Equilibrium Inversion Barrier of NH₃ from Extrapolated Coupled-Cluster Pair Energies

WIM KLOPPER,¹ CLAIRE C. M. SAMSON,¹ GYÖRGY TARCZAY,² ATTILA G. CSÁSZÁR²

¹Theoretical Chemistry Group, Debye Institute, Utrecht University, P.O. Box 80052, NL-3508 TB Utrecht, The Netherlands ²Department of Theoretical Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary

Received 14 December 2000; accepted 2 January 2001

Dedicated to Professor Paul von R. Schleyer

ABSTRACT: The basis-set convergence of singlet and triplet pair energies of coupled-cluster theory including single and double excitations is accelerated by means of extrapolations based on the distinct convergence behaviors of these pairs. The new extrapolation procedure predicts a nonrelativistic Born–Oppenheimer inversion barrier of $1767 \pm 12 \text{ cm}^{-1}$ for NH₃. An effective one-dimensional, vibrationally averaged barrier of $2021 \pm 20 \text{ cm}^{-1}$ is obtained when relativistic effects ($+20 \text{ cm}^{-1}$), Born–Oppenheimer diagonal corrections (-10 cm^{-1}), and zero-point vibrations ($+244 \text{ cm}^{-1}$) are accounted for. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1306–1314, 2001

Keywords: basis-set convergence; pair energies; coupled-cluster theory; inversion barrier; ammonia

Correspondence to: W. Klopper; e-mail: w.m.klopper@chem. uu.nl

Contract/grant sponsor: The Royal Netherlands Academy of Arts and Sciences (to W. K.)

Contract/grant sponsor: Hungarian Ministry of Culture and Education; contract/grant number: FKFP 0117/1997 (to A.G.C., G.T.)

Contract/grant sponsor: Scientific Research Fund of Hungary; contract/grant numbers: OTKA T024044, T033074

Contract/grant sponsor: Academic Computing Services Amsterdam (SARA)

Introduction

wealth of empirical and theoretical data is available for the inversion barrier associated with the v_2 umbrella mode in NH₃.¹⁻²¹ Here, it suffices to say that the best empirical procedures predict effective one-dimensional, vibrationally averaged barriers in the 2018 ± 10 cm⁻¹ range. More problems are encountered in the empirical analyses when attempting to include the effects of zero-point vibrations (ZPV). Due to these difficulties, the inferred bare electronic (i.e., equilibrium) inversion barriers (B_e) scatter between 1794 and 1885 cm⁻¹.

The highest quality ab initio results for the equilibrium inversion barrier of NH3 have been obtained by Császár, Allen, and Schaefer.²¹ Using the focal-point technique,^{21, 22} these authors determined $B_{\rm e} = 1810 {\rm ~cm^{-1}}$ for the barrier at the extrapolated nonrelativistic valence-only level. These focal-point studies indicated that the greatest computational difficulty in assessing the equilibrium inversion barrier of NH3 lies in the relatively protracted basis-set convergence, a case similar to water.^{23, 24} Therefore, we decided to extend the previous investigations with a set of CCSD(T) and CCSD(T)-R12/B calculations that decompose the correlation energy into singlet and triplet pair energies. The new coupledcluster calculations (a) allow extrapolations based on the pair energies obtained in various correlationconsistent basis sets, and thus provide a new and interesting way to arrive at the basis-set limit;²⁵ and (b) extend the range of directly computed values for the focal-point analysis, and thus can help checking an intrinsic approximation of the focal-point scheme, namely, the neglect of the basis-set dependence of higher order correlation increments and thus their additivity.

Computational Methods

EXTRAPOLATION OF CCSD PAIR ENERGIES

Reference electronic wave functions were determined by the one-determinant restricted Hartree-Fock (RHF) method. Dynamical electron correlation was accounted for by coupled-cluster methods (see, e.g., refs. 26 and 27), including single and double excitations (CCSD), and in cases also a noniterative perturbative correction for connected triple excitations (e.g., $CCSD(T)^{28}$ or $CCSD[T]^{29}$).

The correlation energy of the CCSD model for a closed-shell system can be written as a sum of singlet (s = 0) and triplet (s = 1) pair energies, both including contributions from single (S) and connected double (D) excitations,

$$E_{\text{CCSD}} = E_{\text{Hartree-Fock}} + E_{\text{CCSD}}^{\text{S}} + E_{\text{CCSD}}^{\text{D}}, \qquad (1)$$

with

$$E_{\text{CCSD}}^{\text{S}} = \sum_{aibj} t_i^a t_j^b L_{iajb}, \qquad E_{\text{CCSD}}^{\text{D}} = \sum_{aibj} t_{ij}^{ab} L_{iajb}.$$
(2)

Here, t_i^a and t_{ij}^{ab} are the coupled-cluster amplitudes while $L_{iajb} = 2g_{iajb} - g_{ibja}$ is a linear combination of electronic repulsion integrals.²⁷ The reason for decomposing the correlation energy into singlet and triplet contributions is that this will enable us to apply extrapolation schemes that take into account the characteristic convergence behaviors of principal expansions of the singlet and triplet energies, which converge as X^{-3} and X^{-5} , respectively, with the cardinal number X of the basis set.^{30, 31} The CCSD singlet ($\varepsilon_{ij}^{SD,0}$) and triplet ($\varepsilon_{ij}^{SD,1}$) pair

energies are given by

$$\varepsilon_{ij}^{\text{SD},s} = \varepsilon_{ij}^{\text{S},s} + \varepsilon_{ij}^{\text{D},s},\tag{3}$$

with

$$\varepsilon_{ij}^{S,s} = \sum_{ab} t_i^a t_j^b L_{iajb}^s, \qquad \varepsilon_{ij}^{D,s} = \sum_{ab} t_{ij}^{ab} L_{iajb}^s, \qquad (4)$$

and

$$L_{iajb}^{s} = \frac{2s+1}{2} \{ g_{iajb} + (-1)^{s} g_{ibja} \}.$$
 (5)

In our new extrapolation procedure (cf. ref. 25), which is a small modification of the two-point extrapolation technique proposed by Helgaker et al.,^{32–34} the calculated doubles pair energies $\varepsilon_{ii}^{D,s}$ are replaced by the corresponding extrapolated values while the computed singles pair energies $\varepsilon_{ii}^{S,s}$ remain unchanged. When triples contributions are calculated—as in the CCSD(T) model, for example—they also remain unchanged.

The extrapolated doubles pair energies are given bv

$$\varepsilon_{ij}^{\mathrm{D},s}(X-1,X) = \frac{X^{2s+3}\varepsilon_{ij}^{\mathrm{D},s}(X) - (X-1)^{2s+3}\varepsilon_{ij}^{\mathrm{D},s}(X-1)}{X^{2s+3} - (X-1)^{2s+3}},$$
(6)

where $\varepsilon_{ij}^{D,s}(X)$ is the value of the pair energy contribution computed with the cc-pVXZ basis and $\varepsilon_{ii}^{D,s}(X-1)$ the corresponding value from the ccpV(X - 1)Z basis. At the CCSD/cc-pV(X - 1, X)Zextrapolated level, we add the CCSD/cc-pVXZ computed singles contributions to the extrapolated doubles pair energies,

$$\varepsilon_{ij}^{\mathrm{SD},s}(X-1,X) = \varepsilon_{ij}^{\mathrm{S},s}(X) + \varepsilon_{ij}^{\mathrm{D},s}(X-1,X).$$
(7)

Similarly, we define CCSD(T)/cc-pV(X - 1, X)Z energies as the ones obtained by replacing solely the CCSD(T)/cc-pVXZ doubles energy contributions by their CCSD/cc-pV(X - 1, X)Z extrapolated counterparts.

The same extrapolation procedure is used for valence-only (frozen-core approximation, FC) and all-electron (FU) correlated calculations as well as for extensions of the correlation-consistent basis sets such as aug-cc-pVXZ or (aug)-cc-pCVXZ.

GEOMETRIES, BASIS SETS, AND PROGRAMS

The reference pyramidal(C_{3v})/planar(C_{3h}) geometries of NH₃ were optimized at the CCSD(T)(FU)/ cc-pCVQZ level of theory to r(N-H) = 101.12/99.40 pm and \angle (H—N—H) = 106.36/120.0 degrees. The decrease in the r(N-H) bond length at the planar geometry is due to the increased s character of the bonding. The following is perhaps the most accurate estimate of the equilibrium geometry of pyramidal NH₃: $r_e(N-H) = 101.1$ pm and $\angle_{e}(H-N-H) = 106.7$ degrees.¹ Consequently, just as expected, all-electron correlated ab initio equilibrium geometries obtained using a CCSD(T)(FU) wave function with a large basis set are very accurate.27,35 The optimized reference geometries were kept fixed throughout the present computational study.

We employed the (aug)-cc-p(C)VXZ correlation-consistent basis sets of Dunning and coworkers,^{36–38} because these sets approach basis-set completeness in a systematic fashion, thus providing opportunities for extrapolations to the limit of a complete basis.

R12/B computations necessitate the use of basis sets designed differently from the (aug)-cc-p(C)VXZ basis sets.³⁹ Therefore, a [N/H] = [19s14p8d6f4g3h/9s6p4d3f] basis set—taken from ref. 25—was employed for the R12/B calculations.

The two geometry optimizations were carried out with the program package Gaussian 98,⁴⁰ while all (standard) single-point energy calculations were performed with the Dalton program.⁴¹ Nonstandard R12/B calculations were performed with the DIRCCR12-95 program.⁴²

Calculations of relativistic energies, utilizing the direct perturbation theory (DPT) approach of Kutzelnigg^{43, 44} in the framework of the Dirac– Coulomb Hamiltonian, were performed with a modified⁴⁵ version of the program package Dalton.⁴¹ Gaunt and Breit energy corrections⁴⁶ were determined perturbationally by the MOLFDIR^{47, 48} and BERTHA^{49, 50} program packages, respectively, using four-component relativistic Dirac–Hartree– Fock wave functions. Uncontracted correlationconsistent basis sets (denoted as u-cc-pCVXZ with X = D and T) were used for the large component and kinetic balance^{48, 51} was used to generate the small-component basis functions.

The calculations were performed on SGI Origin 2000 R12000 computers at Utrecht University and at the Academic Computing Services Amsterdam (SARA).

Results and Discussion

The calculated and extrapolated energies of the C_{3v} and D_{3h} geometries of NH₃ are collected in Tables I–V. Table I contains the R12/B energies, while Tables II and III display the standard CCSD(FC) pair energies as obtained from calculations and extrapolations in the cc-pVXZ basis sets, in comparision with the R12/B results. The final CCSD(T)(FC) results are shown in Table IV, leading to the valence-shell correlation contributions to the inversion barrier shown in Table V.

TABLE I.

R12/B Energies (in E_h) as Obtained in the [N/H] = [19s14p8d6f4g3h/9s6p4d3f] Basis with the DIRCCR12-95 Program at the CCSD(T)(FU)/cc-pCVQZ Optimized Geometries of the Pyramidal C_{3v} and Planar D_{3h} Structures of NH₃.

Valence-Shell (Correlation (FC)	All-Electron C	orrelation (FU)	
C _{3v}	D _{3h}	C _{3v}	D _{3h}	
-56.224967	-56.217617	-56.224967	-56.217617	
-56.494225	-56.486043	-56.553677	-56.545796	
-56.503634 -56.503385	-56.495230 -56.495021	-56.563574 -56 563269	-56.555462	
	$\begin{tabular}{ c c c c c } \hline Valence-Shell (C_{3v} \\ \hline -56.224967 \\ -56.494225$ \\ -56.503634$ \\ -56.503385$ \\ \hline \end{tabular}$	Valence-Shell Correlation (FC) C_{3v} D_{3h} -56.224967 -56.217617 -56.494225 -56.486043 -56.503634 -56.495230 -56.503385 -56.495021	$ \frac{\text{Valence-Shell Correlation (FC)}}{C_{3\nu}} \qquad \frac{\text{All-Electron C}}{C_{3\nu}} \\ \frac{-56.224967}{-56.494225} \qquad -56.217617}{-56.503634} \qquad -56.224967 \\ -56.503634} \\ -56.495230 \qquad -56.553677 \\ -56.503385 \qquad -56.495021} \\ -56.563574 \\ -56.563269 $	

^a CCSD[T] was originally denoted CCSD+T(CCSD), see ref. 29.

Basis-Set Dependence of the Valence-Shell CCSD(FC) Pair Energies (in mE_h) of the $C_{3\nu}$ Structure of NH ₃ .								
Pair	D	Т	Q	5	6	(56) ^a	R12/B	
			Singl	et pairs				
$(2a_1)^2$ $1e2a_1$ $(1e)^2$ $1a_22a_1$ $1a_21e$ $(1a_2)^2$ Total $\overline{\Delta}_{abs}$	-9.89 -29.72 -53.85 -10.51 -20.62 -19.57 -144.15 4.99	-11.94 -38.52 -61.13 -14.89 -25.66 -24.19 -176.33 1.77	$\begin{array}{r} -12.74 \\ -41.37 \\ -63.66 \\ -16.25 \\ -27.52 \\ -25.62 \\ -187.16 \\ 0.69 \end{array}$	$-13.00 \\ -42.32 \\ -64.49 \\ -16.70 \\ -28.18 \\ -26.09 \\ -190.77 \\ 0.32$	$-13.11 \\ -42.70 \\ -64.82 \\ -16.89 \\ -28.43 \\ -26.29 \\ -192.24 \\ 0.18$	$\begin{array}{r} -13.26 \\ -43.23 \\ -65.28 \\ -17.16 \\ -28.77 \\ -26.55 \\ -194.25 \\ 0.02 \end{array}$	-13.25 -43.16 -65.21 -17.14 -28.72 -26.54 -194.02	
Δ_{\max}	6.97	2.34	0.92 Trial	0.45	0.25	0.03		
1e2a ₁	-8.83	-11.33	11.91 11.91	et pairs —12.08	-12.12	-12.15	-12.16	
$(1e)^2$ $1a_22a_1$ $1a_21e$ Total $\overline{\Delta}_{abs}$ Δ_{max}	-13.36 -4.71 -31.46 -58.35 2.81 3.98	15.71 6.62 37.64 71.30 0.66 0.89	-16.16 -7.12 -38.89 -74.09 0.19 0.26	-16.26 -7.28 -39.25 -74.87 0.06 0.08	-16.29 -7.32 -39.35 -75.09 0.02 0.03	-16.32 -7.35 -39.42 -75.24 0.00 0.00	-16.32 -7.35 -39.42 -75.24	

^a The notation cc-pV(56)Z denotes extrapolated pair energies that were been obtained by inserting the cc-pV5Z and cc-pV6Z energies into eqs. (6) and (7).

HARTREE-FOCK RESULTS

TABLE II.

Our R12/B results (Table I) include Hartree–Fock energies that are computed with a large basis

set comprising 416 basis functions ([N/H] = [19s14p8d6f4g3h/9s6p4d3f]). In this basis, the Hartree–Fock contribution to the inversion barrier amounts to 1613 cm⁻¹. In the largest correlation-

Basis-Set Dependence of the Valence-Shell CCSD(EC) Pair Energies (in mE _b) of the D_{2b} Structure	e of NH

Pair	D	Т	Q	5	6	(56) ^a	R12/B
			Singl	et pairs			
(2a' ₁) ²	-9.48	-11.26	-11.98	-12.22	-12.32	-12.45	-12.45
1e′2a′₁	-30.08	-38.81	-41.59	-42.51	-42.89	-43.40	-43.34
(1e') ²	-53.34	-60.53	-63.05	-63.87	-64.19	-64.64	-64.58
1a ["] 2a'	-10.66	-16.05	-17.72	-18.31	-18.55	-18.88	-18.84
1a ⁷⁷ 1e ⁷	-18.22	-23.54	-25.63	-26.37	-26.66	-27.06	-26.98
$(1\bar{a}_{2}'')^{2}$	-19.93	-24.19	-25.56	-26.01	-26.20	-26.46	-26.44
Total	-141.70	-174.38	-185.53	-189.28	-190.80	-192.90	-192.63
$\bar{\Delta}_{abs}$	5.09	1.82	0.71	0.33	0.18	0.03	
Δ_{max}	8.18	2.79	1.12	0.53	0.29	0.05	
			Triple	et pairs			
1e′2a′₁	-8.23	-10.47	-10.99	-11.14	-11.18	-11.21	-11.22
(1e') ²	-12.85	-14.90	-15.28	-15.38	-15.41	-15.43	-15.43
1a''2a'	-4.74	-6.89	-7.46	-7.64	-7.69	-7.72	-7.72
1a ⁷ / ₂ 1e ⁷	-33.16	-39.54	-40.87	-41.24	-41.36	-41.43	-41.43
Total	-58.98	-71.79	-74.59	-75.40	-75.64	-75.80	-75.80
$\bar{\Delta}_{abs}$	2.80	0.67	0.20	0.07	0.03	0.00	
Δ_{max}	4.14	0.94	0.28	0.09	0.04	0.00	

^a Cf. Table II.

KLOPPER ET AL.

Method	Basis	X = 2	X = 3	<i>X</i> = 4	<i>X</i> = 5	<i>X</i> = 6	R12/B
			С _{3v} , са	lculated			
RHF	cc-pVXZ	-56.19568	-56.21789	-56.22311	-56.22473	-56.22494	-56.22497
	aug-cc-pVXZ	-56.20541	-56.22033	-56.22398	-56.22487		
SD	cc-pVXZ	-0.20250	-0.24764	-0.26124	-0.26565	-0.26733	-0.26926
	aug-cc-pVXZ	-0.21431	-0.25187	-0.26279	-0.26625		
(T)	cc-pVXZ	-0.00379	-0.00763	-0.00870	-0.00907	-0.00920	-0.00916
. ,	aug-cc-pVXZ	-0.00545	-0.00833	-0.00895	-0.00916		
			C_{3v} , extra	apolated ^b			
SD	ZXVq-cc		-0.26316	-0.27002	-0.26983	-0.26949	
	aug-cc-pVXZ		-0.26509	-0.26998	-0.26963		
			D _{3h} , са	lculated			
RHF	cc-pVXZ	-56.18423	-56.20949	-56.21525	-56.21727	-56.21757	-56.21762
	aug-cc-pVXZ	-56.19737	-56.21289	-56.21662	-56.21751		
SD	ZXVq-cc	-0.20068	-0.24617	-0.26013	-0.26469	-0.26645	-0.26843
	aug-cc-pVXZ	-0.21328	-0.25067	-0.26183	-0.26537		
(T)	cc-pVXZ	-0.00340	-0.00733	-0.00844	-0.00886	-0.00900	-0.00898
	aug-cc-pVXZ	-0.00524	-0.00815	-0.00876	-0.00897		
			D _{3h} , extr	apolated ^b			
SD	cc-pVXZ		-0.26189	-0.26915	-0.26902	-0.26870	
	aug-cc-pVXZ		-0.26384	-0.26918	-0.26882		

^a RHF is the restricted Hartree–Fock energy, SD is the CCSD(FC) correlation energy, and (T) denotes the perturbative correction for connected triple excitations at the CCSD(T)(FC) level.

^b The two values in the column for a given X correspond to the extrapolated cc-pV(X - 1, X)Z and aug-cc-pV(X - 1, X)Z results.

consistent basis set of a given family, we obtain $B_e^{\text{RHF}} = 1618/1614 \text{ cm}^{-1}$ in the cc-pV6Z/aug-cc-pV5Z basis containing 413/367 functions.

We have also attempted to extrapolate—to the limit of a complete basis—the Hartree–Fock ener-

gies obtained in the correlation-consistent basis sets by fitting the energies from the three largest sets of a given family to the functional form⁵²⁻⁵⁴

$$E_X = E_\infty + a \exp(-bX). \tag{8}$$

TABLE V. ______ Calculated and Extrapolated Valence-Shell Electron-Correlation Contributions (in cm⁻¹) to the Equilibrium Inversion Barrier of NH₃.^a

Method	Basis	<i>X</i> = 2	X = 3	<i>X</i> = 4	<i>X</i> = 5	X = 6	R12/B
			Calculate	d			
RHF	cc-pVXZ aug-cc-pVXZ	2513 1763	1843 1634	1726 1616	1637 1614	1618	1613
SD	cc-pVXZ aug-cc-pVXZ	400 225	321 262	244 210	211 193	194	183
(T)	cc-pVXZ aug-cc-pVXZ	87 46	67 40	55 41	46 40	43	40
			Extrapolate	ed ^b			
SD	cc-pVXZ aug-cc-pVXZ		280 276	191 176	179 177	173	

^{a,b} Cf. Table IV.

1310

From a corresponding fit of RHF/cc-pVXZ energies for X = 4,5,6, we obtain total Hartree–Fock energies of $-56.224977/-56.217625 E_h$ for the C_{3v}/D_{3h} geometries and a barrier of 1613 cm⁻¹. From the aug-cc-pVXZ family with X = 3,4,5, we obtain $-56.225148/-56.217793 E_h$, respectively, and a barrier of 1614 cm⁻¹.

Even though similar extrapolations taking into account energies from smaller basis sets (i.e., cc-pVTZ or aug-cc-pVDZ) appear to be not accurate enough, we can safely conclude from our best results that the Hartree–Fock limit for the energy difference between the fixed C_{3v} and D_{3h} geometries of the present study has been determined accurate to within 3 cm⁻¹. We, hence, adopt a value of $B_e^{\text{RHF}} = 1613 \pm 3 \text{ cm}^{-1}$ for the Hartree–Fock contribution to the inversion barrier.

In earlier work, Császár et al.²¹ found $B_e^{\text{RHF}} = 1628 \text{ cm}^{-1}$ for slightly different geometries, but note that the Hartree–Fock contribution is quite sensitive to the geometries used. Our fixed geometries correspond to stationary points on the CCSD(T)(FU)/cc-pCVQZ potential energy surface (PES) but *not* to stationary points on the Hartree–Fock PES. The Hartree–Fock contribution thus depends to first order on small changes in the geometries while the total CCSD(T)(FU) barrier depends only to second order on such changes.

VALENCE-ONLY CORRELATION

The valence-only CCSD(FC) pair energies of the pyramidal and planar structures of NH₃ are displayed in Tables II and III, respectively, as obtained in the cc-pVXZ basis sets with cardinal numbers ranging from X = 2 to 6. The columns under "(56)" show the pair energies that result from applying our extrapolation scheme—eqs. (6) and (7)—to the CCSD(FC)/cc-pV5Z and CCSD(FC)/cc-pV6Z pair energies. These extrapolated pair energies are compared with the calculated R12/B values.

The mean absolute deviations of the calculated singlet and triplet CCSD(FC)/cc-pVXZ pair energies from the corresponding R12/B reference values are depicted in Figure 1 for various cardinal numbers *X*. This log–log plot reveals the different convergence behaviors of the singlet and triplet pair energies in a very convincing manner—see also ref. 25.

The convergence to the basis-set limit (or R12/B reference values) is much accelerated by the extrapolation scheme. Whereas the calculated CCSD(FC)/cc-pV6Z singlet pair energies are in error by 0.18 m E_h (ca. 40 cm⁻¹) on average, this error

FIGURE 1. Mean absolute deviation $(\bar{\Delta}_{abs} \text{ in } mE_h)$ of valence-shell singlet (*) and triplet (\Box) CCSD/cc-pVXZ pair energies of the C_{3v} and D_{3h} structures of NH₃. Shown are the deviations from the CCSD-R12 reference values on a log–log scale as function of the cardinal number X. Also shown are lines with slopes of -3 (dotted) and -5 (dashed) through the CCSD/cc-pV6Z data.

is reduced to $0.02 \text{ m}E_{\text{h}}$ (ca. 4 cm⁻¹) by the extrapolation procedure, which thus appears to be capable of reducing the error by one order of magnitude. The extrapolated triplet pair energies are in complete agreement with the R12/B calculation, confirming the X^{-5} -type convergence of these pairs.

Nevertheless, an error of ca. 4 cm⁻¹ per singlet pair energy is still significant when considering the inversion barrier of NH₃. It has been demonstrated in earlier studies that X^{-k} -type extrapolations based on sequences of correlation-consistent basis sets yield total electronic energies of small closed-shell molecules accurate to within 1–3 m E_h^{25} and their equilibrium atomization energies accurate to within 1–2 kJ/mol,^{55–57} but it has not yet been investigated whether these extrapolation techniques can be applied successfully to small conformational energy differences such as the barrier in NH₃. We here investigate this aspect of the extrapolation techniques.

If the errors in the extrapolated energies would be strictly statistical, then the statistical error compared with the R12/B reference value—in the extrapolated barrier would amount to ca. 20 cm⁻¹, as there are 10 valence pairs for both structures (degenerate pairs are counted separately). We observe, in fact, that the CCSD(FC)/cc-pV(56)Z and CCSD(FC)-R12/B correlation contributions to the barrier agree to within 10 cm⁻¹ (173 vis-à-vis 183 cm⁻¹, cf. Table V). We shall base our best estimate of the equilibrium inversion barrier on the average value of the extrapolated CCSD(FC)/cc-pV(56)Z, extrapolated CCSD(FC)/aug-cc-pV(Q5)Z, and CCSD(FC)-R12/B pair energies. Hence, we adopt a value of $+178 \text{ cm}^{-1}$ as our best estimate of the valence-only singles and doubles contribution, with an estimated error bar of 10 cm⁻¹. The corresponding focal-point value is $+145 \text{ cm}^{-1}.^{21}$

The valence-only (T)-triples corrections add 40 cm⁻¹ to the barrier at the CCSD(T)-R12/B level (Table V). A two-point X^{-3} -type extrapolation of the triples contributions in the cc-pV5Z (46 cm⁻¹) and cc-pV6Z (43 cm⁻¹) basis sets suggests a limiting value of 39 cm⁻¹. The agreement between this extrapolated value and the R12/B value is remarkable, noting that the convergence behavior of the triples correction has not yet been investigated let alone established mathematically (numerical experiments seem to *indicate* that the leading term is of the order X^{-3}). In any case, we adopt a value of $+40\pm2$ cm⁻¹ as our best estimate of the valence-only (T)-triples correction. This value is supported by the corresponding focal-point estimate of +39 cm⁻¹.²¹

CORE-VALENCE CORRECTION

The inclusion of the nitrogen 1*s*-core orbital into the CCSD(T)-R12/B correlation treatment decreases the inversion barrier by 64 cm⁻¹ (cf. Table I). At the MP2-R12/B level (not reported), the barrier is reduced by 69 cm⁻¹, an amount quite similar to the CCSD(T)-R12/B value. It was observed in ref. 21 that the MP2 and CCSD(T) core-valence corrections were very similar, and accordingly, the correction obtained at the MP2/cc-pCVQZ level (64 cm⁻¹) was taken as the best estimate of the core-valence correlation effect in that work. This previous best estimate appears to coincide with our present CCSD(T)-R12/B value.

As core-valence correlation effects are usually very efficiently recovered by the R12/B approach, we attach a rather conservative error bar of 4 cm⁻¹ to the CCSD(T)-R12/B value and conclude that core-valence correction effects lower the inversion barrier by 64 ± 4 cm⁻¹.

ZERO-POINT VIBRATIONAL ENERGIES

The available *ab initio* works^{11, 12, 14, 58} on the vibrational band origins (especially the fundamentals) of one or both reference forms of NH3 suggest a substantial zero-point vibrational energy (ZPVE) correction to the barrier height. For the pyramidal and the planar forms moderately accurate CIS-DTQ/DZP harmonic vibrational frequencies¹¹ are available to us. For the pyramidal form these calculations yield a complementary-mode ZPVE which is only 3.7% larger than the anharmonic result given by a highly accurate⁵⁹ CCSD(T)/cc-pVQZ complete quartic force field.¹⁴ Using this same correction for the planar modes as for the pyramidal ones results in a ZPVE correction of 244 cm⁻¹, as reported in ref. 21. The recent variational results of Handy, Carter, and Colwell,⁵⁸ based on an accurate six-dimensional potential energy hypersurface, confirm this ZPVE correction estimate. The value of 244 cm⁻¹ is adopted in the present work, with an estimated accuracy of ± 15 cm⁻¹.

RELATIVISTIC CORRECTIONS

As has recently been demonstrated for the barrier to linearity of water,^{21, 60, 61} relativistic effects, aris-

Relativistic	relativistic rist-order energies (in meh) obtained at the her/cc-pCvA2 and CCSD(1)(r0)/cc-pCvA2 levels.										
		Pyramida	I (C _{3v})			Planar (D _{3h})				
cc-pCVXZ	E ^{MV}	E ^{D1}	E ^{D2}	$E^{\Delta DPT}$	E ^{MV}	E ^{D1}	E ^{D2}	$E^{\Delta DPT}$	ΔB_{e}		
				(RH	F)						
$ \begin{array}{l} X = 2 \\ X = 3 \\ X = 4 \end{array} $	143.341 143.915 146.175	+114.644 +115.162 +117.368	-2.197 -2.198 -2.199	$^{+0.015}_{-0.003}$	-142.939 -143.538 -145.808	+114.348 +114.880 +117.093	-2.191 -2.193 -2.194	$^{+0.014}_{-0.004}$	+0.111 +0.101 +0.096		
				CCSD(1	「)(FU)						
$ \begin{array}{l} X = 2 \\ X = 3 \\ X = 4 \end{array} $	143.542 144.255 146.483	+114.663 +115.196 +117.374	-2.064 -2.009 -1.970	+0.013 +0.035 -0.006	-143.122 -143.869 -146.116	+114.354 +114.909 +117.099	-2.059 -2.004 -1.965	+0.015 +0.034 -0.006	+0.118 +0.103 +0.097		

^a E^{MV} is the mass-velocity term, E^{D1} is the one-electron Darwin term, E^{D2} is the two-electron Darwin term, and $E^{\Delta DPT}$ is the difference between the first-order energy of DPT and the sum $E^{MV} + E^{D1} + E^{D2}$. ΔB_e is the first-order DPT energy contribution to the barrier height.

Relativistic Energy Corrections (in m <i>E</i> _h) Beyond the Dirac–Coulomb Hamiltonian. ^a										
Basis	Pyramidal (C _{3v})									
	EGaunt	E ^{Ret.}	ELamb	EGaunt	E ^{Ret.}	ELamb	ΔB_{e}			
u-cc-pCVDZ u-cc-pCVTZ	+4.941 [+4.	-0.156 792]	+2.562 2.575	+4.952 [+4.	-0.160 799]	+2.555 +2.568	+0.000 +0.000			

TARI E VII

^a All values are obtained at the Hartree–Fock level. Values in brackets are the full Breit energies, $E^{\text{Breit}} = E^{\text{Gaunt}} + E^{\text{Ret.}}$. The Lamb-shlft values are obtained according to eq. (3) of ref. 62.

ing from consideration of special relativity, make a surprisingly large contribution to the barrier. Although the relativistic contribution to the barrier of NH₃ is only about one-half of that in water (there is only one lone pair of electrons allowed to rehybridize during the large-amplitude motion vs. the two lone pairs of electrons of water), the correction is still substantial. In fact, in a relative sense it is more substantial than in water, because the barrier in NH_3 is only about 1/6 of the barrier in water.

Relativistic results obtained as part of this study are collected into Tables VI and VII. The DPT correction to the barrier decreases with extension of the basis both at the RHF and CCSD(T)(FU) levels. Our final estimate for this first-order relativistic correction is $+19 \text{ cm}^{-1}$. Relativistic corrections beyond DPT also influence the barrier. We summarize the results as follows: (a) as expected, the Gaunt energies approximate the total Breit energies to within 5%; (b) while the directly computed Breit energies (Gaunt + Ret., cf. Table VII) change slightly upon extension of the basis from u-cc-pCVDZ to ucc-pCVTZ, the Breit correction to the barrier has a negligible basis set dependency; (c) the Lamb-shift energy correction⁶² is comparable to that of the Breit energy correction. The Lamb-shift effect on the barrier is not dependent on the basis and small for both the u-cc-pCVDZ and u-cc-pCVTZ sets. Overall, relativistic effects not considered in the Dirac-Coulomb Hamiltonian seem to have a marginal $(+1 \text{ cm}^{-1})$ correction to the equilibrium inversion barrier of ammonia. Therefore, the total relativistic correction to the barrier of NH₃ is +20 cm⁻¹ with an estimated error of a few cm^{-1} .

Summary

At the valence-shell CCSD(T)(FC) level, our best estimate of the barrier amounts to 1613 + 178 + $40 = 1831 \pm 11$ cm⁻¹. Relativistic effects increase the barrier by $20 \pm 2 \text{ cm}^{-1}$ while core-valence correlation effects reduce the barrier by 64 ± 4 cm⁻¹. Thus, the total electronic barrier is estimated as 1788 ± 12 cm⁻¹ at the Born–Oppenheimer relativistic all-electron CCSD(T)(FU) level. Correlation effects beyond the CCSD(T)(FU) level are presumably very small (a few cm^{-1})²¹ while taking into account the diagonal Born–Oppenheimer correction²¹—of the order of -10 cm^{-1} for the isotope ¹⁴NH₃—yields a final adiabatic equilibrium value of $B_{\rm e} = 1777 \pm$ $13 \text{ cm}^{-1} \text{ for } {}^{14}\text{NH}_3$.

To obtain an effective barrier for the onedimensional treatment of the tunneling motion in NH₃, the zero-point vibrational energy of the complementary vibrational modes must be taken into account. This ZPVE amounts to 244 ± 15 cm⁻¹ and yields an effective one-dimensional barrier of $2021\pm$ 20 cm^{-1} .

Acknowledgments

This article is dedicated to professor Paul von Ragué Schleyer on the occasion of his 70th birthday. The authors are grateful to Dr. H. M. Quiney for provision of the BERTHA code.

References

- 1. Duncan, J. L.; Mills, I. M. Spectrochim Acta 1964, 20, 523.
- 2. Veillard, A.; Lehn, J. M.; Munsch, B. Theor Chim Acta 1968, 9,275.
- 3. Dewar, M. J. S.; Shanshal, M. J Am Chem Soc 1969, 91, 3654.
- 4. Pipano, A.; Gilman, R. R.; Bender, C. F.; Shavitt, I. Chem Phys Lett 1970, 4, 583.
- 5. Rauk, A.; Allen, L. C.; Clementi, E. J Chem Phys 1970, 52, 4133.
- 6. Maessen, B.; Bopp, P.; McLaughlin, D. R.; Wolfsberg, M. Z Naturforsch A 1984, 39, 1005.
- 7. Bunker, P. R.; Kraemer, W. P.; Špirko, V. Can J Phys 1984, 62, 1801.
- 8. Foerner, W.; Čižek, J.; Otto, P.; Ladik, J.; Steinborn, E. O. Chem Phys 1985, 97, 235.
- 9. Botschwina, P. J Chem Phys 1987, 87, 1453.
- 10. Scuseria, G. E.; Scheiner, A. E.; Rice, J. E.; Lee, T. J.; Schaefer, H. F., III Int J Quantum Chem Symp 1987, 21, 495.
- 11. Lee, T. J.; Remington, R. B.; Yamaguchi, Y.; Schaefer, H. F., III J Chem Phys 1988, 89, 408.

KLOPPER ET AL.

- 12. Špirko, V.; Kraemer, W. P. J Mol Spectr 1989, 133, 331.
- Campoy, G.; Palma, A.; Sandoval, L. Int J Quantum Chem Symp 1989, 23, 355.
- 14. Martin, J. M. L.; Lee, T. J.; Taylor, P. R. J Chem Phys 1992, 97, 8361.
- 15. Suter, H. U.; Ha, T.-K. J Mol Struct (Theochem) 1993, 283, 151.
- 16. East, A. L. L.; Radom, L. J Mol Struct 1996, 376, 437.
- 17. Jensen, F. Chem Phys Lett 1996, 261, 633.
- Bartlett, R. J.; Del Bene, J. E.; Perera, S. A.; Mattie, R. P. J Mol Struct (Theochem) 1997, 400, 157.
- 19. Lee, J. S. J Phys Chem A 1997, 101, 8762.
- 20. Müller, H.; Kutzelnigg, W.; Noga, J. Mol Phys 1997, 93, 535.
- 21. Császár, A. G.; Allen, W. D.; Schaefer, H. F., III J Chem Phys 1998, 108, 9751.
- Allen, W. D.; East, A. L. L.; Császár, A. G. In Structures and Conformations of Non-Rigid Molecules, NATO ARW Series C; Laane, J.; Dakkouri, M.; van der Veken, B.; Oberhammer, H., Eds.; Kluwer: Dordrecht, 1993.
- Tarczay, G.; Császár, A. G.; Klopper, W.; Szalay, V.; Allen, W. D.; Schaefer, H. F., III J Chem Phys 1999, 110, 11971.
- Valeev, E. F.; Allen, W. D.; Schaefer, H. F., III; Császár, A. G. J Chem Phys 2001, 114, 2875.
- 25. Klopper, W. Mol Phys, to appear.
- Bartlett, R. J. In Modern Electronic Structure Theory; Part II; Yarkony, D. R., Ed.; World Scientific: Singapore, 1995.
- Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-Structure Theory; Wiley: Chichester, 2000.
- Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem Phys Lett 1989, 157, 479.
- 29. Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J Chem Phys 1985, 83, 404.
- 30. Kutzelnigg, W.; Morgan, J. D., III J Chem Phys 1992, 96, 4484.
- Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr. J Chem Phys 1996, 104, 2598.
- Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J Chem Phys 1997, 106, 9639.
- Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A. K. Chem Phys Lett 1998, 286, 243.
- Halkier, A.; Helgaker, T.; Klopper, W.; Jørgensen, P.; Császár, A. G. Chem Phys Lett 1999, 310, 385.
- 35. Császár, A. G.; Allen, W. D. J Chem Phys 1996, 104, 2746.
- 36. Dunning, T. H., Jr. J Chem Phys 1989, 90, 1007.
- 37. Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J Chem Phys 1992, 96, 6796.
- Wilson, K. A.; van Mourik, T.; Dunning, T. H., Jr. J Mol Struct (Theochem) 1997, 388, 339.
- Klopper, W. In The Encyclopedia of Computational Chemistry; Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer, H. F., III; Schreiner, P. R., Eds.; Wiley: Chichester, 1998.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;

Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, L.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andreas, J. L.; Gonzales, C.; Head-Gordon, M.; Reploge, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian Inc.: Pittsburgh, PA, 1998.

- 41. Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.; Ruud, K.; Ågren, H.; Andersen, T.; Bak, K. L.; Bakken, V.; Christiansen, O.; Dalskov, E. K.; Enevoldsen, T.; Fernandez, B.; Heiberg, H.; Hettema, H.; Jonsson, D.; Kirpekar, S.; Kobayashi, R.; Koch, H.; Mikkelsen, K. V.; Norman, P.; Packer, M. J.; Saue, T.; Sauer, S. P. A.; Taylor, P. R.; Vahtras, O. Dalton 1.1.
- 42. Noga, J.; Klopper, W. DIRCCR12-95, an integral-direct explicitly correlated coupled-cluster program.
- 43. Kutzelnigg, W. Z Phys D 1989, 11, 15.
- 44. Kutzelnigg, W. Phys Rev A 1996, 54, 1183, and references therein.
- 45. Klopper, W. J Comput Chem 1997, 18, 20.
- 46. Kutzelnigg, W. Phys Scripta 1987, 36, 416, and references therein.
- Aerts, P. J. C.; Visser, O.; Visscher, L.; Merenga, H.; de Jong, W. A.; Nieuwpoort, W. C. MOLFDIR, University of Groningen, The Netherlands.
- 48. Visscher, L.; Visser, O.; Aerts, P. J. C.; Merenga, H.; Nieuwpoort, W. C. Comp Phys Commun 1994, 81, 120.
- Quiney, H. M.; Skaane, H.; Grant, I. P. Adv Quant Chem 1998, 32, 1.
- 50. Grant, I. P.; Quiney, H. M. Int J Quantum Chem 2000, 80, 283.
- 51. Grant, I. P.; Quiney, H. M. Adv At Mol Phys 198, 23, 37.
- 52. Feller, D. J Chem Phys 1992, 96, 6104.
- 53. Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Olsen, J. Chem Phys Lett 1999, 302, 437.
- 54. Jensen, F. J Chem Phys 1999, 110, 6601.
- 55. Martin, J. M. L.; de Oliveira, G. J Chem Phys 1999, 111, 1843.
- Bak, K. L.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Klopper, W. J Chem Phys 2000, 112, 9229.
- 57. Helgaker, T.; Klopper, W.; Halkier, A.; Bak, K. L.; Jørgensen, P.; Olsen, J. In Understanding Chemical Reactivity, Thermochemical Data for Modeling Chemical Reactions; Cioslowski, J., Ed.; Kluwer: Dordrecht, to appear.
- Handy, N. C.; Carter, S.; Colwell, S. M. Mol Phys 1999, 96, 477.
- Császár, A. G. In The Encyclopedia of Computational Chemistry; Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer, H. F., III; Schreiner, P. R., Eds.; Wiley: Chichester, 1998.
- Császár, A. G.; Tarczay, G.; Leininger, M. L.; Polyansky, O. L.; Tennyson, J.; Allen, W. D. In Spectroscopy from Space; NATO ARW Series C; Demaison, J.; Sarka, K., Eds.; Kluwer: Dordrecht, to appear.
- 61. Quiney, H. M.; Skaane, H.; Grant, I. P. Chem Phys Lett 1998, 290, 473.
- 62. Pyykkö, P.; Dyall, K. G.; Császár, A. G.; Tarczay, G.; Polyansky, O. L.; Tennyson, J. Phys Rev A 2001, 63, 024502.