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Symmetry analysis of internal rotation
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Research papers and textbooks addressing the problem of internal rotation in a molecule explain
symmetry properties of the torsional potential by local geometrical symmetries of the molecule. It
is shown here that symmetry properties of a torsional potential derive from permutation inversion
symmetry and a peculiar nature of torsional dynamics but have no relation to actual geometrical
symmetries. To confirm the validity of our symmetry analysis a minimum energy torsional potential
curve has been determinedab initio for acetaldehyde, resulting in exact 2p/3 periodicity that no
previousab initio calculations achieved. ©2002 American Institute of Physics.
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I. INTRODUCTION

During internal rotation a group of atoms, called the to
rotates with respect to another group, called the fra
within a molecule. Internal rotation, one of the most fas
nating of internal motions in molecules, has been the fo
of experimental and theoretical studies since 1930.1,2 Yet, our
knowledge about internal rotation potential curves still co
tains discrepancies. Consider, for example, torsion of the
thyl group in the acetaldehyde molecule. The correspond
experimental spectra are described by a torsional potenti
2p/3 periodicity.3,4 Up to now, however, no first principle
calculation has given a torsional potential of minimum e
ergy and 2p/3 periodicity for acetaldehyde. Despite the fa
that analyses of experimental data5,6 andab initio electronic
structure calculations7 agree that the methyl group in aceta
dehyde does not haveC3 symmetry axis, standard
arguments8–10 used to justify 2p/3 periodicity assumeC3

geometric symmetry for the methyl group, and even theo
ical investigations employing the molecular symmetry~MS!
group11,12 assume a reference configuration with a met
group ofC3 symmetry. This paper explains the origin of an
a solution to these discrepancies.

II. DEFINITION OF THE TORSIONAL COORDINATE

To describe the torsional motion in acetaldehyde m
researchers would choose one of the three independent
dral angles,r1 , r2 , andr3 defined in Fig. 1. Nevertheless
there is no compelling reason to single out one of the di
dral angles as the most suitable. Therefore, let us define
coordinates,t1 , t2 , andt3 , through invertible linear com-
binations of the dihedral angles:

a!Author to whom correspondence should be addressed. Electronic add
viktor@power.szfki.kfki.hu
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t15 1
3~r11r21r322p!, ~1!

t25 1
2~r12r2!, ~2!

t352 1
4r12 1

4r21 1
2r3 . ~3!

When a rigid top rotates with respect to a rigid frame, i.
when there is no geometry relaxation, and by assumin
methyl group ofC3v symmetry,

r15r, r25r1
2p

3
, r35r1

4p

3

and

t15r, t252
p

3
, t35

p

2
,

with r denoting the angle of rigid internal rotation. Of th
new coordinatest1 is clearly the only reasonable choice fo
describing the torsional motion since the other two coor
nates cannot be used to describe even the rotation of a
top around a rigid frame. We shall use Eq.~1! as the defining
equation of the torsional coordinate.t2 andt3 will be chosen
to be two of the 14 additional internal coordinates, whi
will be denoted collectively bys, of acetaldehyde.

III. SYMMETRY ANALYSIS OF THE TORSIONAL
MOTION

The MS group13,14 of acetaldehyde isC3v(M ). The po-
tential energy surface~PES!, V(t1 ,s), is invariant under the
permutation and permutation-inversion of identical nucl
and thus under the operations of the MS group. Theref
with symmetry operatorsĝ, ĝPC3v(M ),

V~t1 ,s!5ĝV~t1 ,s!5V~ ĝ21t1 ,ĝ21s!, ~4!

must hold. An effective torsional potential,V(t1), is ob-
tained by averaging the global PES over an eigenfunct
ss:
9 © 2002 American Institute of Physics
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C(s), of an appropriate vibrational Hamiltonian. By usin
the invariance property of the PES under operations of
molecular symmetry group and the notations85ĝ21s, one
can find that

V~t1!5E dsC* ~s!V~t1 ,s!C~s!

5E dsC* ~s!V~ ĝ21t1 ,ĝ21s!C~s!

5E ds8C* ~s8!V~ ĝ21t1 ,s8!C~s8!

5V~ ĝ21t1!, ~5!

with appropriate limits of integration. Therefore, the symm
try properties, including periodicity, of the torsional potent
V(t1) may be obtained by finding the transformation pro
erties of the torsional coordinate. To establish the trans
mation properties of the torsional coordinatet1 we use its
defining equation Eq.~1! along with the transformation prop
erties of the dihedral angles.

It is important to notice that the dihedral angles are
completely independent coordinates. The PES has barrie
infinite ~or at least very large! height atĝr i5ĝr j , iÞ j , i,
j 51, 2, 3, and atĝr15ĝr25ĝr3 , which limit the available
configuration space of the dihedral angles to

0<ĝr1,ĝr2,ĝr3 , ~6!

0,ĝr22ĝr1,2p, ~7!

0,ĝr32ĝr1,2p, ~8!

0,ĝr32ĝr2,2p, ~9!

for all ĝPC3v(M ). That is, the hydrogens of the meth
group cannot ‘‘overtake’’ each other~similarly to the hydro-
gens of a model devised to describe tunneling in the vi
cation15!. The transformation properties of the dihedr
angles and oft1 must be determined by taking into accou
this correlation, but no other geometrical constraints are
posed. The transformation properties so derived are sum
rized in Table I.

From Eq.~5! and the results given in Table I,

FIG. 1. The definition of the dihedral anglesr1 , r2 , andr3 .
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V~t1!5VS t11
2p

3 D5VS t11
4p

3 D5VS 2t12
2p

3 D
5VS 2t12

4p

3 D5V~2t1!, ~10!

follows. Therefore, the torsional potential energy curve is
periodic, with period length 2p/3, and even function of the
torsional coordinatet1 . This conclusion remains valid re
gardless of the actual geometrical symmetry of the met
top and aldehyde frame, since our derivation made no
sumptions about geometrical symmetry. This explains w
analyses of experimental spectra based on the assumptio
2p/3 periodic torsional potentials were successful.

To our best knowledge allab initio electronic structure
calculations on the internal rotation of acetaldehyde e
ployed a single dihedral angle as the torsional coordin
With the help of Table I and an equation similar to Eq.~10!,
one can find that, when employing a dihedral angle, sayr1 ,
as the torsional coordinate, 2p/3 periodicity of the potential
curve can occur only in the very special case whenr25r1

12p/3 and r35r114p/3. As observed inab initio
studies7,18 and spectroscopic experiments5,6 this requirement
is not satisfied even in the lowest-energy conformation of
acetaldehyde molecule. Therefore, when using a dihe
angle as the torsional coordinate, one cannot obtain a
sional potential that is along a minimum energy path and
2p/3 periodicity at the same time. This explains the failure
previous ab initio calculations7,19 in determining torsional
potentials of minimum energy and 2p/3 periodicity. If one is
to derive the torsional potential of minimum energy and 2p/3
periodicity of acetaldehyde the torsional coordinate defin
in Eq. ~1! must be employed.

IV. THE TORSIONAL POTENTIAL OF ACETALDEHYDE

We have used theACES II electronic structure package16

to minimize the total molecular energy~the sum of nuclear–
nuclear repulsion and electronic energy! and to optimize the
molecular geometry of acetaldehyde while keeping the
sional coordinatet1 fixed at values 0, 15, 30, . . . , 180deg,
respectively. We have done similar calculations using the
hedral angler1 as the torsional coordinate. Since our go
has been merely to demonstrate the validity of our symme
analysis, we have used the 6-31G** basis, a simple but rea
sonably good basis for the problem considered.

The total molecular energies calculated at various fix
values of the torsional coordinate are samples along
minimum energy torsional path,V0(t) with t5t1 and t
5r1 , when all~but the torsion! internal motions are frozen

TABLE I. Transformation properties of the dihedral anglesr1 , r2 , andr3

given in Fig. 1 and the coordinatet1 defined by Eq.~1! under the elements
of the C3v(M ) molecular symmetry group.

E 243 234 ~23!* ~24!* ~34!*

r1 r1 r2 r3 2r2 2r3 2r1

r2 r2 r3 2p1r1 2r1 2r2 2p2r3

r3 r3 2p1r1 2p1r2 2p2r3 2r1 2p2r2

t1 t1 t112p/3 t114p/3 2t122p/3 2t124p/3 2t1
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The values obtained are given in Table II. The numbers sh
that the potential curve of minimum energy is 2p/3 periodic
when employingt1 as the torsional coordinate whereas
lacks this periodicity whenr1 is used. The same can imme
diately be seen from Figs. 2 and 3, where the total molec
energy values are plotted as points along the curves obta
by fitting the function V(t)51/2@V3(12cos 3t)1V6(1
2cos 6t)1V9(12cos 9t)# to the total energies. The points a
most perfectly match the fitted curve when employingt1 .
When employingr1 , however, there is clear deviation from
2p/3 periodicity.

Points corresponding to configurations related by sy
metry operations must lie on horizontal lines. While this
exactly what can be observed in Fig. 2, Fig. 3 shows the
of symmetry. To correct for the loss of periodicity, accordi
to a standard treatment,7,19 one would carry out a least
squares fit of the total energies by using the functionV„t
5(r11r21r322p)/3… instead of the functionV(t5r1).
This amounts to assuming that the minimum energy p
along a dihedral angle is related to the minimum energy p
along t1 by simple coordinate transformation. Save spec
points, the stationary points on the torsional–vibratio
PES, this assumption, however, is not correct, since the
quirements of being on the minimum energy path alon
dihedral angle, e.g.,r1 , do not imply the satisfaction of the

FIG. 2. The minimum energy torsional path alongt1 .

TABLE II. Torsional potentials of acetaldehyde. The total energies given
referenced toE(t15r150)52152.922 587 15 hartrees.

t1 /r1

~deg!
V0(t1)
~cm21!

V0(r1)
~cm21!

ZPVE(t1)
~cm21!

V0(t1)1ZPVE(t1)
~cm21!

0.00 0.00 0.00 0.00 0.00
15.00 49.63 54.29 1.66 51.29
30.00 176.42 188.18 7.11 183.53
45.00 313.41 323.16 14.85 328.26
60.00 373.19 372.79 18.81 392.00
75.00 313.41 307.56 14.85 328.26
90.00 176.42 174.88 7.11 183.53

105.00 49.63 53.12 1.65 51.28
120.00 0.00 0.32 0.00 0.00
135.00 49.63 39.63 1.66 51.29
150.00 176.43 159.99 7.11 183.54
165.00 313.41 304.82 14.85 328.26
180.00 373.19 373.19 18.81 392.00
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equations required on the minimum energy path alongt1 .
Therefore, this method does not restore but~mistakenly! as-
sumes periodicity. Several other methods have been
posed for recovering 2p/3 periodicity,20–22 but they can be
questioned either on theoretical or practical grounds. 2p/3
periodicity of the torsional potential of methyl-type intern
rotors is a fundamental property that derives from dynam
symmetry. A theoretically sounda priori approach to calcu-
lating such a potential should obviate the need of anya pos-
teriori symmetry restoration.

As our symmetry analysis has shown, the effective t
sional potential of acetaldehyde must be a 2p/3 periodic
function of the torsional coordinatet1. The effective tor-
sional potential of acetaldehyde that is the simplest nex
V0(t1) incorporates zero-point vibrational energy~ZPVE!
contributions from the remaining 14 vibrational mode
Assuming that these vibrations are harmonic, the zero-p
energy contribution is just the half of the sum of the
harmonic frequencies. The harmonic frequencies depend
the torsional coordinate. We have determined the harmo
frequencies and the ZPVE at fixed values oft1 with the
following method. The Cartesian force constant matrix
calculated by theGAUSSIAN 98 program17 at each of the op-
timized geometries obtained when sampling the poten
V0(t1). Then at each fixed value oft1 a projected force
constant matrix is calculated with a projector matrix cor
sponding to the Eckart–Sayvetz conditions.23,24Diagonaliza-
tion of a projected force constant matrix gives seven z
eigenvalues corresponding to three translational, three r
tional, and the torsional mode, as well as 14 nonzero eig
values. The latter are equal to the square of the harmo
frequencies at the value oft1 considered. The numerical re
sults summarized in Table II show that the effective torsio
potential is indeed a 2p/3 periodic function. A least-square
fit of the functional formV(t1) to the ZPVE corrected tota
energies~see Table II! gave the valuesV35391.85 cm21,
V65212.46 cm21, and V950.16 cm21, which compare
favorably with the experimental valuesV35407.95 cm21,
V65212.92 cm21,3 or V35407.72 cm21, V65212.07
cm21, andV9520.19 cm21.4

In passing it is worth noting that according to our calc
lations the geometry parameters of acetaldehyde not inv

FIG. 3. The minimum energy torsional path alongr1 .
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ing the methyl hydrogens are 2p/3 periodic, whereas param
eters involving methyl hydrogens are not 2p/3 periodic
functions oft1 . All of the elements of the four dimensiona
generalized tensor of inertia24 are, however, 2p/3 periodic
functions oft1 .

V. SUMMARY

Barriers of infinite~or very large! height prevent certain
rearrangements of the atoms in a molecule from occur
and therefore the complete nuclear permutation invers
~CNPI! group of the molecule can be reduced.13,14 We
pointed out, in the example of the acetaldehyde molec
that some barriers of infinite height, in addition to reduci
the CNPI group, constrain torsional dynamics explicitly a
influence how the torsional coordinate transforms under
MS group. Then, having shown that there is a coordin
most reasonable for describing torsional motion, we h
proved that the symmetry properties of the torsional poten
do not depend on the geometrical symmetry of either the
or the frame.

Up to now research papers7,25,26 and textbooks9,10 kept
relying on assumptions about the geometrical symmetry
the top and the frame when explaining the symmetry pr
erties of torsional potentials, and dynamical models of in
nal rotation were being constructed by assuming refere
configurations with methyl tops of threefold symmetry.27,28

There were well known but unresolved discrepancies.7,20–22

Our analysis explained the origin and resolved these disc
ancies. The results of our symmetry analysis have been
firmed in all respects by numerical, first principles calcu
tions of the torsional potential curve of acetaldehyde.
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