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EQUILIBRIUM INVERSION BARRIER OF NH3

Introduction

A wealth of empirical and theoretical data is
available for the inversion barrier associated

with the ν2 umbrella mode in NH3.1 – 21 Here, it
suffices to say that the best empirical procedures
predict effective one-dimensional, vibrationally av-
eraged barriers in the 2018 ± 10 cm−1 range. More
problems are encountered in the empirical analyses
when attempting to include the effects of zero-point
vibrations (ZPV). Due to these difficulties, the in-
ferred bare electronic (i.e., equilibrium) inversion
barriers (Be) scatter between 1794 and 1885 cm−1.

The highest quality ab initio results for the equi-
librium inversion barrier of NH3 have been ob-
tained by Császár, Allen, and Schaefer.21 Using the
focal-point technique,21, 22 these authors determined
Be = 1810 cm−1 for the barrier at the extrapolated
nonrelativistic valence-only level. These focal-point
studies indicated that the greatest computational
difficulty in assessing the equilibrium inversion bar-
rier of NH3 lies in the relatively protracted basis-set
convergence, a case similar to water.23, 24 Therefore,
we decided to extend the previous investigations
with a set of CCSD(T) and CCSD(T)-R12/B calcu-
lations that decompose the correlation energy into
singlet and triplet pair energies. The new coupled-
cluster calculations (a) allow extrapolations based
on the pair energies obtained in various correlation-
consistent basis sets, and thus provide a new and
interesting way to arrive at the basis-set limit;25 and
(b) extend the range of directly computed values for
the focal-point analysis, and thus can help check-
ing an intrinsic approximation of the focal-point
scheme, namely, the neglect of the basis-set depen-
dence of higher order correlation increments and
thus their additivity.

Computational Methods

EXTRAPOLATION OF CCSD PAIR ENERGIES

Reference electronic wave functions were deter-
mined by the one-determinant restricted Hartree–
Fock (RHF) method. Dynamical electron correlation
was accounted for by coupled-cluster methods (see,
e.g., refs. 26 and 27), including single and double
excitations (CCSD), and in cases also a noniterative
perturbative correction for connected triple excita-
tions (e.g., CCSD(T)28 or CCSD[T]29).

The correlation energy of the CCSD model for a
closed-shell system can be written as a sum of sin-
glet (s = 0) and triplet (s = 1) pair energies, both

including contributions from single (S) and con-
nected double (D) excitations,

ECCSD = EHartree–Fock + ES
CCSD + ED

CCSD, (1)

with

ES
CCSD =

∑

aibj

ta
i tb

j Liajb, ED
CCSD =

∑

aibj

tab
ij Liajb. (2)

Here, ta
i and tab

ij are the coupled-cluster amplitudes
while Liajb = 2giajb − gibja is a linear combination of
electronic repulsion integrals.27 The reason for de-
composing the correlation energy into singlet and
triplet contributions is that this will enable us to
apply extrapolation schemes that take into account
the characteristic convergence behaviors of princi-
pal expansions of the singlet and triplet energies,
which converge as X−3 and X−5, respectively, with
the cardinal number X of the basis set.30, 31

The CCSD singlet (εSD,0
ij ) and triplet (εSD,1

ij ) pair
energies are given by

ε
SD,s
ij = ε

S,s
ij + ε

D,s
ij , (3)

with
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and

Ls
iajb = 2s + 1

2
{
giajb + (−1)sgibja

}
. (5)

In our new extrapolation procedure (cf. ref. 25),
which is a small modification of the two-point
extrapolation technique proposed by Helgaker
et al.,32 – 34 the calculated doubles pair energies ε

D,s
ij

are replaced by the corresponding extrapolated val-
ues while the computed singles pair energies ε

S,s
ij

remain unchanged. When triples contributions are
calculated—as in the CCSD(T) model, for exam-
ple—they also remain unchanged.

The extrapolated doubles pair energies are given
by

ε
D,s
ij (X−1, X) =

X2s+3ε
D,s
ij (X) − (X − 1)2s+3ε

D,s
ij (X − 1)

X2s+3 − (X − 1)2s+3 ,

(6)
where ε

D,s
ij (X) is the value of the pair energy con-

tribution computed with the cc-pVXZ basis and
ε

D,s
ij (X − 1) the corresponding value from the cc-

pV(X − 1)Z basis. At the CCSD/cc-pV(X − 1, X)Z
extrapolated level, we add the CCSD/cc-pVXZ
computed singles contributions to the extrapolated
doubles pair energies,

ε
SD,s
ij (X − 1, X) = ε

S,s
ij (X) + ε

D,s
ij (X − 1, X). (7)
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Similarly, we define CCSD(T)/cc-pV(X − 1, X)Z en-
ergies as the ones obtained by replacing solely the
CCSD(T)/cc-pVXZ doubles energy contributions
by their CCSD/cc-pV(X−1, X)Z extrapolated coun-
terparts.

The same extrapolation procedure is used for
valence-only (frozen-core approximation, FC) and
all-electron (FU) correlated calculations as well as
for extensions of the correlation-consistent basis sets
such as aug-cc-pVXZ or (aug)-cc-pCVXZ.

GEOMETRIES, BASIS SETS, AND PROGRAMS

The reference pyramidal(C3v)/planar(C3h) geom-
etries of NH3 were optimized at the CCSD(T)(FU)/
cc-pCVQZ level of theory to r(N—H) = 101.12/
99.40 pm and � (H—N—H) = 106.36/120.0 degrees.
The decrease in the r(N—H) bond length at the
planar geometry is due to the increased s charac-
ter of the bonding. The following is perhaps the
most accurate estimate of the equilibrium geome-
try of pyramidal NH3: re(N—H) = 101.1 pm and
� e(H—N—H) = 106.7 degrees.1 Consequently, just
as expected, all-electron correlated ab initio equi-
librium geometries obtained using a CCSD(T)(FU)
wave function with a large basis set are very
accurate.27, 35 The optimized reference geometries
were kept fixed throughout the present computa-
tional study.

We employed the (aug)-cc-p(C)VXZ correla-
tion-consistent basis sets of Dunning and cowor-
kers,36 – 38 because these sets approach basis-set
completeness in a systematic fashion, thus provid-
ing opportunities for extrapolations to the limit of a
complete basis.

R12/B computations necessitate the use of basis
sets designed differently from the (aug)-cc-p(C)VXZ
basis sets.39 Therefore, a [N/H] = [19s14p8d6f 4g3h/
9s6p4d3f ] basis set—taken from ref. 25—was em-
ployed for the R12/B calculations.

The two geometry optimizations were carried
out with the program package Gaussian 98,40 while
all (standard) single-point energy calculations were
performed with the Dalton program.41 Nonstan-
dard R12/B calculations were performed with the
DIRCCR12-95 program.42

Calculations of relativistic energies, utilizing
the direct perturbation theory (DPT) approach of
Kutzelnigg43, 44 in the framework of the Dirac–
Coulomb Hamiltonian, were performed with a mo-
dified45 version of the program package Dalton.41

Gaunt and Breit energy corrections46 were de-
termined perturbationally by the MOLFDIR47, 48

and BERTHA49, 50 program packages, respectively,
using four-component relativistic Dirac–Hartree–
Fock wave functions. Uncontracted correlation-
consistent basis sets (denoted as u-cc-pCVXZ with
X = D and T) were used for the large component
and kinetic balance48, 51 was used to generate the
small-component basis functions.

The calculations were performed on SGI Origin
2000 R12000 computers at Utrecht University and
at the Academic Computing Services Amsterdam
(SARA).

Results and Discussion

The calculated and extrapolated energies of the
C3v and D3h geometries of NH3 are collected in Ta-
bles I–V. Table I contains the R12/B energies, while
Tables II and III display the standard CCSD(FC) pair
energies as obtained from calculations and extrap-
olations in the cc-pVXZ basis sets, in comparision
with the R12/B results. The final CCSD(T)(FC) re-
sults are shown in Table IV, leading to the valence-
shell correlation contributions to the inversion bar-
rier shown in Table V.

TABLE I.
R12/B Energies (in Eh) as Obtained in the [N/H] = [19s14p8d6f4g3h/9s6p4d3f] Basis with the DIRCCR12-95
Program at the CCSD(T)(FU)/cc-pCVQZ Optimized Geometries of the Pyramidal C3v and Planar D3h
Structures of NH3.

Valence-Shell Correlation (FC) All-Electron Correlation (FU)

C3v D3h C3v D3h

Hartree–Fock −56.224967 −56.217617 −56.224967 −56.217617
CCSD-R12/B −56.494225 −56.486043 −56.553677 −56.545796
CCSD(T)-R12/B −56.503634 −56.495230 −56.563574 −56.555462
CCSD[T]-R12/Ba −56.503385 −56.495021 −56.563269 −56.555203

a CCSD[T] was originally denoted CCSD+T(CCSD), see ref. 29.
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TABLE II.
Basis-Set Dependence of the Valence-Shell CCSD(FC) Pair Energies (in mEh) of the C3v Structure of NH3.

Pair D T Q 5 6 (56)a R12/B

Singlet pairs

(2a1)2 −9.89 −11.94 −12.74 −13.00 −13.11 −13.26 −13.25
1e2a1 −29.72 −38.52 −41.37 −42.32 −42.70 −43.23 −43.16
(1e)2 −53.85 −61.13 −63.66 −64.49 −64.82 −65.28 −65.21
1a22a1 −10.51 −14.89 −16.25 −16.70 −16.89 −17.16 −17.14
1a21e −20.62 −25.66 −27.52 −28.18 −28.43 −28.77 −28.72
(1a2)2 −19.57 −24.19 −25.62 −26.09 −26.29 −26.55 −26.54
Total −144.15 −176.33 −187.16 −190.77 −192.24 −194.25 −194.02
�̄abs 4.99 1.77 0.69 0.32 0.18 0.02
�max 6.97 2.34 0.92 0.45 0.25 0.03

Triplet pairs
1e2a1 −8.83 −11.33 −11.91 −12.08 −12.12 −12.15 −12.16
(1e)2 −13.36 −15.71 −16.16 −16.26 −16.29 −16.32 −16.32
1a22a1 −4.71 −6.62 −7.12 −7.28 −7.32 −7.35 −7.35
1a21e −31.46 −37.64 −38.89 −39.25 −39.35 −39.42 −39.42
Total −58.35 −71.30 −74.09 −74.87 −75.09 −75.24 −75.24
�̄abs 2.81 0.66 0.19 0.06 0.02 0.00
�max 3.98 0.89 0.26 0.08 0.03 0.00

a The notation cc-pV(56)Z denotes extrapolated pair energies that were been obtained by inserting the cc-pV5Z and cc-pV6Z energies
into eqs. (6) and (7).

HARTREE–FOCK RESULTS

Our R12/B results (Table I) include Hartree–Fock
energies that are computed with a large basis

set comprising 416 basis functions ([N/H] =
[19s14p8d6f 4g3h/9s6p4d3f ]). In this basis, the
Hartree–Fock contribution to the inversion barrier
amounts to 1613 cm−1. In the largest correlation-

TABLE III.
Basis-Set Dependence of the Valence-Shell CCSD(FC) Pair Energies (in mEh) of the D3h Structure of NH3.

Pair D T Q 5 6 (56)a R12/B

Singlet pairs

(2a′
1)2 −9.48 −11.26 −11.98 −12.22 −12.32 −12.45 −12.45

1e′2a′
1 −30.08 −38.81 −41.59 −42.51 −42.89 −43.40 −43.34

(1e′)2 −53.34 −60.53 −63.05 −63.87 −64.19 −64.64 −64.58
1a′′

22a′
1 −10.66 −16.05 −17.72 −18.31 −18.55 −18.88 −18.84

1a′′
21e′ −18.22 −23.54 −25.63 −26.37 −26.66 −27.06 −26.98

(1a′′
2)2 −19.93 −24.19 −25.56 −26.01 −26.20 −26.46 −26.44

Total −141.70 −174.38 −185.53 −189.28 −190.80 −192.90 −192.63
�̄abs 5.09 1.82 0.71 0.33 0.18 0.03
�max 8.18 2.79 1.12 0.53 0.29 0.05

Triplet pairs
1e′2a′

1 −8.23 −10.47 −10.99 −11.14 −11.18 −11.21 −11.22
(1e′)2 −12.85 −14.90 −15.28 −15.38 −15.41 −15.43 −15.43
1a′′

22a′
1 −4.74 −6.89 −7.46 −7.64 −7.69 −7.72 −7.72

1a′′
21e′ −33.16 −39.54 −40.87 −41.24 −41.36 −41.43 −41.43

Total −58.98 −71.79 −74.59 −75.40 −75.64 −75.80 −75.80
�̄abs 2.80 0.67 0.20 0.07 0.03 0.00
�max 4.14 0.94 0.28 0.09 0.04 0.00

a Cf. Table II.
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TABLE IV.
Basis-Set Dependence of the Valence-Shell Energies (in Eh) of the C3v and D3h Reference Forms of NH3.a

Method Basis X = 2 X = 3 X = 4 X = 5 X = 6 R12/B

C3v, calculated

RHF cc-pVXZ −56.19568 −56.21789 −56.22311 −56.22473 −56.22494 −56.22497
aug-cc-pVXZ −56.20541 −56.22033 −56.22398 −56.22487

SD cc-pVXZ −0.20250 −0.24764 −0.26124 −0.26565 −0.26733 −0.26926
aug-cc-pVXZ −0.21431 −0.25187 −0.26279 −0.26625

(T) cc-pVXZ −0.00379 −0.00763 −0.00870 −0.00907 −0.00920 −0.00916
aug-cc-pVXZ −0.00545 −0.00833 −0.00895 −0.00916

C3v, extrapolatedb

SD cc-pVXZ −0.26316 −0.27002 −0.26983 −0.26949
aug-cc-pVXZ −0.26509 −0.26998 −0.26963

D3h, calculated

RHF cc-pVXZ −56.18423 −56.20949 −56.21525 −56.21727 −56.21757 −56.21762
aug-cc-pVXZ −56.19737 −56.21289 −56.21662 −56.21751

SD cc-pVXZ −0.20068 −0.24617 −0.26013 −0.26469 −0.26645 −0.26843
aug-cc-pVXZ −0.21328 −0.25067 −0.26183 −0.26537

(T) cc-pVXZ −0.00340 −0.00733 −0.00844 −0.00886 −0.00900 −0.00898
aug-cc-pVXZ −0.00524 −0.00815 −0.00876 −0.00897

D3h, extrapolatedb

SD cc-pVXZ −0.26189 −0.26915 −0.26902 −0.26870
aug-cc-pVXZ −0.26384 −0.26918 −0.26882

a RHF is the restricted Hartree–Fock energy, SD is the CCSD(FC) correlation energy, and (T) denotes the perturbative correction for
connected triple excitations at the CCSD(T)(FC) level.
b The two values in the column for a given X correspond to the extrapolated cc-pV(X − 1, X)Z and aug-cc-pV(X − 1, X)Z results.

consistent basis set of a given family, we obtain
BRHF

e = 1618/1614 cm−1 in the cc-pV6Z/aug-cc-
pV5Z basis containing 413/367 functions.

We have also attempted to extrapolate—to the
limit of a complete basis—the Hartree–Fock ener-

gies obtained in the correlation-consistent basis sets
by fitting the energies from the three largest sets of
a given family to the functional form52 – 54

EX = E∞ + a exp(−bX). (8)

TABLE V.
Calculated and Extrapolated Valence-Shell Electron-Correlation Contributions (in cm−1) to the Equilibrium
Inversion Barrier of NH3.a

Method Basis X = 2 X = 3 X = 4 X = 5 X = 6 R12/B

Calculated

RHF cc-pVXZ 2513 1843 1726 1637 1618 1613
aug-cc-pVXZ 1763 1634 1616 1614

SD cc-pVXZ 400 321 244 211 194 183
aug-cc-pVXZ 225 262 210 193

(T) cc-pVXZ 87 67 55 46 43 40
aug-cc-pVXZ 46 40 41 40

Extrapolatedb

SD cc-pVXZ 280 191 179 173
aug-cc-pVXZ 276 176 177

a,b Cf. Table IV.
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From a corresponding fit of RHF/cc-pVXZ energies
for X = 4, 5, 6, we obtain total Hartree–Fock ener-
gies of −56.224977/−56.217625 Eh for the C3v/D3h

geometries and a barrier of 1613 cm−1. From the
aug-cc-pVXZ family with X = 3, 4, 5, we obtain
−56.225148/−56.217793 Eh, respectively, and a bar-
rier of 1614 cm−1.

Even though similar extrapolations taking into
account energies from smaller basis sets (i.e., cc-
pVTZ or aug-cc-pVDZ) appear to be not accurate
enough, we can safely conclude from our best re-
sults that the Hartree–Fock limit for the energy
difference between the fixed C3v and D3h geometries
of the present study has been determined accurate
to within 3 cm−1. We, hence, adopt a value of BRHF

e =
1613 ± 3 cm−1 for the Hartree–Fock contribution to
the inversion barrier.

In earlier work, Császár et al.21 found BRHF
e =

1628 cm−1 for slightly different geometries, but note
that the Hartree–Fock contribution is quite sensitive
to the geometries used. Our fixed geometries corre-
spond to stationary points on the CCSD(T)(FU)/cc-
pCVQZ potential energy surface (PES) but not to
stationary points on the Hartree–Fock PES. The
Hartree–Fock contribution thus depends to first or-
der on small changes in the geometries while the
total CCSD(T)(FU) barrier depends only to second
order on such changes.

VALENCE-ONLY CORRELATION

The valence-only CCSD(FC) pair energies of the
pyramidal and planar structures of NH3 are dis-
played in Tables II and III, respectively, as obtained
in the cc-pVXZ basis sets with cardinal numbers
ranging from X = 2 to 6. The columns under “(56)”
show the pair energies that result from applying
our extrapolation scheme—eqs. (6) and (7)—to the
CCSD(FC)/cc-pV5Z and CCSD(FC)/cc-pV6Z pair
energies. These extrapolated pair energies are com-
pared with the calculated R12/B values.

The mean absolute deviations of the calculated
singlet and triplet CCSD(FC)/cc-pVXZ pair ener-
gies from the corresponding R12/B reference val-
ues are depicted in Figure 1 for various cardinal
numbers X. This log–log plot reveals the differ-
ent convergence behaviors of the singlet and triplet
pair energies in a very convincing manner—see also
ref. 25.

The convergence to the basis-set limit (or
R12/B reference values) is much accelerated by
the extrapolation scheme. Whereas the calculated
CCSD(FC)/cc-pV6Z singlet pair energies are in er-
ror by 0.18 mEh (ca. 40 cm−1) on average, this error

FIGURE 1. Mean absolute deviation (�̄abs in mEh) of
valence-shell singlet (∗) and triplet (�) CCSD/cc-pVXZ
pair energies of the C3v and D3h structures of NH3.
Shown are the deviations from the CCSD-R12 reference
values on a log–log scale as function of the cardinal
number X. Also shown are lines with slopes of
−3 (dotted) and −5 (dashed) through the
CCSD/cc-pV6Z data.

is reduced to 0.02 mEh (ca. 4 cm−1) by the extrapola-
tion procedure, which thus appears to be capable of
reducing the error by one order of magnitude. The
extrapolated triplet pair energies are in complete
agreement with the R12/B calculation, confirming
the X−5-type convergence of these pairs.

Nevertheless, an error of ca. 4 cm−1 per singlet
pair energy is still significant when considering the
inversion barrier of NH3. It has been demonstrated
in earlier studies that X−k-type extrapolations based
on sequences of correlation-consistent basis sets
yield total electronic energies of small closed-shell
molecules accurate to within 1–3 mEh

25 and their
equilibrium atomization energies accurate to within
1–2 kJ/mol,55 – 57 but it has not yet been investigated
whether these extrapolation techniques can be ap-
plied successfully to small conformational energy
differences such as the barrier in NH3. We here in-
vestigate this aspect of the extrapolation techniques.

If the errors in the extrapolated energies would
be strictly statistical, then the statistical error—
compared with the R12/B reference value—in the
extrapolated barrier would amount to ca. 20 cm−1,
as there are 10 valence pairs for both structures
(degenerate pairs are counted separately). We ob-
serve, in fact, that the CCSD(FC)/cc-pV(56)Z and
CCSD(FC)-R12/B correlation contributions to the
barrier agree to within 10 cm−1 (173 vis-à-vis
183 cm−1, cf. Table V).
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We shall base our best estimate of the equilib-
rium inversion barrier on the average value of the
extrapolated CCSD(FC)/cc-pV(56)Z, extrapolated
CCSD(FC)/aug-cc-pV(Q5)Z, and CCSD(FC)-R12/B
pair energies. Hence, we adopt a value of +178 cm−1

as our best estimate of the valence-only singles and
doubles contribution, with an estimated error bar
of 10 cm−1. The corresponding focal-point value is
+145 cm−1.21

The valence-only (T)-triples corrections add
40 cm−1 to the barrier at the CCSD(T)-R12/B level
(Table V). A two-point X−3-type extrapolation of
the triples contributions in the cc-pV5Z (46 cm−1)
and cc-pV6Z (43 cm−1) basis sets suggests a limit-
ing value of 39 cm−1. The agreement between this
extrapolated value and the R12/B value is remark-
able, noting that the convergence behavior of the
triples correction has not yet been investigated let
alone established mathematically (numerical exper-
iments seem to indicate that the leading term is of
the order X−3). In any case, we adopt a value of
+40±2 cm−1 as our best estimate of the valence-only
(T)-triples correction. This value is supported by the
corresponding focal-point estimate of +39 cm−1.21

CORE-VALENCE CORRECTION

The inclusion of the nitrogen 1s-core orbital into
the CCSD(T)-R12/B correlation treatment decreases
the inversion barrier by 64 cm−1 (cf. Table I). At the
MP2-R12/B level (not reported), the barrier is re-
duced by 69 cm−1, an amount quite similar to the
CCSD(T)-R12/B value. It was observed in ref. 21
that the MP2 and CCSD(T) core-valence corrections
were very similar, and accordingly, the correction
obtained at the MP2/cc-pCVQZ level (64 cm−1) was
taken as the best estimate of the core-valence cor-

relation effect in that work. This previous best esti-
mate appears to coincide with our present CCSD(T)-
R12/B value.

As core-valence correlation effects are usually
very efficiently recovered by the R12/B approach,
we attach a rather conservative error bar of 4 cm−1

to the CCSD(T)-R12/B value and conclude that
core-valence correction effects lower the inversion
barrier by 64 ± 4 cm−1.

ZERO-POINT VIBRATIONAL ENERGIES

The available ab initio works11, 12, 14, 58 on the vi-
brational band origins (especially the fundamentals)
of one or both reference forms of NH3 suggest
a substantial zero-point vibrational energy (ZPVE)
correction to the barrier height. For the pyrami-
dal and the planar forms moderately accurate CIS-
DTQ/DZP harmonic vibrational frequencies11 are
available to us. For the pyramidal form these calcu-
lations yield a complementary-mode ZPVE which
is only 3.7% larger than the anharmonic result given
by a highly accurate59 CCSD(T)/cc-pVQZ complete
quartic force field.14 Using this same correction
for the planar modes as for the pyramidal ones
results in a ZPVE correction of 244 cm−1, as re-
ported in ref. 21. The recent variational results of
Handy, Carter, and Colwell,58 based on an accurate
six-dimensional potential energy hypersurface, con-
firm this ZPVE correction estimate. The value of
244 cm−1 is adopted in the present work, with an
estimated accuracy of ±15 cm−1.

RELATIVISTIC CORRECTIONS

As has recently been demonstrated for the barrier
to linearity of water,21, 60, 61 relativistic effects, aris-

TABLE VI.
Relativistic First-Order Energies (in mEh) Obtained at the RHF/cc-pCVXZ and CCSD(T)(FU)/cc-pCVXZ levels.a

Pyramidal (C3v) Planar (D3h)

cc-pCVXZ EMV ED1 ED2 E�DPT EMV ED1 ED2 E�DPT �Be

(RHF)
X = 2 −143.341 +114.644 −2.197 +0.015 −142.939 +114.348 −2.191 +0.014 +0.111
X = 3 −143.915 +115.162 −2.198 +0.003 −143.538 +114.880 −2.193 +0.004 +0.101
X = 4 −146.175 +117.368 −2.199 −0.012 −145.808 +117.093 −2.194 −0.013 +0.096

CCSD(T)(FU)
X = 2 −143.542 +114.663 −2.064 +0.013 −143.122 +114.354 −2.059 +0.015 +0.118
X = 3 −144.255 +115.196 −2.009 +0.035 −143.869 +114.909 −2.004 +0.034 +0.103
X = 4 −146.483 +117.374 −1.970 −0.006 −146.116 +117.099 −1.965 −0.006 +0.097

a EMV is the mass-velocity term, ED1 is the one-electron Darwin term, ED2 is the two-electron Darwin term, and E�DPT is the difference
between the first-order energy of DPT and the sum EMV + ED1 + ED2. �Be is the first-order DPT energy contribution to the barrier
height.
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TABLE VII.
Relativistic Energy Corrections (in mEh) Beyond the Dirac–Coulomb Hamiltonian.a

Pyramidal (C3v) Planar (D3h)

Basis EGaunt ERet. ELamb EGaunt ERet. ELamb �Be

u-cc-pCVDZ +4.941 −0.156 +2.562 +4.952 −0.160 +2.555 +0.000
u-cc-pCVTZ [+4.792] 2.575 [+4.799] +2.568 +0.000

a All values are obtained at the Hartree–Fock level. Values in brackets are the full Breit energies, EBreit = EGaunt+ERet.. The Lamb-shlft
values are obtained according to eq. (3) of ref. 62.

ing from consideration of special relativity, make
a surprisingly large contribution to the barrier. Al-
though the relativistic contribution to the barrier of
NH3 is only about one-half of that in water (there
is only one lone pair of electrons allowed to rehy-
bridize during the large-amplitude motion vs. the
two lone pairs of electrons of water), the correction
is still substantial. In fact, in a relative sense it is
more substantial than in water, because the barrier
in NH3 is only about 1/6 of the barrier in water.

Relativistic results obtained as part of this study
are collected into Tables VI and VII. The DPT cor-
rection to the barrier decreases with extension of
the basis both at the RHF and CCSD(T)(FU) lev-
els. Our final estimate for this first-order relativis-
tic correction is +19 cm−1. Relativistic corrections
beyond DPT also influence the barrier. We sum-
marize the results as follows: (a) as expected, the
Gaunt energies approximate the total Breit energies
to within 5%; (b) while the directly computed Breit
energies (Gaunt + Ret., cf. Table VII) change slightly
upon extension of the basis from u-cc-pCVDZ to u-
cc-pCVTZ, the Breit correction to the barrier has a
negligible basis set dependency; (c) the Lamb-shift
energy correction62 is comparable to that of the Breit
energy correction. The Lamb-shift effect on the bar-
rier is not dependent on the basis and small for both
the u-cc-pCVDZ and u-cc-pCVTZ sets. Overall, rela-
tivistic effects not considered in the Dirac–Coulomb
Hamiltonian seem to have a marginal (+1 cm−1)
correction to the equilibrium inversion barrier of
ammonia. Therefore, the total relativistic correction
to the barrier of NH3 is +20 cm−1 with an estimated
error of a few cm−1.

Summary

At the valence-shell CCSD(T)(FC) level, our best
estimate of the barrier amounts to 1613 + 178 +
40 = 1831 ± 11 cm−1. Relativistic effects increase
the barrier by 20 ± 2 cm−1 while core-valence cor-
relation effects reduce the barrier by 64 ± 4 cm−1.
Thus, the total electronic barrier is estimated as

1788±12 cm−1 at the Born–Oppenheimer relativistic
all-electron CCSD(T)(FU) level. Correlation effects
beyond the CCSD(T)(FU) level are presumably very
small (a few cm−1)21 while taking into account the
diagonal Born–Oppenheimer correction21—of the
order of −10 cm−1 for the isotope 14NH3—yields a
final adiabatic equilibrium value of Be = 1777 ±
13 cm−1 for 14NH3.

To obtain an effective barrier for the one-
dimensional treatment of the tunneling motion in
NH3, the zero-point vibrational energy of the com-
plementary vibrational modes must be taken into
account. This ZPVE amounts to 244 ± 15 cm−1 and
yields an effective one-dimensional barrier of 2021±
20 cm−1.
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