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Abstract

Fully variational energies and structures are obtained for the few-electron prototypical atomic and molecular systems Hþ2 , H2, HHe+,
Hþ3 , Be, and LiH at the Hartree–Fock basis-set limit (HFL). The HFL computations are made possible by a global optimization tech-
nique employing analytic derivatives of the energy with respect to nuclear centers as well as to positions and exponents of Gaussian-type
basis functions (GTF). The efficiency of the procedure presented means that the HFL structure and energy of few-electron systems can be
obtained even with a few-dozen distributed s-type GTFs.
� 2007 Elsevier B.V. All rights reserved.

1. Introduction

The Hartree–Fock–Roothaan–Hall (HF) self-consis-
tent-field theory is still the focal point of wave-function-
based electronic structure theory [1]. It results in molecular
orbitals (MOs) and orbital energies, upon which a substan-
tial part of the language of chemistry is built. Furthermore,
especially near the equilibrium structures of quantum sys-
tems, HF theory generally provides a good starting point
for sophisticated techniques of electron correlation treat-
ments and it often results in molecular properties that have
at least semiquantitative accuracy [1].

It is fair to say that the ingenious introduction of atom-
centered (AC) Gaussian-type basis functions (GTF) by
Boys [2] determined most of the development of wave-func-
tion-based ab initio quantum chemistry techniques, includ-
ing energy and derivative computations. GTFs provided a
breakthrough in the evaluation of electron repulsion inte-
grals, the most time-consuming step in a HF energy com-

putation. To compensate for the wrong functional
behavior of AC-GTFs both near and far from the nuclei,
it is typical to use a substantial number of them in accurate
electronic structure computations [3–8]. To allow a better
distribution of Gaussians, efforts were made to augment
the atom-centered basis sets with bond-centered (BC)
GTFs [4,9,10]. It has been demonstrated [9,10] that bond-
centered GTFs can be effectively used to replace polariza-
tion (higher angular momentum) and diffuse (low-expo-
nent) GTFs, important elements of energy-optimized
atom-centered basis sets [1,11].

As the numerical algorithms and the computer hardware
employed improved, it became customary to perform large-
basis HF calculations with GTFs of higher and higher
angular momentum to approach the Hartree–Fock limit
(HFL). Since in actual calculations for larger systems it is
not possible to use even a nearly complete atom-centered
GTF basis, it also became customary to estimate the
HFL energy by extrapolation of results obtained with
increasingly more complex basis sets [12–15].

As an alternative, for atoms and diatomic molecules the
HFL energy can be obtained numerically [16–18], provid-
ing reference data for finite basis set computations. The
published molecular numerical HF (NHF) data generally
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refer to a few fixed molecular geometries and they can be
routinely performed with existing codes [16,17].

Instead of using more and more AC(BC)-GTFs of
increasing complexity in the basis set, there is another pos-
sibility to improve the wrong functional behavior of Gaus-
sians and make the basis set truly flexible for the particular
quantum system. The GTFs can be allowed to fully relax
during the electronic structure computation, both with
respect to their distribution and exponents. This means
that not only the optimum expansion coefficients of the
MOs are determined variationally, but also the centers
and the exponents of the GTFs are treated as variational
parameters. In this sense one can talk about floating-
centered (FC) and floating-exponent (FE) GTFs, or in
the language customary in variational nuclear motion cal-
culations, distributed Gaussian basis (DGB) functions.

In Jensen’s recent studies to reach the HFL [7,8], AC-
GTFs were used with their exponents optimized (ACFE-
GTF HF computations). The partial derivatives of the elec-
tronic energy with respect to the exponents of the basis
functions were obtained numerically by finite central
differences.

There have been attempts [19–27] to perform fully vari-
ational DGB-HF electronic structure calculations on mol-
ecules. However, as emphasized also by Jensen [7,8], there
has been apparently no functional code with analytic gradi-
ent capability for carrying out such calculations and the
HF total energies, optimum structures, as well as simple
properties presented [20,25,27] can be relatively far from
their HFL values.

The procedures developed during the course of this
work allow one to perform HF calculations using arbitrary
angular momentum atom-centered, bond-centered, float-
ing-center, and floating-exponent GTFs. Therefore, the
possible calculations extend from standard atom-centered
GTF HF to fully variational DGB-HFL, with the distin-
guishing feature that we employ a global optimization
scheme based on analytic gradients to avoid spurious local
minima and linear dependencies in the basis.

2. The DGB-HF method

In what follows details about the DGB-HF method are
presented. It is built upon the Hellmann–Feynman theorem
(HFT) [28,29], standard algebraic procedures, as well as
standard [30] and new recursion formulae.

Let uA(r; aA, a, A) and /A r; fdAk; aAkgK
k¼1; a;A

� �
denote

the properly normalized one-electron Cartesian primitive
and contracted GTFs, respectively, on center A, where
the electron coordinates, angular momentum vector with
nonnegative integers, and origin of the functions are
denoted by three-dimensional vectors r, a, and A, respec-
tively, aAk are the orbital exponents, dAk are the contrac-
tion coefficients, and the degree of contraction in /A is K.

The electronic energy Eelec of a closed-shell system in the
atomic orbital (AO) basis within the restricted HF approx-
imation is customarily written as

EelecðPÞ ¼ Tr½hP� þ 1

2
Tr½PGðPÞ�

¼
X
lm

P lmhlm þ
1

2

X
lmrk

P lmP rk½ðlmjrkÞ

� 1

2
ðlrjmkÞ�; ð1Þ

where h and G(P) are the one- and two-electron parts of the
Fock matrix, respectively, and P is the one-electron density
matrix. The molecular integrals in Eq. (1) can be efficiently
evaluated via recursion formulae [30].

Generation of the gradient vector of the total energy, the
sum of the electronic and nuclear repulsion energies, with
respect to the variational parameters follows the HFT
[28,29]. It is most advantageous if partial derivatives with
respect to the nuclear coordinates are calculated first, fol-
lowed by those of the origins and, finally, by the scaling
factors of the exponents of the GTFs. The latter choice
makes it possible to use both contracted and primitive
GTFs in actual computations. Evaluation of all partial
derivatives, except those with respect to the exponents
[9,23,31], is straightforward and relatively simple [30],
and thus are not treated here. As to the evaluation of the
partial derivatives of the molecular integrals with respect
to the exponents of the GTFs, we have devised new recur-
sion formulae.

The partial derivative of the electronic energy Eelec in the
AO basis with respect to the scaling factor ZA of the expo-
nents of /A can be calculated as

oEelec

oZA

¼
X
lm

P lm
ohlm

oZA

þ 1

2

X
lmrk

P lmP rk �
1

2
P lrP mk

� �
oðlmjrkÞ

oZA

�
X
lm

Qlm

oSlm

oZA

; ð2Þ

where S and Q are the overlap integral and the energy-
weighted density matrices, respectively.

As the simplest case, let us consider the overlap between
the contracted /A and /B r; fdBm; aBmgM

m¼1; b;B
� �

GTFs:

h/Aj/Bi ¼
X

k

X
m

dAkdBmhuAkjuBmi: ð3Þ

Its derivative with respect to ZA is

oh/Aj/Bi
oZA

¼
X

k

X
m

2ka þ 3

2ZA

dAkdBmhuAkjuBmi

þ 2
X

k

X
m

dAkdBm
aAk

ZA

ohuAkjuBmi
oaAk

; ð4Þ

where ka, the angular momentum index, is the sum of the
components of vector a. The primitive overlap integrals
and their derivatives with respect to the exponents of the
GTFs on the right-hand side of Eq. (4) can be evaluated
via recursion formulae. Using a well-known simplified
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notation [30], the following recursion equation can be writ-
ten for the primitive overlap integrals in Eq. (4):

haþ 1ijbi ¼ ðP i � AiÞhajbi þ
1

2aP
N iðaÞha� 1ijbi

þ 1

2aP
N iðbÞhajb� 1ii; ð5Þ

where

P i ¼
aAkAi þ aBmBi

aAk þ aBm
¼ aAkAi þ aBmBi

aP
; ð6Þ

and Ni(a) takes the ith component of the angular momen-
tum vector a. Let us differentiate both sides of Eq. (5) with
respect to aAk:

ohaþ 1ijbi
oaAk

¼ ðP i � AiÞ
ohajbi
oaAk

þ aBm

a2
P

ðAi � BiÞhajbi

þ 1

2aP
N iðaÞ

oha� 1ijbi
oaAk

� 1

2a2
P

N iðaÞha� 1ijbi þ
1

2aP
N iðbÞ

ohajb� 1ii
oaAk

� 1

2a2
P

N iðbÞhajb� 1ii: ð7Þ

With the help of Eq. (7), the partial derivatives of the prim-
itive overlap integrals with respect to the exponents of the
GTFs can be evaluated recursively. Similarly, the partial
derivatives of the one- and two-electron integrals with re-
spect to the scaling factor ZA in Eq. (2) can be deduced
and computed via recursion formulae.

Now that all the partial derivatives are available, the
components of the gradient vector of the total energy can
be easily generated considering optional symmetry and
other constraints. Due to the nonlinear nature of the
parameter estimation problem, the optimization procedure
should be selected with care. The scheme adopted [32] was
designed to find the global minimum in the parameter
space. The BFGS quasi-Newton algorithm is used with
deterministic (inexact or exact) or stochastic (Monte Carlo)
line search [32,33]. At every nth iteration the program also
performs, besides the deterministic one, a stochastic line
search at a random direction. The direction of the deter-
ministic line search in the next iteration may depend on
the success of the previous stochastic one. The occasional
linear dependency problem of the basis can be solved via
Löwdin’s canonical orthogonalization. To start the fully
variational computation, for instance, the s, sp, . . . subsets
of standard AC basis sets [1,11] and their unions can be
used with or without contraction, all centered on the
appropriate atoms.

3. Results and discussion

Using a computer program based on the above proce-
dure, fully variational DGB-HF computations have been
performed, resulting in fully variational energies and struc-
tures, for the few-electron prototypical atomic and molec-

ular systems H2, HHe+, Hþ3 , Be, and LiH, used
frequently for benchmark studies [3,5–8,34].

The fixed reference structures chosen (distances r in
bohr) are those used frequently for benchmark studies:
H2, rHH = 1.4; HHe+, rHHe = 1.455; Hþ3 , rHH = 1.65 (with
D3h point-group symmetry); and LiH, rLiH = 3.015. The
lowest-energy values (in Eh) computed are as follows: H2,
�1.133629566 (ns = 50); HHe+, �2.933103266 (ns = 64);
Hþ3 , �1.300372103 (ns = 84); Be, �14.573023162 (ns =
26); and LiH, �7.987352106 (ns = 62), where ns is the num-
ber of the primitive s-type GTFs used in the DGB-HF
computation. Fig. 1 exemplifies, in the case of Hþ3 , the fac-
ile convergence of the total energies as a function of ns.

Statistical analyses of the data obtained by direct com-
putations reveal that the total energy decreases exponen-
tially with ns. The following formula can be used to
obtain very precise HFL energies via fitting the data
obtained from direct computations:

EHFðns; EHFL; a; bÞ ¼ EHFL þ a expð�bnsÞ: ð8Þ
Fitting data with Eq. (8) supplies the following HFL ener-
gies (in Eh) for the systems under consideration at the
reference structures chosen: E(H2) = �1.13362958 ±
1 · 10�8; E(HHe+) = �2.933103279 ± 2 · 10�9; EðHþ3 Þ ¼
�1:300372127� 2� 10�9; E(Be) = �14.573023166 ±
2 · 10�9, and E(LiH) = �7.98735222 ± 8 · 10�8. The
HFL energies are just slightly lower than the best energies
obtained from the direct DGB-HF computations.

Standard AC(BC)-GTF HF computations, even with an
enormous number of GTFs of high angular momentum, do
not produce such high-quality results [3,5,6]. Recently, Jen-
sen [7,8] obtained HFL energies within 1nEh for H2 and Hþ3
at the above reference structures via ACFE-GTF HF com-
putations. His results (in Eh) with n GTFs are as follows:
H2, �1.1336295710 (n = 338, spdfgh limit) and Hþ3 ,
�1.300372125 (n = 501, spdfgh limit). These are in excel-
lent accord with the present HFL estimates. On the other
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Fig. 1. The DGB-HF total energy, Etot, of Hþ3 at a fixed reference
structure (rHH = 1.65 bohrs with D3h point-group symmetry) as a function
of the number of the primitive s-type GTFs, ns.
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hand, published NHF energies [17] for HHe+ and LiH,
E(HHe+) = �2.93310325 and E(LiH) = �7.9873524, are
a bit higher and lower than the correct HFL values, respec-
tively. For the beryllium atom, our result perfectly matches
a published NHF value [34], �14.57302317 Eh. It is worth
noting that to describe the 1S ground electronic state of the
beryllium atom there is no need for polarization functions;
therefore, the above high-precision energy can also be
obtained from ACFE-GTF HF computation using s-type
GTFs only.

By relaxing the structural parameters, it is straightfor-
ward to determine optimal HFL structures for molecules
in fully variational DGB-HF computations. For the mole-
cules studied, this adds only one more parameter to the
parameter set to be optimized. The optimum energies (in
Eh) computed at the optimal distances (in bohrs) are as fol-
lows: E(H2) = �1.133666956 (ns = 50) at rHH = 1.386232;
E(HHe+) = �2.933103310 (ns = 64) at rHHe = 1.455592;
EðHþ3 Þ ¼ �1:300400682 (ns = 81) at rHH = 1.638912; and
E(LiH) = �7.987364452 (ns = 58) at rLiH = 3.033910. Sta-
tistical analyses of the data computed directly reveal also
in this case that the total energy decreases exponentially
with ns. Fitting data with Eq. (8) results in the following
HFL energies at the HFL molecular geometries: E(H2) =
�1.13366697 ± 1 · 10�8; E(HHe+) = �2.93310332 ± 2 ·
10�8; EðHþ3 Þ ¼ �1:30040070� 1� 10�8; and E(LiH) =
�7.98736463 ± 8 · 10�8. These energies are also very close
to the best energies obtained from direct DGB-HF
computations.

As to the distributions of the centers and exponents of
the GTFs, they show similar patterns for all cases investi-
gated. Figs. 2 and 3 show the distributions in question as
statistical plots for LiH. Most of the GTFs are located
close, within 0.1 bohr, to the nuclei and the exponents
are mostly populated around zero considering log (a). Fur-
thermore, the larger the exponent of the GTF, the closer its

origin is to one of the nuclei, and the GTFs with the largest
exponents stick tightly to the nuclei.

Note that as tests of the convergence of the DGB-HFL
energies and structures, all the molecular calculations have
been performed with our program using not only s- but
also p-type GTFs in the basis. The converged results agree
perfectly with those reported above. For instance, Fig. 4
shows the facile convergence of the total energy of Hþ3 with
relaxed centers, exponents, and structure as a function of
the cardinal number X (=2–6) of the standard cc-pVXZ
basis sets of Dunning [11] using the s and p basis functions,
i.e., the sp subsets.

The availability of DGB-HFL results along a potential
energy curve (PEC), in the present case that of Hþ2 , allows
the investigation of the relative accuracy of traditional

Fig. 2. Distribution of the centers of the primitive s-type GTFs for LiH in
a DGB-HF computation with relaxed centers, exponents, and structure
(ns = 58, Etot = �7.987364452 Eh, rLiH = 3.033910 bohrs).

Fig. 3. Distribution of the exponents of the primitive s-type GTFs for LiH
in a DGB-HF computation with relaxed centers, exponents, and structure
(ns = 58, Etot = �7.987364452 Eh, rLiH = 3.033910 bohrs).

Fig. 4. The DGB-HF total energy, Etot, of Hþ3 with relaxed centers,
exponents, and structure as a function of cardinal number X (= 2–6) using
the s and p basis functions of the cc-pVXZ basis sets.
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HF computations utilizing correlation-consistent basis sets
and extrapolation procedures along the PEC. As seen in
Fig. 5, the relative accuracy of the traditional HF computa-
tions, with or without extrapolation, and with or without
contraction of the basis, has a characteristic dependence
on the internuclear separation. The direct energies are very
accurate and the extrapolated energies are nearly exact close
to the equilibrium structure (about 2 bohrs) and close to
complete separation of the atoms (for distances larger than
14 bohrs), but at moderate and short distances the accuracy
drops substantially and systematically. This behavior of the
popular correlation-consistent bases should be kept in mind
when traditional HF computations are used as energy com-
ponents to obtain global potential energy surfaces.

4. Conclusions

A method and a computer code are presented which
allow efficient computation of HFL structures and energies.

The availability of high-accuracy HFL structures and
energies allow their comparison with results from tradi-
tional finite basis and extrapolated fixed-center and fixed-
exponent GTF HF computations. The results obtained
show that among the many possible extrapolation formu-
lae, the form [14,15,35]

EHF;X ¼ Eextrap þ aðX þ 1Þ expð�9
ffiffiffiffi
X
p
Þ; ð9Þ

works best both for energies and structures. Using the aug-
cc-pVXZ family of basis sets of Dunning [11], with cardinal
numbers X = 5 and 6, approaching completeness in a sys-
tematic way, results in energies and structures different
from the DGB-HFL ones by less than 2 lEh and
0.00001 bohr, respectively.

As to the expense of the DGB-HF computations pre-
sented, even in the largest computations an energy evalua-
tion needs a couple of seconds, while a gradient vector
generation takes a few times more on a common PC.
One run in the global optimization process usually consists
of 30–50 optimization cycles.

DGB-HFL computations on larger molecules with at
least four and five atoms and/or much more than four elec-
trons are in progress and will be reported in due time.
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