
Finite basis representations with nondirect product basis functions
having structure similar to that of spherical harmonics

Gábor Czakó
Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary

Viktor Szalaya�

Crystal Physics Laboratory, Research Institute for Solid State Physics and Optics,
Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary

Attila G. Császárb�

Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary

�Received 17 February 2005; accepted 4 November 2005; published online 6 January 2006�

The currently most efficient finite basis representation �FBR� method �Corey et al., in Numerical
Grid Methods and Their Applications to Schrödinger Equation, NATO ASI Series C, edited by C.
Cerjan �Kluwer Academic, New York, 1993�, Vol. 412, p. 1; Bramley et al., J. Chem. Phys. 100,
6175 �1994�� designed specifically to deal with nondirect product bases of structures �n

l �s�f l�u�,
�m

l �t��n
l �s�f l�u�, etc., employs very special l-independent grids and results in a symmetric FBR.

While highly efficient, this method is not general enough. For instance, it cannot deal with nondirect
product bases of the above structure efficiently if the functions �n

l �s� �and/or �m
l �t�� are discrete

variable representation �DVR� functions of the infinite type. The optimal-generalized FBR�DVR�
method �V. Szalay, J. Chem. Phys. 105, 6940 �1996�� is designed to deal with general, i.e., direct
and/or nondirect product, bases and grids. This robust method, however, is too general, and its direct
application can result in inefficient computer codes �Czakó et al., J. Chem. Phys. 122, 024101
�2005��. It is shown here how the optimal-generalized FBR method can be simplified in the case of
nondirect product bases of structures �n

l �s�f l�u�, �m
l �t��n

l �s�f l�u�, etc. As a result the commonly used
symmetric FBR is recovered and simplified nonsymmetric FBRs utilizing very special l-dependent
grids are obtained. The nonsymmetric FBRs are more general than the symmetric FBR in that they
can be employed efficiently even when the functions �n

l �s� �and/or �m
l �t�� are DVR functions of the

infinite type. Arithmetic operation counts and a simple numerical example presented show
unambiguously that setting up the Hamiltonian matrix requires significantly less computer time
when using one of the proposed nonsymmetric FBRs than that in the symmetric FBR. Therefore,
application of this nonsymmetric FBR is more efficient than that of the symmetric FBR when one
wants to diagonalize the Hamiltonian matrix either by a direct or via a basis-set contraction method.
Enormous decrease of computer time can be achieved, with respect to a direct application of the
optimal-generalized FBR, by employing one of the simplified nonsymmetric FBRs as is
demonstrated in noniterative calculations of the low-lying vibrational energy levels of the H3

+

molecular ion. The arithmetic operation counts of the Hamiltonian matrix vector products and the
properties of a recently developed diagonalization method �Andreozzi et al., J. Phys. A Math. Gen.
35, L61 �2002�� suggest that the nonsymmetric FBR applied along with this particular
diagonalization method is suitable to large scale iterative calculations. Whether or not the
nonsymmetric FBR is competitive with the symmetric FBR in large-scale iterative calculations still
has to be investigated numerically. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2141947�

I. INTRODUCTION

Solution of the molecular rovibrational Schrödinger
equation and the calculation of reaction dynamics may be
carried out efficiently by employing the method of discrete
variable representation �DVR�.1 The utility and basic aspects
of DVR were realized by different authors independently and
somewhat different methods were developed: discrete vari-

able representation,2,3 Lagrange-mesh method,4 and quadra-
ture discretization method.5,6 The Fourier grid method7–9

should also be mentioned.
In the DVR method one employs both a set of basis

functions and a set of grid points. Within this method the
operators of physical quantities may be represented by ma-
trices whose indices refer either to the grid points or to the
spectral basis functions. The former is the DVR, the latter is
the finite basis representation �FBR� of the operator. The
DVR of the potential-energy operator is a diagonal matrix
with the �ii�th diagonal element equal to the value of the
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potential-energy function taken at the ith grid point. The
FBR of the potential-energy operator corresponds to evalu-
ating the defining integrals of the potential matrix elements
in the spectral basis by numerical quadrature, where the
quadrature grid is identical to the one defining the DVR. The
DVR and FBR of an operator may be transformed into each
other.

Initially, the DVR was developed with standard orthogo-
nal polynomial bases and the associated Gaussian quadra-
tures. The same number of basis functions and quadrature
points was employed. DVRs based on such basis sets,
quadrature points, and weights possess a number of remark-
able properties. The most important is the diagonality of the
potential-energy matrix. Another important property is re-
lated to the eigenvectors obtained by solving the matrix rep-
resentation of the time-independent Schrödinger equation set
up in a DVR. At convergence the ith element of the nth
eigenvector is proportional to the value of the nth eigenfunc-
tion taken at the ith quadrature point. The proportionality
factor is just the square root of the ith quadrature weight. A
more complete list of the various interesting and useful prop-
erties of the DVR is given, for example, in Ref. 10.

Generalizations of the DVR method to general basis
functions depending on a single variable and to multidimen-
sional nondirect product basis sets have been
developed.3,10–16 These generalizations could be achieved
only by sacrificing some of the important properties which
the original DVR features.

For example, for general one-dimensional bases one may
construct a DVR �Refs. 11, 12, 17, and 18� by utilizing the
transformation method.19,20 While the representation so de-
rived can still give highly accurate results, and, in fact, it can
be related to Gaussian quadrature,12 the elements of the
eigenvectors one obtains are no longer proportional to the
values of the eigenfunctions taken at the grid points.

The multidimensional generalization of the DVR by Co-
rey and co-workers13,21 sacrifices the diagonality of the
potential-energy matrix and employs more grid points than
basis functions. The simple relation between eigenvectors
and eigenfunctions of the standard DVR is also broken down
in this representation. Since the number of grid points is
higher than the number of basis functions it is not the Corey-
Tromp DVR,13 but the related symmetric FBR developed by
various authors21–23 which has been employed in
practice22–27 and became the common method for dealing
with nondirect product bases such as the spherical harmonics
basis set.

With the application of joint approximate diagonaliza-
tion methods28–33 one may generalize the transformation
method to multidimensional nondirect product bases and one
can construct nondirect product DVRs.14 However, like in
the case of the generalization to one-dimensional �1D� gen-
eral basis functions, the simple relation of eigenvectors and
eigenfunctions is no longer valid. Although this method has
been employed successfully in a number of problems,14,34 its
efficiency still has to be demonstrated with as standard non-
direct product bases as the spherical harmonics basis set.

The coherent DVR has been introduced recently.15 It is
restricted to two-dimensional �2D� nondirect product bases.

It preserves neither the diagonality of the potential-energy
matrix nor the simple relation of the eigenvectors and eigen-
functions. Similar to the DVRs based on joint approximate
diagonalization, the method’s capabilities have been demon-
strated neither with spherical harmonics nor with nondirect
product basis functions with structure similar to that of
spherical harmonics.

The standard DVR and its generalizations mentioned so
far are special in that they require very special quadrature
points. The question whether a truly generalized DVR, a
DVR based on both a general set of quadrature points and a
set of general one- or multidimensional basis functions, can
be derived was raised two decades ago by Light et al.,3 who
described a method for constructing such a DVR.3 A success-
ful numerical application of this method involved the asso-
ciated Legendre polynomials, Pn

L�cos ��, with L=0, 1,…,
Lmax; n=L, L+1,…, Nmax.

35

The optimal-generalized DVR was introduced in Ref.
10. It is optimal in the sense that, as shown both analytically
and numerically, it gives the best possible results with a
given set of grid points and basis functions within a family of
generalized discrete variable representation �GDVR� meth-
ods including the method of Light et al.3 Of the various
generalizations it is the optimal-generalized DVR method
which preserves most of the characteristic properties of the
standard DVR, including the diagonality of the potential-
energy matrix and the simple relation of eigenvectors and
eigenfunctions. In addition, as shown in Ref. 16, it has also
exponential convergence. However, it has disadvantages, as
well: �a� the optimal GDVR leads to a nonsymmetric matrix
representation, and �b� in the particular case of spherical har-
monics and basis functions of structure similar to that of
spherical harmonics a randomly selected grid generally leads
to linear dependencies which degrade the accuracy of the
results. Nevertheless, the method has shown a certain degree
of success even with the spherical harmonics basis.10

One way of overcoming the difficulty mentioned above
in selecting grid points in the optimal GDVR is to employ a
corresponding finite basis representation,10 to be called
optimal-generalized finite basis representation �GFBR�. An-
other might be the construction of a nondirect product grid
by joint approximate diagonalization. In a GFBR one can use
more grid points than basis functions, thereby improving the
accuracy of the results. Recently, we have tested the GFBR
by solving the vibrational Schrödinger equation for the mo-
lecular ion H3

+ by treating the singular terms of the triatomic
Sutcliffe-Tennyson vibrational Hamiltonian36 exactly by a
judicious choice of basis functions.37 Basis sets which can
handle the singularities in the Sutcliffe-Tennyson vibrational
Hamiltonian properly contain nondirect product basis func-
tions of the general form �m

l �t��n
l �s�f l�u� or �n

l �s�f l�u�, with
f l�u�= Pl�cos ��, where Pl�cos �� are Legendre polynomials,
� is the Jacobi angle, and s and t stand for the radial vari-
ables r and R of the Jacobi�Radau� internal coordinate sys-
tem, or for some function, depending on the particular choice
of the functions �n

l and �m
l , of them. The functions �n

l and �m
l

may be chosen at least in four different ways: �a� associated-
Laguerre polynomials, �b� associated-Laguerre DVR func-
tions �i.e., different DVR functions for different values of l�,
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�c� spherical Bessel functions, and �d� Bessel-DVR
functions.38–40 At this point a number of comments are in
order. In cases �a� and �b� s and t denote the square of the
respective radial variables. The basis set corresponding to
selection �a� has been employed for solving the vibrational
Schrödinger equation of triatomic molecules, see, e.g., Refs.
23, 41, and 42. To the best of our knowledge the basis sets
corresponding to choices �b� and �c� have not been tried.
Choice �d� was investigated in Ref. 37. Choices �b� and �d�
correspond to choosing localized radial functions which is
advantageous when calculating the matrix elements of the
potential-energy operator by numerical quadrature. Finding
the appropriate quadrature for choices �a� and �b� is simple,
but it is less obvious for the case when Bessel-DVR func-
tions of the infinite type38 are used. Clearly, the basis func-
tions corresponding to selection �d� with Bessel-DVR func-
tions of the infinite type are ideal for testing the usefulness of
the GFBR scheme. The results obtained in Ref. 37 demon-
strated the high accuracy that can be achieved by the optimal
GFBR. The calculations of the matrix elements of the
potential-energy operator, however, required extremely long
computer time, on the order of days.

The main purpose of this communication is to show how
the optimal GFBR scheme with nondirect product basis
functions of the structures �n

l �s�f l�u� and �m
l �t��n

l �s�f l�u� can
be modified to make the computer time required for calcu-
lating the matrix elements of the potential-energy operator
negligibly small, on the order of seconds instead of days,
without compromising the accuracy of the final results �Sec.
II�. Our results are of special interest, since many analyti-
cally known nondirect product bases consist of functions of
this particular or of similar structure. The new scheme is
tested first by calculating the eigenvalues of a simple model
Hamiltonian with the nondirect product basis of spherical
harmonics and then by calculating the vibrational energy lev-
els of the H3

+ molecular ion with nondirect product basis
functions formed by coupling Legendre polynomials with
Bessel-DVR functions of the infinite type38 �Sec. III�. The
results are summarized in Sec. IV.

II. OPTIMAL-GENERALIZED FINITE BASIS
REPRESENTATIONS

To begin with it is appropriate to recall some of the
relevant ideas and relations of the optimal-generalized dis-
crete variable representation and the related optimal-
generalized finite basis representation. Then it will be shown
how the optimal GFBR method can be modified by taking
advantage of the special structure of the nondirect product
basis functions employed. It is assumed that the matrix ele-
ments of the kinetic-energy operator can be calculated ana-
lytically. Thus the discussion is focused on the problem of
evaluating the matrix elements of the potential-energy
operator.

A. Generalized finite basis representations

Let ��n�, n=0, 1,… be a complete set of orthonormal
states in a Hilbert space. The matrix elements of the self-

adjoint operator V̂ representing the potential energy are de-
fined by

Vmn = ��m�V̂��n� �1�

in this basis. In practical numerical calculations one works
with a truncated basis ��n�, n=0,1,…, N−1. Then the poten-
tial energy may be represented by an N by N real symmetric
matrix V. The effect of the potential-energy operator on a
basis state may be expressed as

V̂��n� = �
m=0

N−1

Vmn��m� + �
p=N

�

Vpn��p� . �2�

With �q� denoting an eigenstate of the coordinate opera-
tor q̂ acting in a D-dimensional coordinate space, that is,
q̂�q�=q�q�, where q= �q1 ,q2 ,… ,qD� is a D tuple of coordi-
nates q1, q2,…, qD, the coordinate representation of Eqs. �2�
and �4� can be derived. The coordinate representation of Eq.
�2� reads as

V�q��n�q� = �
m=0

N−1

Vmn�m�q� + �
p=N

�

Vpn�p�q� , �3�

and the coordinate representation of Eq. �1� is

Vmn = 	
a

b

�m�q�V�q��n�q�d� , �4�

where real basis functions are assumed, d� is the volume
element of integration, and a and b are the lower and upper
integration limits, respectively, characteristic of the coordi-
nate space and basis functions considered.

In most cases of practical interest the complexity of the
potential-energy function V�q� prevents analytical evaluation
of the potential matrix elements; therefore, one has to resort
to approximate numerical quadratures. Ideally, the construc-
tion of DVRs requires the application of the same number
of quadrature points, 
qi�i=0

N−1= 
�q1i ,q2i ,… ,qDi��i=0
N−1, and

weights, 
wi�i=0
N−1, as the number of basis functions employed.

This set of N quadrature points and weights is supposed
to give an approximation of reasonable accuracy for N�N
+1� /2 different integrals �note that V is symmetric� simul-
taneously. If, in addition, one places no restriction on the
points, except that they should be distinct, one faces the chal-
lenge of developing, as required for construction of a truly
generalized DVR, a quadrature formula which is of reason-
able accuracy for all the N�N+1� /2 different integrals irre-
spective of the choice of the N distinct grid points.

In Ref. 10 quadrature formulas were derived allowing
the evaluation of the potential matrix elements by employing
a general grid and a general basis set. These can be summa-
rized in the expression

Vmn � �
i=0

N−1

�
j=0

N−1

�
k=0

N−1

Fmi��−d�ijV�q j���d−1� jkFnk, �5�

where
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Fmi = �F�mi = wi
1/2�m�qi� , �6�

� = FTF , �7�

real basis functions are assumed, superscript T denotes trans-
position, and d can take any real value. That is, the matrix of
the potential-energy operator is approximated as

V � F�−dV�d−1FT, �8�

where V denotes a diagonal potential-energy matrix whose
elements are defined as

Vij = �ijV�qi� , �9�

where

�ij = 1 if i = j

0 if i � j .
� �10�

d parametrizes an infinite number of quadrature formulas and
approximations to V. Of these, the quadrature with d=1
gives the most accurate results and leads to the representa-
tions called optimal-generalized finite basis representation
and optimal-generalized discrete variable representation. For
d=1

V � F�−1VFT. �11�

The superiority of the quadrature given in Eq. �11� with re-
spect to those corresponding to d�1, and thus the optimal
nature of the related generalized FBR and DVR, can be
shown as follows.

First, note that by introducing d=1+ p

V � F�−dV�d−1FT = F�−1�−pV�pFT �12�

=F�−1VFT + F�−1�−p�V,�p�FT �13�

with �V, �p� denoting the commutator of V and �p. Second,
note that

�VFT�in = wi
1/2V�qi��n�qi� , �14�

and from Eqs. �3� and �6�

wi
1/2V�qi��n�qi� = �

m=0

N−1

VmnFmi + �
p=N

�

VpnFpi. �15�

Therefore, one can find, by combining Eqs. �13�–�15�, that

Vmn � �F�−dV�d−1FT�mn

= Vmn + �
p=N

�

�
i=0

N−1

�
j=0

N−1

Fmi��−1�ijFpjVpn

+ �
i=0

N−1

�
j=0

N−1

�
k=0

N−1

Fmi��−1�ij
�−p�V,�p�� jkFnk, �16�

where use has been made of the relation

F�−1FT = IN�N, �17�

where IN�N denotes the N by N unit matrix. The second and
third terms in the right-hand side of Eq. �16� are the error
terms arising due to the quadrature approximation. The sec-
ond term is called aliasing error. It may appear whenever the

space spanned by the truncated basis is not closed with re-
spect to the operation by the potential-energy operator, i.e.,
when Vpn�0. The expression for the aliasing error is the
same for all GFBRs. The third term depends on p. Thus, it
distinguishes various GFBR �and GDVR� methods. Since the
commutator �V, �p� does not in general vanish, unless p
=0, i.e., d=1, the GFBR approximation with d=1 is the best.
In the d=1 case the approximation even changes to equality

for all matrix elements if V̂��n�, n=0, 1,…, N−1 remain in
the space spanned by the truncated basis.

It must be noted that in the derivations starting from Eq.
�12� no use has been made of the definition of the � matrix
up until Eq. �16�. The first term in the right-hand side in Eq.
�16� is equal to Vmn, that is, a reasonable approximation can
be obtained if and only if � is defined such that it satisfies
Eq. �17� �or Eq. �7��. Equation �17� can also be viewed as the
defining equation of �. The fulfillment of Eq. �17� is a nec-
essary condition of obtaining a reasonable approximation to
the potential-matrix elements. As long as the � matrix so
defined is not singular one may expect results of reasonable
accuracy, but if � is singular the accuracy may be lower due
to large aliasing error.

The application of the optimal GFBR and the equivalent
optimal GDVR revealed unanticipated difficulties when
spherical harmonics10 and basis functions suitable for treat-
ing the singularities in the Sutcliffe-Tennyson vibrational
Hamiltonian37 were used. Randomly selected distinct grid
points led to singular � matrices, that is, to linear dependen-
cies, which severely degraded the accuracy of the results.
Finding grid points causing no linear dependencies turned
out to be difficult. In fact, a search algorithm, the genetic
algorithm, was called for selecting a suitable grid in the case
of spherical harmonics. As to the other set of basis functions
we considered a different strategy. We gave up efforts of
searching for suitable grid points of the same number as the
number of basis functions. We decided to use more grid
points than the number of basis functions employed.

The GFBR allows one to use more grid points than basis
functions. Let us introduce a matrix, S, defined as

S = FFT. �18�

One can show that

�−d = FTS−d−1F . �19�

By using Eq. �19� one may replace � with S in the quadra-
ture formulas. In particular, the optimal GFBR of the
potential-energy operator and the necessary condition for ob-
taining a quadrature of reasonable accuracy read as

V � S−1FVFT �20�

and

S−1FFT = IN�N, �21�

respectively. Once the replacement has been made it is irrel-
evant how the resulting equations were derived and more
grid points than basis functions can be employed. What one
hopes for is that by employing more grid points than basis
functions S becomes nonsingular and accurate results are
obtained.
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This strategy has been quite successful in all but one
respect.37 The evaluation of the potential-energy matrix by
the optimal GFBR expression, Eq. �20�, required too much
computer time to be practical when basis functions of struc-
ture �m

l �t��n
l �s�f l�u� were employed. In the next subsection

we show how this expression can be simplified, without los-
ing accuracy, thereby making the calculations efficient.

In passing we note that one may improve the accuracy of
Eq. �20� by dealiasing. The fulfillment of the equation

S−1F�FTFalias
T � = �IN�N0N�M� , �22�

where Falias is an M by N matrix whose elements are defined
in Eq. �1� with m=N, N+1,…, N+M and 0N�M denotes a
matrix of the size N�M having all elements equal to zero,
ensures the removal of M aliasing terms, as can be seen from
Eq. �16� once it has been expressed in terms of the S matrix.
This and a Monte Carlo-based dealiasing method have been
pointed out along with the fact that the optimal-generalized
FBR formula, Eq. �20�, corresponds to that one obtains when
calculating the potential-energy matrix by the least-squares
pseudospectral method of Friesner,43 in Ref. 10.

B. Modified optimal GFBR for nondirect product
bases of special structure

By considering the optimal GFBR formula, Eq. �20� and
Eqs. �14� and �15�, one can see that S−1F projects out the
desired potential matrix elements from VFT. One is allowed
to modify S−1F. As long as Eq. �21� is satisfied by the modi-
fied matrix, this modification will essentially preserve the
accuracy of the original GFBR. We say essentially as a modi-
fication may either decrease or increase the quadrature error
due to aliasing.

Since Eq. �21� defines S, one can modify only the matrix

F. Let F̃ denote such a modified F matrix. The most signifi-
cant simplification in Eq. �20� may be achieved by choosing

an F̃ such that it satisfies

F̃FT = IN�N, �23�

or

F̃�FTFalias
T � = �IN�N0N�M� , �24�

when dealiasing is required.
Then,

V � F̃VFT. �25�

Note that the approximation in Eq. �25� is expected to have
similar accuracy as in Eq. �20�, since, due to the fulfillment
of Eq. �23�, the �mn�th element of the approximating matrix,

�F̃VFT�mn, is equal to the sum of the exact matrix element,
Vmn, of the potential-energy operator and an aliasing term,
exactly as in the case of the quadrature approximation of Eq.
�20� under the condition Eq. �21�.

As shown below, the simplified GFBR expression, Eq.
�25�, can be implemented in practice for nondirect product
basis functions having structure similar to that of spherical
harmonics, e.g., �m

l �t��n
l �s�f l�u�, �n

l �s�f l�u�, etc.

Let the discussion be confined to basis functions of
structure �n

l �s�f l�u�. Assume that the basis functions are real
valued. �This is not a severe restriction, since one can easily
obtain the appropriate expressions by replacing transposition
with Hermitian conjugation and by invoking complex conju-
gation when required.� Furthermore, assume that the basis
functions are orthonormal, that is,

��m
k fk��n

l f l� = �fk�f l���m
k ��n

l � = �kl��m
l ��n

l � = �kl�mlnl
, �26�

where subscript l is attached to the indices m and n to indi-
cate that they number the functions ��*�

l . For �n
l , from now

on we shall also use the notation �nl

l .
Consider the truncated basis defined by letting the indi-

ces l and nl take the following values:

l = 0,1,…,L − 1, nl = 0,1,…,Nl − 1.

This truncated basis consists of �l=0
L−1Nl basis functions.

To achieve our goal we must give up using arbitrary grid
points. Only particular grid points will do.

1. The choice of grid points: Grid I

Choose an L-point grid, 
ui�i=0
L−1 for the variable u such

that with appropriate weights wu,i

�
i=0

L−1

wu,i fk�ui�f l�ui� = �kl, �27�

where subscript u reminds us that the weights belong to a
quadrature approximation of integrals with respect to the co-
ordinate u. Discretize the variable s on the grid

sil
,il = 0,1,…,Nl − 1, l = 0,1,…,L − 1

defined such that with appropriate weights

�
il=0

Nl−1

ws,il
�m

l �sil
��n

l �sil
� = �nlml

. �28�

Then, a 2D grid is obtained by taking direct product of the u
grid and the sl grids �with subscript l indicating that for each
value of l there is a different s grid�. Altogether we have
L�l=0

L−1Nl grid points. In the discussion to come we shall
assume the smallest grid which may satisfy Eqs. �27� and
�28�, that is, the grid corresponding to L=L and Nl=Nl.

2. A suitable F̃ matrix defined with grid I

Form the matrix F according to the standard GFBR pre-
scription, Eq. �6�,

Flnl,iik
= ws,ik

1/2wu,i
1/2�nl

l �sik
�f l�ui� . �29�

This is a matrix of size ��l=0
L−1Nl��L�l=0

L−1Nl.

A matrix F̃ obeying Eq. �23� can be obtained from F as

F̃lnl,iik
= 0 if l � k

Flnl,iil
if l = k .� �30�

Direct substitution shows that Eq. �23� is satisfied:
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�F̃FT�kmk,lnl
= �

i=0

L−1

�
l�=0

L−1

�
il�=0

Nl�−1

F̃kmk,iil�
Flnl,iil�

= �
i=0

L−1

�
ik=0

Nk−1

Fkmk,iik
Flnl,iik

= �
i=0

L−1

�
ik=0

Nk−1

ws,ik
1/2wu,i

1/2�mk

k �sik
�fk�ui�

�ws,ik
1/2wu,i

1/2�nl

l �sik
�f l�ui�

= �
ik=0

Nk−1

ws,ik
�mk

k �sik
��nl

l �sik
�

��
i=0

L−1

wu,i fk�ui�f l�ui�

= �
ik=0

Nk−1

ws,ik
�mk

k �sik
��nk

k �sik
��kl = �kl�mknk

, �31�

where use has been made of Eqs. �27� and �28�.
The quadrature approximation to an element of the

potential-energy matrix is then

Vkmk,lnl
� �F̃VFT�kmk,lnl

= �
i=0

L−1

�
l�=0

L−1

�
il�=0

Nl�−1

F̃kmk,iil�
V�sil�

,ui�Flnl,iil�

= �
i=0

L−1

�
ik=0

Nk−1

F̃kmk,iik
V�sik

,ui�Flnl,iik

= �
i=0

L−1

�
ik=0

Nk−1

ws,ik
wu,i�mk

k �sik
�fk�ui�V�sik

,ui��nl

l �sik
�f l�ui� .

�32�

If one can choose the basis functions �m
k �s� such that

they have the property

ws,ik
1/2�m

k �sik
� = �mkik

, �33�

then

F̃kmk,iil
= 0 if l � k

�mkil
wu,i

1/2fk�ui� if l = k ,� �34�

and the quadrature formula simplifies further:

Vkmk,lnl
� �

i=0

L−1

�
ik=0

Nk−1

F̃kmk,iik
V�sik

,ui�Flnl,iik

= �
i=0

L−1

wu,i
1/2fk�ui�V�smk

,ui�Flnl,imk

= �
i=0

L−1

ws,mk

1/2 wu,i fk�ui�V�smk
,ui��nl

l �smk
�f l�ui� . �35�

Similar discussion applies to the case of basis functions
of structure �m

l �t��n
l �s�f l�u�. Therefore, it suffices to present

the final quadrature formulas. By using the truncated basis

�ml

l �t��nl

l �s�f l�u��l=0,nl=0,ml=0
L−1,Nl−1,Ml−1 they read as

Vkmkok,lnlpl
� �

i=0

L−1

�
jk=0

Mk−1

�
ik=0

Nk−1

wt,jk
ws,ik

wu,i

� �ok

k �tjk
��mk

k �sik
�fk�ui�V�tjk

,sik
,ui�

��pl

l �tjk
��nl

l �sik
�f l�ui� �36�

and

Vkmkok,lnlpl
� �

i=0

L−1

wt,ok

1/2 ws,mk

1/2 wu,i fk�ui�V�tok
,smk

,ui�

��pl

l �tok
��nl

l �smk
�f l�ui� , �37�

where in deriving the latter approximation the functions
�m

k �s� are assumed to satisfy Eq. �33�, and the functions �o
k�t�

are assumed to satisfy similar equations.
When compared to the detailed expression of the poten-

tial matrix elements arising from Eq. �20�, the simplicity, and
thus the efficiency, of the quadrature formulas given in Eqs.
�32� and �35�–�37� are obvious. The effectiveness of this ap-
proach also becomes obvious from counting the number of
multiplications and additions required to evaluate these ex-
pressions, as given in Tables I and II.

The accuracy of the quadrature formulas given in Eqs.
�32� and �35�–�37� is to be similar to that of Eq. �20� due to
the fulfillment of the condition Eq. �21�.

While it is possible, it is not worth transforming Eqs.
�32� and �35�–�37� to the DVR, since the potential-energy
matrix will not be diagonal, and the size of the DVR will be
larger than that of the FBR.

3. The choice of grid points: Grid II

Discretize the coordinate u as in grid I. Then, if the
coordinate s can be discretized, say, on a P-point,
l-independent grid such that the equations

�
i=0

P−1

ws,i�m
l �si��n

l �si� = �nlml
, l = 0,1,…,L − 1 �38�

hold, F̃=F is an appropriate choice. Then, S=FFT is identi-
cal to a unit matrix, and the optimal GFBR simplifies to the
symmetric form

V � FVFT. �39�

This symmetric FBR has been introduced in Refs. 21 and 23
and became a commonly employed method.24–26,44 It is also
the FBR corresponding to the Corey-Tromp GDVR.13,21

Note that in the case of the truncated three-dimensional �3D�
nondirect product basis an equation similar to Eq. �38� ap-
plies to the function of variable t with an upper summation
limit, M, say.

The simplified nonsymmetric FBRs compare favorably
with the symmetric FBR if we consider the evaluation of the
potential-energy matrix. Indeed, its evaluation with the sym-
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TABLE I. The number of arithmetic operations required to evaluate the potential matrix element Vkmk,lnl
and the potential matrix in the truncated nondirect

product basis 
�nl

l �s�f l�u��l=0,nl=0
L−1,Nl−1 by different quadrature grids and formulas. In calculating the number of operations it was assumed that the quadrature

weights had been built into the basis functions. In addition to the exact number of operations, an estimated number of operations relative to the quadrature of
least operation count is also given. It is equal to or smaller than the ratio of the exact operation count in a given quadrature formula and that in the reference
quadrature formula. Thus, it is equal to 1 for the reference quadrature.

Basis 
�nl

l �s�f l�u��l=0,nl=0
L−1,Nl−1

Number of basis functions N=�l=0
L−1Nl

Number of points LNa LN LN PL

Number of matrix elements to be calculated N2 N2 N2 N�N+1� /2b

Quadrature formula Eq. �20�c Eq. �32� Eq. �35� Eq. �39�

Matrix element: Vkmk,lnl

Number of multiplications 2N�L+1� 2Nk�L+1� 2L+1 2P�L+1�
Number of additions NL−1 NkL−1 L−1 PL−1

Potential matrix evaluation
Number of multiplications 2N3�L+1� 2N�L+1��l=0

L−1Nl
2 N2�2L+1� PN�N+1��L+1�

Number of additions N3L−N2 N��l=0
L−1Nl

2�L−N2 N2�L−1� N�N+1��PL−1� /2

Matrix element: Vkmk,lnl

Relative number of multiplications �N �Nk 1 �P
Relative number of additions �N �Nk 1 �P

Potential matrix evaluation
Relative number of multiplications �N �N−1�l=0

L−1Nl
2 1 �P /2

Relative number of additions �N �N−1�l=0
L−1Nl

2 1 �P /2

aThis is the minimum number of points which may satisfy Eqs. �27� and �28�.
bIt suffices to calculate fewer matrix elements, since this quadrature leads to a symmetric potential matrix.
cIn this case VFBR=S−1�FVFT� and the operation counts refer to that of the expression in the parentheses.

TABLE II. The exact and estimated relative number of arithmetic operations in evaluating the potential matrix element Vkmkok,lnlpl
and the estimated relative

number of operations in calculating the potential matrix with the truncated nondirect product basis 
�ml

l �t��nl

l �s�f l�u��l=0,nl=0,ml=0
L−1,Nl−1,Ml−1 by different quadrature grids

and formulas. When calculating the number of operations it was assumed that the quadrature weights had been built into the basis functions. The estimated
relative number of arithmetic operations is equal to or smaller than the ratio of the exact operation count in a given quadrature formula and that in the reference
quadrature formula. Thus, it is equal to 1 for the reference quadrature.

Basis 
�ml

l �t��nl

l �s�f l�u��l=0,nl=0,ml=0
L−1,Nl−1,Ml−1

Number of basis functions N=�l=0
L−1MlNl

Number of points NP=L��l=0
L−1Nl���l=0

L−1Ml�
a NP NP MPL

Number of matrix elements
to be calculated

N2 N2 N2 N�N+1� /2b

Quadrature formula Eq. �20�c Eq. �36� Eq. �37� Eq. �39�

Matrix element: Vkmkok,lnlpl

Number of multiplications 2L��l=0
L−1Ml���l=0

L−1Nl�+2��l=0
L−1Ml���l=0

L−1Nl�+2�l=0
L−1Nl 2LMkNk+2MkNk+2Nk 2L+2 2LMP+2MP+2P

Number of additions L��l=0
L−1Ml���l=0

L−1Nl�−1 LMkNk−1 L−1 LMP−1

Relative number
of multiplications ���l=0

L−1Ml���l=0
L−1Nl� �MkNk 1 �MP

of additions ���l=0
L−1Ml���l=0

L−1Nl� �MkNk 1 �MP

Potential matrix evaluation
Relative number
of multiplications ���l=0

L−1Ml���l=0
L−1Nl� �N−1�l=0

L−1Ml
2Nl

2 1 �MP /2
of additions ���l=0

L−1Ml���l=0
L−1Nl� �N−1�l=0

L−1Ml
2Nl

2 1 �MP /2

aThis is the minimum number of points which may satisfy Eqs. �27� and �28�.
bIt suffices to calculate fewer matrix elements, since this quadrature leads to a symmetric potential matrix.
cIn this case VFBR=S−1�FVFT� and the operation counts refer to that of the expression in the parentheses.
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metric FBR requires at least P /2 and PM /2 times more
arithmetic operations than the application of the simplified
nonsymmetric FBR given in Eqs. �35� and �37�, respectively
�see Tables I and II�. Thus, even with assuming a small
value, say, P=10 and M =10, the simplified nonsymmetric
FBRs will be at least 5 and 50 times faster. As to the simpli-
fied nonsymmetric FBRs given in Eqs. �32� and �36� we note
that with typical choices of the functions �n

l and �m
l , e.g.,

associated Legendre polynomials, the smallest P-point
quadrature satisfying Eq. �38� may have P=max
Nl ; l
=0,1 ,… ,L−1�. In this case the nonsymmetric FBRs, Eqs.
�32� and �36�, are only slightly more efficient than the sym-
metric FBR. With P	max
Nl , l=0,1 ,… ,L−1�, and this
may be the general situation, the nonsymmetric FBRs of Eqs.
�32� and �36� clearly outperform the symmetric FBR.

The operation counts given in Tables I and II are ob-
tained by sequential summation.21,45 Since the order of sum-
mations with respect to some of the indices can still be in-
terchanged, different operation counts can be obtained.
However, the relative operation counts remain the same irre-
spective of these changes.

The symmetric and nonsymmetric FBRs are expected to
have similar accuracy, since Eq. �21� is obeyed in both cases.

The product of the potential-energy matrix, VFBR, with a
vector of expansion coefficients, c, i.e. c�=VFBRc, must be
calculated repeatedly, when diagonalizing the Hamiltonian
matrix by an iterative method, such as the Lanczos
algorithm.46 If the potential matrix is not symmetric, one
must also calculate v�= �VFBR�Tc. To compare the efficiency
of the symmetric FBR and the simplified nonsymmetric
FBRs in evaluating the potential matrix vector product, let us
consider the case of the 2D truncated basis.

Assuming that the quadrature weights have been built
into the basis functions, introducing

dlk* = �
i=0

L−1

fk�ui�V�ui,s*�f l�ui� , �40�

and employing sequential summation, c� can be evaluated
according to the expressions

ckmk
� = �

t=0

P−1

�mk

k �st��
l=0

L−1

dlkt �
nl=0

Nl−1

�nl

l �st�clnl
, �41�

ckmk
� = �

ik=0

Nk−1

�mk

k �sik
��

l=0

L−1

dlkik �
nl=0

Nl−1

�nl

l �sik
�clnl

, �42�

and

ckmk
� = �

l=0

L−1

dlkmk �
nl=0

Nl−1

�nl

l �smk
�clnl

, �43�

corresponding to the symmetric FBR, the simplified nonsym-
metric FBR of Eq. �32�, and the simplified nonsymmetric
FBR of Eq. �35�, respectively. v� can be evaluated according
to the expressions


lnl
� = �

k=0

L−1

�
ik=0

Nk−1

dlkik
�nl

l �sik
� �

mk=0

Nk−1

�mk

k �sik
�ckmk

, �44�

and


lnl
� = �

k=0

L−1

�
mk=0

Nk−1

dlkmk
�nl

l �smk
�ckmk

, �45�

corresponding to the nonsymmetric FBRs of Eqs. �32� and
�35�, respectively.

The number of multiplications and additions performed
in evaluating these expressions is summarized in Table III.

One can see from Table III that the relative performance
of the symmetric and nonsymmetric FBRs in evaluating the
product of the potential-energy matrix with a vector may
depend on the particular basis and truncation scheme em-
ployed and neither representation can claim superiority, in
general. Indeed, if P�N the symmetric FBR may be the
fastest, but if N� P the simplified nonsymmetric FBR of Eq.
�35� is the fastest. With reasonable truncation schemes and
the most well-known 2D nondirect product bases of structure
similar to that of spherical harmonics P�N. Nevertheless,
even when P�N the simplified nonsymmetric FBR may be
employed in solving large scale eigenvalue problems effi-
ciently.

As displayed in Table III, the simplified nonsymmetric
FBR of Eq. �35� is significantly, about P times, faster in
evaluating an individual element of the potential-energy ma-
trix vector product than the symmetric FBR. One may take
advantage of this fact in calculating selected eigenpairs of
the Hamiltonian matrix with a recent generalization of the
variational optimal relaxation method.47,48 This method re-
quires only as many elements of the Hamiltonian matrix vec-
tor product as the number of eigenvalues sought, it extends
easily to nonsymmetric matrix eigenvalue problems, and it
has been shown to be competitive with the Lanczos
algorithm.47,48 We shall explore this type of computation in
future works.

Besides the promise of being suitable for large scale
computations there is another reason why l-dependent grid
simplified nonsymmetric FBR calculations can be useful.

In general, no l-independent grid can satisfy Eq. �38� and
no grid can satisfy Eq. �27� exactly. For the special case of
spherical Bessel functions Lemoine49,50 has found quadrature
points and weights satisfying Eq. �38� with sufficient accu-
racy to allow one to do calculations efficiently �i.e., P�N�
and accurately. In general, a direct product grid of equidis-
tant grids can satisfy these equations approximately and they
can do so to any desired accuracy at the price of increasing
grid size. Then, if one is willing to accept the loss of some
accuracy and a substantial increase of computational time,
one can use the symmetric FBR.

This might be the way of dealing with nondirect product
basis functions wherein the Bessel-DVR functions of the in-
finite type,38 Jn

l+1/2�r�, are coupled to Legendre polynomials,
i.e., �n

l �s�f l�u��Jn
l+1/2�r�Pl�cos ��, had it not been trivial to

find an l-dependent grid satisfying Eq. �28� and a u grid
satisfying Eq. �27�. Indeed, for this case of basis functions,
no l-independent grid, which would allow one to employ the
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simplest FBR formula efficiently, has been derived. How-
ever, efficient use can be made of the simplified nonsymmet-
ric FBR expression, Eq. �25�, with l-dependent grid points,
as is demonstrated by the numerical results presented in the
next Section.

4. The choice of grid points: Grid III

In principle, one might look for a nondirect product grid
of, say, P points such that

�
i=0

P−1

wi�m
k �si�fk�ui��n

l �si�f l�ui� = �kmk,lnl
. �46�

The corresponding FBR would be that of the simplest
symmetric form. Practically, however, little is known
about how such grid points and weights could be determined.
The Lebedev grid developed for spherical harmonics51 is a

notable exception. An example of its application to nuclear
motions in a molecule is given in Ref. 52.

III. APPLICATIONS

In this section we demonstrate numerically that �a� the
optimal GFBR formulas, Eqs. �32� and �35�–�37�, have simi-
lar accuracy, and �b� they have superiority, in terms of com-
putational time, when compared with the more robust opti-
mal GFBR expression, Eq. �20�, and the symmetric FBR,
Eq. �39�.

Two examples will be considered. One involves the
same simple model Hamiltonian as employed by Sharafeddin
and Light53 in their study of “pointwise” versus basis repre-
sentations for two-dimensional spherical dynamics. The
other example deals with a more complicated problem, the

TABLE III. The number of arithmetic operations required to evaluate the potential matrix vector product and a
single element of this product in the truncated nondirect product basis 
�nl

l �s�f l�u��l=0,nl=0
L−1,Nl−1 by different quadra-

ture grids and formulas. In calculating the number of operations it was assumed that the quadrature weights had
been built into the basis functions. An estimated relative number of arithmetic operations is also given. It is
equal to or smaller than the ratio of the exact operation count in a given quadrature formula and that in the
reference quadrature formula. Thus, it is equal to 1 for the reference quadrature.

Basis 
�nl

l �s�f l�u��l=0,nl=0
L−1,Nl−1

Number of basis functions N=�l=0
L−1Nl

Number of points LNa LN PL

Quadrature formula Eq. �32� Eq. �35� Eq. �39�

Potential matrix vector product
VFBRc
Number of multiplications N2+LN+�k=0

L−1Nk
2 N2+LN 2PN+ PL2

Number of additions N2+LN+�k=0
L−1Nk

2−2N N2−N 2PN+ PL2−2PL−N

Relative number
of multiplications 	1 1 	P /N
of additions 	1−1/ �N−1� 1 	2P /N−1/N

cTVFBR

Number of multiplications 2N2+�k=0
L−1Nk

2 2N2 2PN+ PL2

Number of additions N2+LN+�k=0
L−1Nk

2−2N N2−N 2PN+ PL2−2PL−N

Relative number
of multiplications 	1 1 	P /N
of additions 	1−1/ �N−1� 1 	2P /N−1/N

A single element of the potential matrix vector product
�VFBRc�kmk

Number of multiplications NkN+NkL+Nk N+L PN+ PL+ P
Number of additions NkN−1 N−1 PN−1

Relative number
of multiplications 	Nk 1 	P
of additions 	Nk 1 	P

�cTVFBR�lnl

Number of multiplications 2N+�k=0
L−1Nk

2 2N PN+ PL+ P
Number of additions �k=0

L−1Nk
2−1 N−1 PN−1

Relative number
of multiplications 	1 1 	P /2
of additions 	1 1 	P

aThis is the minimum number of points which may satisfy Eqs. �27� and �28�.
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calculation of some of the vibrational energy levels of the H3
+

molecular ion. The numerical GFBR results presented were
obtained by direct diagonalization.

A. Simple model calculations

Consider the Hamiltonian

Ĥ = −
1

sin �

�

��
sin �

�

��
−

1

sin2 �

�2

�2 + 10 sin � cos  , �47�

where � and  are spherical polar coordinates. Find approxi-
mate solutions of the corresponding eigenvalue equation by
employing two basis sets. Basis I is a truncated spherical
harmonics basis defined as �n

l �s�f l�u�� Pn
�l��cos ��exp�il�

with n=0, 1,…, N−1 and l=−n, −n+1,…, n. Basis II is
obtained from basis I by replacing the associated Legendre
polynomials with the corresponding associated Legendre-
DVR functions,54 i.e., ��

l �s�f l�u��P�
�l��cos ��exp�il�, with

�=0,…, N− �l�−1 and l=0, ±1,…, ±�N−1�. While the two
basis sets are different, they span the same space and contain
the same number of basis functions, �Lmax+1�2, where Lmax

= �lmax�=N−1.
The matrix elements of the Hamiltonian can be calcu-

lated analytically in these basis sets. Thus variational basis

representations �VBRs� of the eigenvalue equation can be set
up. The results of the variational calculations provide the
reference to which the results of different FBR calculations
will be compared.

We employed in our calculations Lmax=8, that is, 81 ba-
sis functions. In the FBR calculations we used different grids
and different quadrature formulas for evaluating the matrix
elements of the potential-energy operator approximately, but
the matrix elements of the kinetic-energy operator were cal-
culated exactly by employing analytical expressions.

Two different sets of quadrature points and weights were
employed. In both sets the grid for the azimuthal angle was a
Fourier grid defined as  j =2�j / �2Lmax+1�; j=0, ±1,…,
±Lmax, and the corresponding quadrature weights were w,j

=1/ �2Lmax+1�. In grid I we employed l-dependent Gauss-
associated Legendre quadrature points and weights, i.e., dif-
ferent sets of points and weights for different values of L
= �l�, for the variable s=cos �. In grid II an L-independent
quadrature consisting of Gauss-Legendre quadrature points
and the associated weights was employed. The number of
quadrature points and weights employed was as small as
minimally required to ensure the fulfillment of Eqs. �27� and
�28� in the case of grid I and the fulfillment of Eqs. �27� and

TABLE IV. Selected eigenvalues of Ĥ given in Eq. �47� as calculated with various quadratures and quadrature formulas in two different basis sets.

Basisa Basis I: 
�Pn
�l��cos ��exp�il��n=0,l=−n

Lmax,n Basis II: 
�P�
�l��cos ��exp�il���=1,l=0

Lmax−�l�,Lmax

Grid Grid I Grid II Grid I Grid II
L dependent L independent L dependent L independent

Number of points 765 765 153 765 765 153

Method Eq. �20� Eq. �32� Eq. �39� Eq. �20� Eq. �35� Eq. �39� VBR

State
1 −6.045 08 −6.045 08 −6.045 08 −6.045 08 −6.045 08 −6.045 08 −6.045 08
5 3.911 46 3.911 46 3.911 46 3.911 46 3.911 46 3.911 46 3.911 46
10 10.685 16 10.685 18 10.685 18 10.685 16 10.685 18 10.685 18 10.685 18
15 12.681 09 12.681 10 12.681 10 12.681 09 12.681 10 12.681 10 12.681 10
20 19.721 56 19.721 32 12.721 32 19.721 56 19.721 32 12.721 32 12.721 32
25 20.671 08 20.670 81 20.670 81 20.671 08 20.670 81 20.670 81 20.670 80
30 30.027 38 30.026 65 30.026 66 30.027 38 30.026 65 30.026 66 30.026 72
35 30.388 94 30.385 61 30.385 61 30.388 94 30.385 61 30.385 61 30.385 61
40 41.752 18 41.758 20 41.758 20 41.752 18 41.758 20 41.758 20 41.758 20
45 42.191 16 42.216 13 42.216 13 42.191 16 42.216 13 42.216 13 42.216 13
50 55.522 10 55.639 29 55.639 56 55.522 10 55.639 29 55.639 56 55.640 43
55 55.742 63 55.948 69 55.948 69 55.742 63 55.948 69 55.948 69 55.948 69
60 56.014 13 56.198 82 56.199 03 56.014 13 56.198 82 56.199 03 56.234 60
65 69.054 55 68.943 40 69.060 77 69.054 55 68.943 40 69.060 77 72.000 00
70 72.737 77 72.667 50 72.667 50 72.737 77 72.667 50 72.667 50 72.667 50
75 73.358 89 73.168 42 73.168 37 73.358 89 73.168 42 73.168 37 73.296 81
80 73.931 90 73.480 77 73.480 77 73.931 90 73.480 77 73.480 77 73.480 77
81 77.991 05 78.099 28 77.969 30 77.991 05 78.099 28 77.969 30 73.503 69

Relative CPU time of
evaluating VFBR 91 12 10 90 1 10
Predicted relative
CPU time of
evaluating VFBR 81�83�b 3.5�3.6� 4.5�4.7� 81�83� 1 4.5�4.7�
aIn each calculation a truncated basis corresponding to Lmax=8 was employed.
bThe numbers in parentheses were calculated using the exact number of operation counts, those not in parentheses are obtained by the approximate expressions
�see Table I�.
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�38� in the case of grid II with the given truncated bases.
That is, the calculations with grids I and II involved �2Lmax

+1��Lmax+1��Lmax+2� /2 and �2Lmax+1��Lmax+1� quadra-
ture points �and weights�, respectively. The quadrature for-
mulas employed are given in Table IV.

The results of our numerical calculations with different
combinations of the basis sets, quadratures, and quadrature
formulas are presented in Table IV and Fig. 1. The most
important conclusions one can draw from the numerical re-
sults are as follows.

�1� Calculations using an L-dependent quadrature of the
minimum number of points required to satisfy Eqs. �27�
and �28� along with the simplified nonsymmetric FBR
formulas, Eqs. �32� and �35�, are as accurate as calcu-
lations using an L-independent quadrature of the mini-
mum number of points required to satisfy Eqs. �27� and
�38� along with the symmetric FBR expression, Eq.
�39�.

�2� The L-dependent grid calculations with Eq. �32� are as
efficient as, whereas the calculations with Eq. �35� are
more efficient than, the L-independent grid calculations
with the symmetric FBR, even though the former em-
ploy more grid points.

�3� The simplified nonsymmetric FBR calculations are sig-
nificantly faster than, yet as accurate as, the calcula-
tions with the more general and robust FBR formula,
Eq. �20�.

These are remarkable results, since L-dependent grids
have generally been considered not worth applying and thus
they are avoided in favor of L-independent grids.13,23,25,53

Furthermore, there are basis sets where an efficient
L-independent grid, i.e., an L-independent grid satisfying Eq.
�38� with P�N, is yet to be determined, whereas the con-
struction of an appropriate L-dependent grid is almost trivial.
For such basis sets the approach adapted, for instance, in
Refs. 13, 23, 25, and 53, cannot be employed, but application
of the simplified nonsymmetric FBR is straightforward. In
the next subsection we describe such an example.

B. The vibrational energy levels of H3
+

The singularities present in the Sutcliffe-Tennyson vibra-
tional Hamiltonian of a triatomic molecule may be treated by
employing a nondirect product basis set. In one suitable basis
set Legendre polynomials, Pl�cos ��, are coupled to Bessel-
DVR functions of the infinite type, Jm

l+1/2�R� and Jn
l+1/2�r�,

that is, �ml

l �t��nl

l �s�f l�u��Jml

l+1/2�R�Jnl

l+1/2�r�Pl�cos ��. Re-
cently, we have employed this basis set with l=0,1,…,L−1
=15 and 9; ml=0,1,…,M −1=15 and 9; and nl=0,1,…,
N−1=15 and 9 in calculating the vibrational energy levels of
H3

+.37 Unlike for other basis sets, such as those employed in
Ref. 23, for this basis set no efficient l-independent grid has
been derived. The l-independent grids tried by us proved to
be unacceptable. Therefore, we employed a grid formed by
taking the direct product of L=16�10� Gauss-Legendre
quadrature points with a grid of the variable R consisting of
M =16�10� points for each value of l, i.e., for l=0,1,…,
15�9�, and with a grid of the variable r consisting of N
=16�10� points for each value of l. This grid proved to be
successful and it was used along with the optimal GFBR, Eq.
�20�, in evaluating the potential matrix and in eventually
solving the vibrational eigenvalue problem of H3

+. Not sur-
prisingly, the calculations turned out to be very time consum-
ing, but we were not aware of any other method of employ-
ing such an l-dependent grid more efficiently.

But now, by observing that the radial grid and basis
functions employed in Ref. 37 satisfy Eq. �33�, the simplified
nonsymmetric FBR evaluating the potential matrix elements
according to Eq. �37� can be used instead of the more robust
and general GFBR expression, Eq. �20�. The application of
this simplified nonsymmetric FBR leads to an enormous de-
crease of computer time, but no loss of accuracy, in compari-
son with calculations carried out by the direct use of the
optimal GFBR formula, as is demonstrated by the numerical
results given in Table V. The relative CPU times obtained are
in accord with the operation counts predicting at least 10 000
and at least 65 000 times faster computation with the smaller
and larger basis sets, respectively, when employing Eq. �37�.

IV. SUMMARY

In quantum-mechanical calculations of nuclear motion
dynamics in molecules the form of the Hamiltonian chosen is
indicative of the kind of basis functions to be employed.
Often it suggests the use of nondirect product basis sets.
Many analytically known nondirect product basis sets consist
of basis functions having structure identical or similar to that
of the functions �m

l �t��n
l �s�f l�u�, �n

l �s�f l�u�, etc. Since with
realistic potential-energy surfaces the potential matrix ele-
ments cannot be obtained analytically, one should employ
some approximate numerical quadrature for their evaluation.
Finding a numerical quadrature for nondirect product bases
that is both efficient and accurate is not always simple. Nev-
ertheless, nondirect product basis sets of the above type have
been applied successfully to a number of complicated sys-
tems. For instance, Leforestier and Rasmussen et al. used
Wigner functions in calculating nuclear motion dynamics of
Ar ·H2O,25 �H2O�2,26 and ketene,24 Bramley et al. employed
spherical oscillator functions in their benchmark quality cal-

FIG. 1. Absolute deviation of the approximate eigenvalues of the Hamil-
tonian given in Eq. �47� calculated by different FBR methods from those of
the VBR calculations �see Table IV�. Filled triangles, empty circles, and
asterisks denote the deviations of the results obtained by using Eq. �32� �and
Eq. �35��, Eq. �39�, and Eq. �20�, respectively. The deviations corresponding
to levels n=65 and n=81 are relatively large and not shown in the figure.
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culation of the vibrational energy levels of H3
+ �Ref. 23� and

HF2
−,41 Corey and Lemoine, and Somers et al. used spherical

harmonics in calculations of scattering of molecules on
surfaces,22,44 and Sharafeddin and Light employed spherical
harmonics in their exploratory study on the use of DVR ver-
sus FBR methods with nondirect product bases.53 With no
exception these calculations employed l-independent quadra-
tures and more quadrature points than basis functions �cf.
Sec. III�. The use of l-dependent quadratures has been con-
sidered impractical.22,23

The optimal GDVR �Ref. 10� provides a DVR with gen-
eral, direct and/or nondirect product bases. The optimal
GDVR possesses more characteristic properties of the stan-
dard DVR than any other generalized DVR method devel-
oped so far. Applications of the method have revealed that
finding appropriate grid points is difficult in the case of non-
direct product basis functions of structure identical or similar
to that of spherical harmonics.10,37 The FBR related to the
optimal GDVR has turned out to be easier to employ, even
though it requires the use of more grid points than basis
functions.37 Our calculations of the vibrational energy levels
of H3

+ by this optimal-generalized FBR method employed a
nondirect product basis of structure similar to that of spheri-
cal harmonics for which no l-independent grid has been de-
rived. While being highly accurate, the calculations were
slow, due to the slowness of the evaluation of the potential-
energy matrix with the l-dependent grid which we were
forced to employ. Thus, we had to ask the question if
l-dependent grids could be used efficiently inspite of their
bad reputation.

In this communication we have described a method for

the efficient use of l-dependent grids with nondirect product
basis functions of structures �m

l �t��n
l �s�f l�u�, �n

l �s�f l�u�, etc.
In particular, we have shown how and under what condition
the robust generalized FBR formula, Eq. �20�, can be simpli-
fied to a form, Eq. �25�, essentially retaining the accuracy of
Eq. �20�, whose evaluation does not require the inversion of
a matrix. Fulfillment of the condition, Eq. �24�, derived re-
quires the use of special grid points whereby the generality
of Eq. �20� is lost. We have pointed out that the complexity
of the simplified nonsymmetric FBR formula, Eq. �25�, can
be decreased further, resulting in extremely simple expres-
sions, such as given in Eqs. �35� and �37�. This only requires
the modification of the basis functions, i.e., the replacement
of the functions �n

l �and possibly �m
l �, present in the nondi-

rect product basis functions, with their DVR-function coun-
terparts satisfying Eq. �33�. The simplified nonsymmetric
FBR formulas exhibit low arithmetic operation counts in
evaluating the potential-energy matrix elements and the indi-
vidual elements of the product of the potential matrix with a
vector �see Tables I–III�. This ensures the efficiency of
l-dependent grid-simplified nonsymmetric FBR calculations
with direct �i.e., noniterative� diagonalization methods and
with the iterative diagonalization method of the generalized
variational optimal relaxation.47,48 As far as large scale itera-
tive calculations are concerned, it still remains to be investi-
gated numerically whether or not the l-dependent grid-
nonsymmetric FBR calculations are competitive with
calculations employing the l-independent grid-symmetric
FBR,21,23 i.e., the FBR corresponding to the generalized

TABLE V. Selected vibrational energy levels of H3
+ obtained by different methods. For the sake of comparison,

converged, accurate eigenvalues calculated by the DOPI algorithm �Ref. 55� are also given.

Basis 
Jml

l+1/2�R�Jnl

l+1/2�r�Pl�cos ���l=0,ml=0,nl=0
9,9,9 
Jml

l+1/2�R�Jnl

l+1/2�r�Pl�cos ���l=0,ml=0,nl=0
15,15,15

Number of basis
functions 1000 4096

Number of points 100 000 1 048 576

Method Eq. �20� Eq. �37� Eq. �20� Eq. �37� DOPI

State a

1 4375.95 4366.78 4362.30 4362.30 4362.30
2 2449.29 2452.88 2521.19 2521.17 2521.19
3 2569.12 2560.97 2521.20 2521.19 2521.19
4 3232.63 3222.24 3179.21 3179.19 3179.20
5 4854.15 4831.45 4777.66 4777.65 4777.63
6 4893.82 4836.20 4997.61 4997.61 4997.60
7 5135.71 5114.48 4997.64 4997.63 4997.60
8 5492.34 5485.60 5554.82 5554.78 5554.82
9 5723.98 5551.59 5554.93 5554.82 5554.82
10 6432.95 6361.02 6263.94 6263.77 6263.85

Approximate
CPU time h s day s
Relative number of
arithmetic operations
in evaluating VFBRb 	10 000 1 	65 536 1

aThe energies of states 2,3,… are referred to the ground state. They are given in units of cm−1.
bCalculated by using formulas presented in Table II.
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DVR method of Corey and co-workers.13,21 This symmetric
FBR has been rederived as a special case of the GDVR�FBR�
method of Ref. 10.

The efficiency and high accuracy of the new simplified
FBR expressions have been demonstrated by calculating the
eigenvalues of a simple model Hamiltonian with employing
basis sets admitting both l-independent and l-dependent grids
and by calculating the vibrational energy levels of H3

+ with
employing a nondirect product basis which is not as yet ame-
nable to l-independent grid calculations. The matrix eigen-
value equations were solved by noniterative, direct diagonal-
ization. The first example has demonstrated that even in the
case of a simple Hamiltonian and a small basis set, an
l-dependent grid-nonsymmetric-simplified GFBR calculation
can be more efficient than an l-independent grid-symmetric
FBR calculation. The second example has demonstrated the
enormous decrease of CPU time which can be achieved, with
respect to that of a direct application of the GFBR formula,
Eq. �20�, by employing the nonsymmetric-simplified GFBR.

A couple of related problems remain. The efficiency of
the simplified nonsymmetric FBR in large scale iterative cal-
culation of selected eigenpairs still has to be demonstrated
numerically, and there is the question how l-dependent grids
can be used efficiently in wave-packet propagation.
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