order to compute accu-
rate eigenpairs without extra or spurious levels entering the
spectrum. The partial reorthogonalization �PRO�
algorithm53,55 implemented in DEWE is based on this obser-
vation. PRO uses a recurrence formula to estimate the cur-
rent level of orthogonality among the Lanczos vectors with-
out the explicit computation of their dot products. Our
limited experience shows that for �ro�vibrational Hamil-
tonian matrices in DVR of size millions by millions, PRO is
typically 55%–60% cheaper than FRO if 10–500 eigenpairs
are to be computed. This gain is close to the gain 50%
achievable with a so-called periodic reorthogonalization
�PerRO� originally suggested by Grcar.57 PerRO, which is
based on a much simpler algorithm than PRO, reorthogonal-
izes every second Lanczos vector against all the previous
ones. According to our extensive computations of 100–500
eigenpairs of matrices up to the size of 108�108, PerRO is a
stable method providing accurate eigenvalues and eigenvec-
tors without the introduction of spurious levels. The main
advantage of PerRO over PRO is that it does not contain
parameters to be optimized. Furthermore, PerRO is more ro-
bust against the round-off errors introduced by certain spec-
tral transformation methods �e.g., CGM� tested, and it can be
used in a black-box way also with restarted Lanczos itera-
tions �see Sec. 2�.
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2. Restarted Lanczos algorithms

In general, it is not possible to predict the number of
Lanczos iterations required to achieve convergence. There-
fore, it is impossible to predict the storage requirements of
the original procedure. Thus, to keep storage requirements
under control the Lanczos algorithm must be occasionally
restarted.

The thick-restart Lanczos method �TRLM�55,58 was
implemented in DEWE in order to compact the ever-growing
Krylov subspace periodically. With an optimal choice of re-
lated parameters, the convergence rate of the Lanczos itera-
tion is not worsened significantly. This algorithm was imple-
mented and can be used in a nearly black-box way with the
FRO and PerRO techniques.

An upper limit of the hard disk requirements can be
defined for the restarted Lanczos procedures. This upper
limit cannot be arbitrarily small. In principle, the number of
Lanczos vectors stored must be at least as much as the num-
ber of eigenpairs to be computed. At the end of the compu-
tation, the Lanczos vectors can be replaced by the eigenvec-
tors. In practice, in DEWE the minimal storage requirement
�on the hard disk� for the computation of neig eigenvectors
corresponds to the storage of neig+25 Lanczos vectors,
which is close to the optimal choice suggested also by other
applications.55,58,59

Compared to the implicitly restarted Arnoldi algorithm
available in ARPACK,60 TRLM is more adequate for use in
our variational rovibrational studies. First, it is specifically
adapted for a symmetric eigenvalue problem; consequently it
uses less arithmetic operations. Second, it is more tolerant to
the loss of orthogonality of the vectors spanning the Krylov
subspace. Further advantages of TRLM include that it can be
restarted with any number of starting vectors and it retains a
large part of the basis.

In order to use TRLM, the original Lanczos �OL� algo-
rithm must be modified. Before restart, the Lanczos iteration
runs according to the original algorithm given in Sec. II.
After step m the Lanczos iteration is restarted, which as-
sumes the following manipulations:55,58

�R1� Find all eigenvalues and eigenvectors of Tm. The eigen-
values are the Ritz values.

�R2� Choose k Ritz values, �1 , . . . ,�k, and the corresponding
eigenvectors of Tm, y1 , . . . ,yk, to be saved in the restart
procedure.

�R3� Let Yk= �y1 , . . . ,yk� and replace the first k columns of
Qm with QkYk, i.e., Qk=QkYk. The corresponding �i

and �i values are replaced by �i=�i and �i=�mymi,
i=1,2 , . . . ,k.

�R4� Set qk+1=qm+1.
�R5� FRO of qk+1 against qi, i=1,2 , . . . ,k.
�R6� �k=qk

Tqk+1.
�R7� qk+1=qk+1−�kqk−�i=1

k �iqi.
�R8� Continue the Lanczos iteration according to the original

algorithm until the next restart, which repeats the steps
�R1�–�R8� or until the convergence of the Lanczos it-
eration.

Note that QkYk are the Ritz vectors. Due to step �R3�,

the projected matrix Tm is not tridiagonal in TRLM but has a
special block structure. In this algorithm the production of
Ritz vectors in step �R3� and the step �R7� is strongly I/O
dependent. In these steps the vectors of the size of the
Lanczos vectors are read from and written to the hard disk.
The I/O operations can be minimized throughout these ma-
nipulations if the Lanczos vectors are stored on the hard disk
in smaller blocks in direct access files. During the restart
procedure the Ritz vectors are not produced one by one, but
small blocks of all Ritz vectors are computed at once. In this
way the Lanczos vectors are read from the disk, and the Ritz
vectors are written to the disk only once during each restart.
Furthermore, during the computation of Ritz vectors, the
sum in �R7� is also evaluated, thus further saving I/O opera-
tions. The maximum size of the Krylov subspace is dynami-
cally increased to the limiting value during the iteration,
which also reduces the number of I/O operations. Due to the
restarts, the Krylov subspace grows slower, and thus the cost
of the reorthogonalization is also reduced compared to the
nonrestarted version.

C. Efficiency of the DEWE program

Memory requirements of the matrix-vector multiplica-
tion using different spectral transformation techniques and of
the Lanczos iteration are collected in Table I. The memory
requirement is 13N �or 15N� depending on which spectral
transformation technique is used. Lanczos vectors of size N
are stored on the hard disk. In each reorthogonalization step
the required Lanczos vectors are read from the hard disk. If a
large number of eigenpairs is to be computed, the use of an
efficient reorthogonalization technique together with a re-
started Lanczos method is essential.

Figure 2 visualizes the timing of the Lanczos steps using
different eigensolver techniques until the convergence of the
lowest 100 eigenpairs is achieved for the 12CH4 molecule. In
this example the CGM method is used to carry out the spec-
tral transformation, and its timing is given on curve �a� only
for reference purposes. Curves �b� and �c� present the real
timing, including also the spectral transformation �here
CGM� part, of Lanczos iteration steps during the course of
the Lanczos iteration if the thick-restart Lanczos algorithm
�TRLM� with PerRO or the OL algorithm, without restart
and with FRO is employed. Convergence is achieved after
654 and 662 steps using OL-FRO and TRLM-PerRO, re-
spectively. Apparently, the number of Lanczos iterations re-

TABLE I. Memory requirement of DEWE: number of 64-bit reals stored in
the main memory.

Part of DEWE Quantity No. of elements

Lanczos iteration x N
y N

Spectral transformation: SF �CGM�a Scratch N �3N�
Hvibx � 6N

U+V N
�yx ,yy ,yz� 3N

Total 13N �15N�
aSF:shift-fold filter; CGM: conjugate gradient method.
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quired is only slightly increased in the case of thick-restart
Lanczos with PerRO; however, the gain in real timing is
enormous compared to the OL technique with FRO.

The timing of the spectral transformation part, curve �a�
in Fig. 2, consists of matrix-vector multiplications that are
CPU-intensive. As discussed in Sec. III, this part was paral-
lelized with OPENMP. The differences between curves �b� and
�a� or �c� and �a� in Fig. 2 originate from the reorthogonal-
ization and the restarting parts. In these parts dot products of
the Lanczos vectors are computed. The computation of dot
products requires CPU usage but most importantly reading
the Lanczos vectors from the hard disk, which is an I/O
intensive part. Indeed, an enormous difference is experienced
depending on how the Lanczos vectors are handled, as it can
be observed by comparing curves �b� and �c� in Fig. 2.

If the Lanczos iteration is not restarted and full orthogo-
nality is maintained among the Lanczos vectors, the real tim-
ing increases linearly with the number of Lanczos iteration
steps. After 100 Lanczos iterations, the timing �mainly I/O
operations� exceeds the time of the preconditioning step �par-
allelized with OPENMP using eight cores in this example�. If
the Lanczos iteration is restarted periodically, which corre-
sponds to the peaks on curve �b�, the Krylov subspace re-
mains manageable throughout the Lanczos iteration. Note
that between restarts the real timing increases approximately
linearly, which corresponds to the increasing time required to
maintain �semi�orthogonality among the increasing number
of Lanczos vectors. The slope of the linear segments of curve
�b� is approximately half of the slope of curve �c� in line with
the fact that the average timing of PerRO is the half of that of
FRO.

It is worth noting that if a less efficient but cheaper spec-

tral transformation technique is employed, e.g., SF instead of
CGM, the number of Lanczos iteration steps will be in-
creased. In such a case, the usage of sophisticated reorthogo-
nalization and restarting techniques, such as those presented
here, is essential.

According to our experience, if a large number of eigen-
pairs are to be computed, it is useful to replace the CGM
with the SF spectral transformation technique. This prefer-
ence is explained as follows. The SF and CGM filters require
2 and 30–50 matrix-vector multiplications in each Lanczos
step, respectively. Although the SF filter produces a matrix
with less optimal spectral properties than CGM, it typically
requires three to five times as many Lanczos iterations than
CGM. The total number of matrix-vector multiplication dur-
ing the course of the whole Lanczos procedure with the SF
filter requires five to ten times less matrix-vector multiplica-
tions than with CGM. This gain of a factor of five to ten in
the CPU usage can be exploited only if the presented reor-
thogonalization and restarting techniques are employed. Oth-
erwise, this gain of CPU time is lost due to the increased
time of the increased number of I/O operations.

V. NUMERICAL RESULTS ON METHANE

An optimal combination of the Watson Hamiltonian, the
Hermite-DVR, and the sophisticated matrix-vector multipli-
cation and eigensolver techniques presented in this paper al-
lows the computation of hundreds of numerically exact
eigenpairs of arbitrary semirigid five-atomic molecules on a
nowadays standard server machine. Until now such a goal
was only achievable by using tailor-made Hamiltonians with
contracted basis sets and by exploiting symmetry of the mol-
ecules investigated.12,11,61 Our approach is computationally
feasible for five-atomic systems even if the molecule studied
has no symmetry or if it is not exploited. For symmetrical
molecules the computational requirements can be further re-
duced, but this was not done during this preliminary appli-
cation on methane.

Due to the lack of a detailed experimental line-list of
methane and its isotopologues, there have been several at-
tempts to develop algorithms allowing the computation of a
large number of accurate eigenpairs at higher-energy regions.
These studies include nonvariational attempts, such as that of
Wang and Sibert,62 Duncan and Law,63 and Halonen and
co-workers.64,65 As to variational ones, Xie and Tennyson66,67

solved the stretching and bending subproblems of a molecule
of XY4 composition. Carter et al.68,69 computed variationally
the rovibrational energy levels of CH4, CH3D, CH2D2,
CHD3, and CD4 using the MULTIMODE program using an
approximate kinetic energy operator and the original and an
adjusted forms of the quartic force field of Lee et al.70

Chakraborty et al.71 computed the rovibrational energy levels
of CH4 for J=0–50 using MULTIMODE using an approximate
kinetic energy operator.

As to sophisticated PESs of methane, Marquardt and
Quack72,73 constructed a global analytic PES of the elec-
tronic ground state of methane by fitting a flexible and robust
model potential to lower-level ab initio energies and adjust-
ing this fit empirically to experimental observables.
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FIG. 2. Wall time in seconds of the average of two subsequent Lanczos
steps during the course of the Lanczos iteration measured for �a� a single
CGM spectral transformation step �plotted here only for reference�. �b� A
single Lanczos iteration step for the TRLM with PerRO �TRLM-PerRO�.
Maximally 155 eigenvectors were saved on the hard disk. The lowest 100
eigenvalues were converged after 662 Lanczos iteration steps. �c� A single
Lanczos iteration step for the OL algorithm �without restart� with FRO
�OL-FRO�. The lowest 100 eigenvalues were converged after 654 Lanczos
iteration steps. A detailed analysis of the curves is given in the text. Results
are obtained for 12CH4 using six grid points on each vibrational degree of
freedom, which corresponds to a Hamiltonian matrix of size 107�107.

074106-9 Variational energy levels and wave functions J. Chem. Phys. 131, 074106 �2009�

Downloaded 08 Sep 2009 to 157.181.190.84. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Schwenke and Partridge74,75 computed an eighth-order force
field, called T8, of methane and computed vibrational energy
levels using a tailor-made variational program developed for
this molecule. The published variational vibrational energy
levels were converged to about 15 cm−1.

Oyanagi et al.76 developed full-dimensional ab initio po-
tential energy and DMSs using the modified Shepard inter-
polation method based on a fourth order Taylor expansion.
The generated surface was used with MULTIMODE using an
approximate kinetic energy operator to compute vibrational
band origins �VBOs� and vibrational intensities of methane.

Wang and Carrington11 developed a variational computer
code for the computation of rovibrational energy levels of
methane employing an internal coordinate Hamiltonian, a
two-stage contraction technique, and iterative eigensolver
methods. At about the same time, Yu12 also developed a simi-
lar tailor-made variational code for methane.

Throughout this work the T8 force field74 was employed
because this force field was used previously with tailor-made
variational programs for 12CH4.11,12,61 Completely new
VBOs are given here for the 12CH2D2 isotopologue.

To obtain the results described below, the reference
structure c was chosen as the minimum of the T8 PES. The l
matrix was constructed by carrying out a harmonic analysis
with the diagonal-only force-constants in Ref. 70. The actual
values of c and l used are provided in the supplementary
material. As the DEWE approach is numerically exact, the
actual values of c and l, satisfying the conditions given in
Eq. �2�, affect only the convergence rate but do not influence
the values of the converged eigenpairs. This is in line with
the simple physical fact that the choice of c and l is merely a
possible choice of coordinates. It is worth noting that degen-
erate levels converge fast enough only if the corresponding
symmetry of the molecule is accurately reflected by the nu-
merical values of c and l.

In the kinetic energy part the nuclear masses
mC=11.996 709 u, mD=2.013 553 u, and mH=1.007 276 u
were employed. The Radau coordinates employed in the T8
PES were computed using the nuclear masses of the parent
isotopologue for either 12CH4 or 12CH2D2.

A. CH4

The convergence properties of the DEWE approach are
demonstrated by the results given in Table II, where the fun-

damentals of 12CH4 obtained with small direct-product grids
are compared with the converged results. In the notation
�nb ,ns� used henceforth, nb and ns correspond to the number
of grid points used for each bending- and stretching-type
vibrational degree of freedom and to a direct-product grid of
size nb

5ns
4. The accuracy of the zero-point vibrational energy

�ZPVE� is remarkable already with a �3,3� grid �total size of
19 683�, and it is converged to better than 1 cm−1 using a
�4,4� grid �total size of 262 144�. Using a �5,5� grid �total
size of 1 953 125� the ZPVE and the fundamentals, except
�10��00�A1, are converged to better than 0.1 cm−1. This be-
havior contradicts somewhat the traditional view that DVR
requires the usage of a relatively large number of quadrature
points. The symmetry labels of the VBOs follows the polyad
notation �v1v3��v2v4�.

The timing and storage requirements of the computation
of 20 eigenvalues and eigenvectors on a �5,5� grid are as
follows. The size of a single Lanczos vector is 15 MB; thus
194 and 745 MB were the total memory and hard disk re-
quirements, respectively. On a nowadays standard server ma-
chine, such a computation lasts 20–30 minutes.

The lowest 96 energy levels �degeneracy not counted�,
up to �6125 cm−1, of 12CH4 obtained with DEWE and a �9,8�
grid are presented in Table III. The changes in the vibrational
energies upon the increase in the size of the direct-product
grid from �8,7� to �9,8� are also given in the table, which
allows to estimate the level of convergence. Most of the
levels are most likely converged to better than 0.05 cm−1

already with a grid �8,7�. The change in the �20��00�A1 level
was the largest, 1.37 cm−1, in this range upon the increase in
the basis size from �8,7� to �9,8�.

Note that the symmetry labels corresponding to the
VBOs at 5619.44 and 5624.75 cm−1 were given incorrectly
in all previously published tables.11,12,61 The correct assign-
ment is �00��22�E and �01��02�F1 for the lower and upper
levels, respectively.

The timing and storage requirements corresponding to
the results presented in Table III corresponding to a �9,8� grid
�total size of 241 864 704� ��8,7� grid �total size of
78 675 968�� and 100 eigenpairs are as follows. The size of a
single Lanczos vector is 1.8 GB �0.59 GB�; thus 23.4 GB
�7.6 GB� memory is used, and 464 GB �152 GB� data are
stored on the hard disk. On a nowadays standard server ma-

TABLE II. Convergence properties of the DEWE approach: ZPVE and vibrational fundamentals of 12CH4, in cm−1, obtained with the T8 force field �Ref. 74�.

Label Conv.a,b �3,3�a,c �4,4�a,c �5,5�a,c

�00��00�A1 9691.5 9684.2 �7.4� 9690.9 �0.6� 9691.5 �0.1�
�00��01�F2 1311.7 1307.6 �2.4� �4.1� 1310.6 �0.3� �1.1� 1311.7 �0.0� �0.0�
�00��10�E 1533.2 1533.0 �0.9� �0.3� 1532.6 �0.1� �0.7� 1533.2 �0.0� �0.0�
�10��00�A1 2913.8 -d -d 2922.9 ��9.2� 2910.5 �3.3�
�01��00�F2 3013.6 3010.8 �4.0� �2.8� 2999.3 �0.0� �14.3� 3013.5 �0.1� �0.1�
aResults obtained with DEWE using a �nb ,ns� direct-product grid. nb and ns, referred to as �nb ,ns�, grid points were used for the bending- and stretching-type
vibrational degrees of freedom, resulting in a direct-product grid of size nb

5ns
4. Nuclear masses, mC=11.996 709 u and mH=1.007 276 u were employed. The

reference structure was a tetrahedron with the carbon in the center and hydrogens on the apices with r�CH�=1.0890 Å. The actual values of c and l matrices
employed are given in the supplementary material.
bConverged results obtained with DEWE.
cMaximum splittings of degenerate levels due to the incomplete convergence are given in braces as ���highest�−��lowest��. Deviations of energy levels from
converged results are given in brackets, ���Conv.�−��nb ,ns��.
dDeviation from the converged result is larger than 20 cm−1.
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chine, the computation lasts �5 months ��2 months�, de-
pending on the processor and the disk capacities.

B. CH2D2

In order to supplement this study with completely new
numerical results, the first 40 well-converged vibrational en-

TABLE III. ZPVE and VBOs of 12CH4, in cm−1, obtained with DEWE and
the T8 force field �Ref. 74�.

Labela
DEWE

b �c �C
d �E

e

�00��00�A1 9691.54 0.00 −0.01 −
�00��01�F2 1311.74 0.00 0.00 −0.98
�00��10�E 1533.25 0.00 −0.01 0.08
�00��02�A1 2589.77 0.00 0.00 −2.73
�00��02�F2 2616.23 0.00 0.01 −1.97
�00��02�E 2627.29 0.00 0.00 −2.67
�00��11�F2 2831.52 0.00 0.00 −1.20
�00��11�F1 2846.90 0.00 0.01 −0.82
�10��00�A1 2913.71 −0.05 0.00 2.77
�01��00�F2 3013.60 0.00 0.00 5.89
�00��20�A1 3063.48 0.00 0.00 0.17
�00��20�E 3065.00 0.00 0.01 0.14
�00��03�F2 3874.69 0.00 0.05 −4.20
�00��03�A1 3912.22 0.00 0.04 −3.03
�00��03�F1 3924.04 0.00 0.04 −3.52
�00��03�F2 3935.30 0.00 0.02 −4.38
�00��12�E 4104.38 0.00 0.06 0.24
�00��12�F1 4131.22 0.00 0.04 −2.49
�00��12�A1 4135.72 0.00 0.04 −2.70
�00��12�F2 4144.81 0.00 0.02 −1.95
�00��12�E 4153.70 0.00 0.02 −2.70
�00��12�A2 4164.30 0.00 0.02 −2.39
�10��01�F2 4221.84 −0.05 0.00 1.62
�01��01�F2 4314.22 0.00 0.01 4.99
�01��01�E 4317.58 0.00 0.01 4.62
�01��01�F1 4317.82 0.00 0.01 4.76
�01��01�A1 4318.41 0.01 0.01 4.28
�00��21�F2 4350.02 0.00 0.05 −1.31
�00��21�F1 4364.68 0.00 0.03 −1.09
�00��21�F2 4379.71 0.00 0.02 −0.73
�10��10�E 4432.22 −0.05 0.00 2.90
�01��10�F1 4531.36 0.00 0.01 6.19
�01��10�F2 4537.81 0.00 0.01 5.95
�00��30�E 4591.88 0.01 0.04 0.13
�00��30�A2 4595.13 0.00 0.03 0.15
�00��30�A1 4595.40 0.00 0.03 0.06
�00��04�A1 5128.02 0.11 0.27 −6.68
�00��04�F2 5148.96 0.04 0.24 −5.72
�00��04�E 5173.81 0.05 0.20 −6.65
�00��04�F2 5215.52 0.03 0.16 −4.23
�00��04�E 5234.63 0.03 0.13 −5.72
�00��04�F1 5236.32 0.03 0.13 −5.54
�00��04�A1 5247.02 0.04 0.13 −7.04
�00��13�F2 5375.41 0.01 0.25 1.54
�00��13�F1 5393.98 0.00 0.23 −0.29
�00��13�E 5428.38 0.00 0.18 −3.72
�00��13�F2 5434.05 0.01 0.17 −4.47
�00��13�F1 5441.27 0.00 0.15 −4.48
�00��13�F1 5467.01 0.00 0.12 −4.09
�10��02�A1 5492.95 0.17 −0.01 −6.51
�00��13�F2 5448.36 0.00 0.13 −3.24
�10��02�F2 5520.91 −0.04 0.01 −3.74
�10��02�E 5533.66 −0.03 0.02 −1.48
�01��02�F2 5584.97 0.00 0.02 3.01
�01��02�A1 5602.82 0.04 0.06 3.50
�01��02�F2 5611.76 0.01 0.03 11.25
�01��02�F1 5612.09 0.00 0.02 5.90
�01��02�E 5612.65 0.01 0.06 12.63
�00��22�A1 5614.19 0.01 0.29 2.23

TABLE III. �Continued.�

Labela
DEWE

b �c �C
d �E

e

�00��22�E 5619.44 0.01 0.25 12.66
�01��02�F2 5623.03 0.00 0.02 5.37
�01��02�F1 5624.75 0.01 0.03 −6.48
�00��22�F2 5645.08 0.00 0.23 −4.42
�00��22�E 5657.05 0.00 0.14 −3.45
�00��22�F1 5658.21 0.00 0.16 −2.91
�00��22�A2 5666.50 0.00 0.11 −4.14
�00��22�F2 5670.62 0.00 0.13 −1.64
�00��22�A1 5683.98 0.00 0.20 −1.54
�00��22�E 5693.41 0.00 0.11 −1.99
�10��11�F2 5725.07 −0.05 0.05 4.61
�10��11�F1 5743.02 −0.05 0.04 13.03
�20��00�A1 5782.40 1.37 −0.22 7.85
�01��11�F2 5816.74 −0.01 0.02 9.91
�01��11�F1 5820.35 0.00 0.01 6.94
�01��11�E 5827.80 0.07 0.04 9.24
�01��11�A1 5830.24 0.18 0.01 1.16
�01��11�E 5837.90 0.01 0.02 3.18
�01��11�A2 5837.98 0.00 0.02 −6.09
�01��11�F2 5838.95 0.00 0.02 10.35
�01��11�F1 5842.15 0.00 0.02 3.74
�11��00�F2 5853.52 −0.09 0.07 −33.80
�00��31�F2 5867.40 0.00 0.77 0.26
�00��31�F1 5880.94 0.00 0.67 −1.92
�00��31�F2 5895.37 0.00 0.70 −1.25
�00��31�F1 5909.90 0.00 0.72 −0.19
�10��20�A1 5932.90 0.23 0.13 38.62
�10��20�E 5949.38 −0.05 0.18 25.21
�02��00�A1 5960.68 0.25 0.14 7.41
�02��00�F2 5993.41 −0.02 0.05 11.28
�02��00�E 6031.83 0.54 0.02 12.04
�01��20�F2 6047.93 −0.01 0.04 6.71
�01��20�F1 6054.40 0.00 0.05 4.90
�01��20�F2 6059.47 −0.01 0.09 5.85
�00��40�A1 6116.58 0.46 2.93 0.17
�00��40�E 6118.43 0.03 2.77 0.19
�00��40�E 6124.01 0.03 2.51 0.16

aEnergy levels are labeled as �v1v3��v2v4�, following the polyad notation of
Carrington et al. �Refs. 11 and 61�.
bResults obtained with the DEWE program. Nuclear masses, mC

=11.996 709 u and mH=1.007 276 u were used. The reference structure was
a tetrahedron with the carbon in the center and hydrogens on the apices with
r�CH�=1.0890 Å. The actual values of the c and l matrices employed are
given in the supplementary material. 9 and 8, referred to as �9,8�, grid points
were used for the bending- and stretching-type vibrational degrees of free-
dom, resulting in a direct-product grid of total size of 241 864 704.
cDeviations of vibrational energy levels obtained with �9,8� and �8,7� grid
points, �= �̃�DEWE�9,8��− �̃�DEWE�8,7��.
dDeviations of vibrational energy levels obtained with DEWE�9,8� from
results of Carrington et al. �Refs. 11 and 61�, �C= �̃ �Ref. 61�
−�̃�DEWE�9,8��.
eDeviations of vibrational energy levels obtained with DEWE�9,8� and vi-
brational band origins extracted from experimental data �Refs. 78–80�,
�E= �̃�Exp�− �̃�DEWE�9,8��.
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ergy levels of 12CH2D2 were computed. For this isotopo-
logue of methane, these are the first numerically exact re-
sults, i.e., without introducing any approximations in the
variational vibrational treatment.

In Table IV the ZPVE and the first 39 VBOs referenced
to the ZPVE are presented for 12CH2D2 up to �3500 cm−1.

Most of the energy levels obtained from the largest compu-
tation using a �10,8� grid are most likely converged within
0.01 cm−1. In Table IV the deviations of the energy levels
obtained with the �10,8� and �9,7� grids are given, which are
typically less than 0.05 cm−1. There is a single level that
does not fit in this threshold located at 2970.98 cm−1. It
changes by −0.21 cm−1 upon the increase in the basis to
�10,8� from �9,7�. Based on the available experimental data,
this level was assigned to �1A1.

The timing and storage requirements corresponding to
the results presented in Table IV, corresponding to a �10,8�
grid �total size of 409 600 000� and 40 eigenvalues are as
follows. The size of a single Lanczos vector is 3.1 GB; thus
40 GB memory is used by DEWE, and 214 GB data are stored
on the hard disk. On a nowadays standard server machine,
the computation lasts 6–8 weeks.

VI. CONCLUSIONS AND OUTLOOK

Efficiency considerations of an algorithm and computer
code, called DEWE,29 using the Hermite-DVR of the Watson
Hamiltonian coupled with Lanczos-type iterative eigensolv-
ers were presented in detail. Due to the universal form of the
Watson Hamiltonian,16 the DEWE protocol can be used to
compute eigenpairs of semirigid molecules with arbitrary
bonding arrangements without the introduction of any kind
of numerical approximation. The limitation of the DEWE pro-
gram is introduced by the properties of the internal coordi-
nates and the body-fixed frame used to express the vibra-
tional Hamiltonian. The use of rectilinear internal
coordinates and the Eckart body-fixed frame favoring the
neighborhood of the chosen reference structure makes the
approaches based on the Watson Hamiltonian inefficient for
the description of molecules having large amplitude internal
motions. However, for the description of the nuclear motions
of semirigid molecules with a single minimum, the Watson
Hamiltonian is an excellent choice.

In spite of the fact that DEWE uses a direct-product DVR
grid, the ideal combination of the Hermite polynomials used
to construct the DVR and the rectilinear internal coordinates
used to express the vibrational Hamiltonian allow the com-
putation of hundreds of numerically exact eigenvalues and
eigenfunctions of molecules of up to five nuclei using so-
phisticated eigensolvers on nowadays standard server ma-
chines.

An efficient matrix-vector multiplication scheme specifi-
cally developed for the Watson Hamiltonian is presented.
The matrix-vector multiplication is the most CPU-intensive
part of variational computations using a direct-product grid
with an iterative eigensolver, apart from some cases when a
very large number of eigenpairs for small systems are to be
computed. Therefore, an algorithm parallelized with OPENMP

�Ref. 37� was developed.
The actual choice of the spectral transformation method

and the handling of the spread of round-off errors are rather
delicate problems, which were addressed in this work. Ad-
vantages and drawbacks of simple polynomial transforma-

TABLE IV. ZPVE and VBOs of 12CH2D2, in cm−1, obtained with DEWE and
the T8 force field �Ref. 74�.

Labela
DEWE

b � c �E
d

ZPVE A1 8432.21 0.01 –
�4 A1 1033.11 0.00 �0.06
�7 B1 1091.54 0.00 �0.35
�9 B2 1236.90 0.00 �0.62
�5 A2 1331.23 0.00 0.18
�3 A1 1435.27 0.00 �0.14
2�4 A1 2054.51 �0.01 �0.35
�4+�7 B1 2125.13 0.00 �0.45
�2 A1 2144.29 �0.05 1.40
2�7 A1 2202.31 �0.04 0.91
�8 B2 2231.83 �0.01 2.86
�4+�9 B2 2284.55 0.00 1.43
�7+�9 A2 2331.28 0.00 �1.58
�4+�5 A2 2364.85 0.00
�5+�7 B2 2422.44 0.00 �0.41
2�9 A1 2460.04 �0.01 �1.24
�3+�4 A1 2470.07 0.00 �0.87
�3+�7 B1 2516.53 0.00 �1.08
�5+�9 B1 2561.19 0.00 �0.64
2�5 A1 2658.05 0.00 0.29
�3+�9 B2 2672.46 0.00 �0.77
�3+�5 A2 2765.98 0.00
2�3 A1 2856.07 �0.02 �0.40
�1 A1 2970.98 �0.21 5.50
�6 B1 3006.09 �0.04 6.17
3�4 A1 3066.96 �0.02
2�4+�7 B1 3142.32 �0.01
�2+�4 A1 3182.58 �0.03
�4+2�7 A1 3209.95 �0.03
�2+�7 B1 3233.07 �0.03
�4+�8 B2 3241.24 �0.01
3�7 B1 3306.23 �0.04
2�4+�9 B2 3312.08 �0.01
�7+�8 A2 3319.38 �0.01
�4+�7+�9 A2 3375.92 0.00
�2+�9 B2 3380.77 �0.05
2�4+�5 A2 3386.52 �0.01
2�7+�9 B2 3440.30 �0.03
�4+�5+�7 B2 3447.78 0.00
�8+�9 A1 3456.42 0.00

aAssignment of vibrational energy levels follows that of Ref. 80.
bResults obtained with the DEWE program. Nuclear masses mC

=11.996 709 u, mD=2.013 553 u, and mH=1.007 276 u were used. The
reference structure was a tetrahedron with the carbon in the center and
hydrogens on the apices with r�CH�=r�CD�=1.0890 Å were used. The
actual values of c and l matrices employed are given in the supplementary
material. Grid points 10 and 8, referred to as �10,8�, were used for the
bending- and stretching-type vibrational degrees of freedom, resulting in a
direct-product grid of a total size of 409 600 000.
cDeviation of vibrational energy levels obtained by using the DEWE program
and the �10,8� and �9,7� grids, �= �̃�DEWE�10,8��− �̃�DEWE�9,7��.
dDeviation of computed levels from experimental data, �E= �̃ �Ref. 80�
−�̃�DEWE�10,8��. �E is given where experimental data were available.
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tion techniques, exponential filters using a Chebyshev expan-
sion, and shift-invert techniques using the conjugate gradient
method were investigated.

In order to compute not only eigenvalues but also eigen-
vectors, the Lanczos vectors must be stored on the hard disk.
To avoid the computation of extra copies of exact levels or
spurious eigenvalues, the Lanczos vectors need to be reor-
thogonalized. In order to minimize the I/O operations re-
quired for reading the previous Lanczos vectors, it seems to
be enough to maintain semiorthogonality using PerRO.57

To keep manageable the size of the Krylov subspace
spanned by the Lanczos vectors, it seems best to restart the
Lanczos iteration periodically using the thick-restart Lanczos
algorithm.55 This algorithm performs particularly well, as it
was developed specifically for real symmetric matrices. Ac-
cording to our experience in the computation of vibrational
eigenpairs, restarting the Lanczos iteration does not signifi-
cantly worsen the convergence rate.

In a nutshell, there are three main factors that contribute
to the total timing of the DEWE approach: �a� the number of
matrix-vector multiplications in a single Lanczos step, which
is a CPU-intensive step; �b� reorthogonalization of the Lanc-
zos vectors to maintain the �semi�orthogonality among them,
which is an I/O intensive step and CPU usage becomes sig-
nificant only if the size of the Krylov subspace is very large;
and �c� the convergence rate of the total Lanczos iteration.
After having studied the interplay of these three factors in
considerable detail, we found that for larger applications,
specifically for the computation of the lowest few hundred
eigenpairs of five-atomic molecules, a simple and clever
choice is the usage of the shift-fold filter, periodic reorthogo-
nalization, and the thick-restart Lanczos algorithm.

When not the lowest eigenvalues but an interior part of
the spectrum is to be computed, the shift-invert technique
seems to be an appealing choice, but to find an efficient
black-box method to carry out the spectral transformation is
challenging. A safe and practical technique might be the us-
age of a carefully optimized shifted version of the exponen-
tial transformation, the shift-Gaussian filter.

The computation of interior eigenvalues opens a prom-
ising route toward the computation of a very large number of
eigenvalues and eigenvectors, i.e., toward the determination
of the complete spectrum. This task could be distributed to
practically independent computing nodes by distributing
smaller ranges of the spectrum to different machines. This
would make the computation of a very large number of
eigenpairs an embarrassingly parallel problem. Eigenpairs
from different ranges of the spectrum can be converged in-
dependently, i.e., the lower end of the spectrum could be
computed using a smaller grid. If only very few interior ei-
genvalues, e.g., ten eigenvalues, are required in each run, the
total storage requirement, Lanczos and a few auxiliary vec-
tors, of the computation fits into the main memory of nowa-
days standard machines, which eliminates the time-
consuming I/O operations on the hard disk.

The DEWE algorithm can be further improved if symme-
try properties are exploited for the computation of eigenpairs
of symmetric species. The symmetry-adapted Lanczos algo-
rithm suggested by Wang and Carrington77 can be straight-

forwardly adapted to our approach to compute levels corre-
sponding to different irreducible representations of Abelian
groups in separate runs. As normal coordinates, a special
case of Watson’s rectilinear internal coordinates, correspond
to irreducible representations of the point group of the mol-
ecule, the storage requirements of Lanczos and auxiliary vec-
tors might be reduced accordingly. This modification is also
extremely useful to increase the convergence rate of the
Lanczos iteration.

The DEWE algorithm and computer code were used to
compute the eigenpairs of the 12CH4 and 12CH2D2 isotopo-
logues of the methane molecule. The VBOs of 12CH4 pro-
vide a good validation for the DEWE approach as variational
results are available in the literature11,12,61 using the same
PES but different algorithms. The convergence of the energy
levels obtained with these programs specifically developed
for 12CH4 was achieved and exceeded by our DEWE ap-
proach, which can be employed not only for 12CH4 but also
for other semirigid molecules. To the best of our knowledge,
this study presented the first benchmark variational results
for the 12CH2D2 isotopologue using the T8 PES.
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