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The full quartic force field of the ground electronic state of the silyl anion (SiH3
2) has been

determined at the CCSD~T!-R12 level employing a@Si/H#5@16s11p6d5 f /7s5p4d# basis set. The
vibrational energy levels, using the quartic force field as a representation of the potential energy
hypersurface around equilibrium, have been determined by vibrational perturbation theory carried
out to second, fourth, and sixth order. The undetected vibrational fundamental for the umbrella
mode,n2 , is predicted to be 844 cm21. High-qualityab initio quantum chemical methods, including
higher-order coupled cluster~CC! and many-body perturbation~MP! theory with basis sets ranging
from @Si/H# @5s4p2d/3s2p# to @8s7p6d5 f 4g3h/7s6p5d4 f 3g# have been employed to obtain the
best possible value for the inversion barrier of the silyl anion. The rarely quantified effects of one-
and two-particle relativistic terms, core correlation, and the diagonal Born–Oppenheimer correction
~DBOC! have been included in the determination of the barrier for this model system. The final
electronic~vibrationless! extrapolated barrier height of this study is 83516100 cm21. © 2000
American Institute of Physics.@S0021-9606~00!30308-7#
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I. INTRODUCTION

Over the last decades, following a large number of
perimental and theoretical studies, it has become evident
the structure and related properties of second-row molec
are often drastically different from their first-row analogs,1–9

making second-row molecules of special relevance to st
tural chemists. A considerable hindrance for experimen
studies of many interesting second-row congeners is
they are rather unstable, have short lifetimes, and can
produced only under rather extreme conditions. Con
quently, their experimental detection and characterizatio
often difficult. The cases of Si2H2,

2 SiC2,
5 and P2O ~Ref. 8!

are examples from our various research efforts in which
perimental studies of model second-row compounds h
been aided by high-qualityab initio quantum chemical com
putations. The impetus for the present research is an ong
series10 of high-resolution infrared spectroscopic studies
SiH3

2 aimed, in part, at the precise measurement of the r
brational levels of the umbrella mode,n2 . It is hoped that the

a!Present address: Oslo College, Faculty of Engineering, N-0254 Oslo,
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present theoretical study of salient features of the gro
electronic state of SiH3

2 will prove to be a valuable asset i
the design and execution of the planned experiments.

Silyl anion, SiH3
2, is one of the simplest closed-she

molecular anions incorporating a silicon atom. Its pare
radical, SiH3, is of great importance in chemical vapor dep
sition processes.11,12 The silyl cation, SiH3

1, is one of the
most abundant ions in silane plasmas, and thus it has b
studied in considerable detail, its properties13 and ion–
molecule reactions14,15 being quite well understood by now
The structure of SiH3

2 is expected to be similar to that o
NH3, one of the most extensively studied molecules of str
tural chemistry. For these reasons, several experimental16–24

and theoretical24–38 studies have been performed on SiH3
2.

The silyl cation has a planar equilibrium geometry
D3h symmetry, while the radical has a pyramidal structure
C3v symmetry. All published theoretical calculations ha
predicted a nonplanar structure ofC3v symmetry for the
equilibrium geometry of the lowest singlet electronic state
SiH3

2. For a compilation of RHF~restricted Hartree–Fock!,
CISD ~configuration interaction with all singles an
doubles!, and CCSD ~coupled cluster with singles an
doubles! equilibrium geometries, see Refs. 29 and 31. It

r-
3 © 2000 American Institute of Physics
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well established that the anion has a more pyramidal st
ture than the radical.

We are not aware of any direct measurements of
vibrational energy levels of gaseous SiH3

2. From the position
of the first two hot bands in the photoelectron spectra
SiH3

2, Nimlos and Ellison17 concluded that the umbrella vi
brational mode for the silyl anion has a harmonic vibratio
frequency of 880 cm21. Bürger and Eujen16 measured the
vibrational spectra of a series of related anions in hexam
ylphosphoric triamide~HMPT! solution with K1 as the
counter cation. They obtained the values$1888, 870, 1891,
899% cm21 for $n1 ,n2 ,n3 ,n4% of SiH3

2K1. The best previous
theoretical anharmonic frequencies for gaseous SiH3

2, $1830,
866, 1799, 957% cm21, were determined by Shen an
Schaefer,31 who combined TZ2P1diff ~Si, H! CCSD har-
monic frequencies with TZ2P1diff ~Si! CISD anharmonic
corrections obtained by second-order vibrational perturba
theory ~VPT2!.

The vibrational frequency of the umbrella mode is in
mately related to the inversion motion through the pla
D3h transition state. Therefore, a consequent interest is
height of the inversion barrier of SiH3

2. The best empirical
estimate of the barrier is 900062000 cm21.17 In the earliest
theoretical article on this topic known to us, Keil an
Ahlrichs,25 employing RHF, PNO CID@pair-natural-orbital
CI with doubles~CID!#, and CEPA~coupled electron pair
approximation! wave functions, obtained 9160 cm21 for the
barrier height. They concluded, furthermore, that elect
correlation has a relatively small effect on the inversion b
rier, while the height depends strongly on the quality of t
basis set used for its determination. Eades and Dixon32 have
also studied carefully the barrier height of the silyl anion.
the most detailed theoretical study to date, Shen, Xie,
Schaefer29 obtained an inversion barrier of 8880 cm21 at the
TZ2P1diff ~Si! CCSD level.

Many other experiments and computations have b
performed on SiH3

2 and its parent radical@e.g., measure-
ments of the electron affinity of the silyl radical, EA~SiH3!
51.41 eV,16 and prediction of the vertical ionization poten
tial of the silyl anion, 1.79 eV#,27 but they are of no direc
relevance for our study. The restricted goals of the pres
study are as follows:~a! determination of an improved qua
tic force field representation of the potential energy hyp
surface of SiH3

2 around equilibrium employing the highl
accurate CCSD~T!-R12 technique, constituting, to ou
knowledge, the first full quartic force field study of a pol
atomic molecule by explicitly correlated techniques;~b! de-
termination of accurate and apparently converged vibratio
fundamentals through the use of higher-order vibrational p
turbation theory ~VPT!, which was carried out only to
second-order in previous studies;30,31~c! determination of the
barrier height, converged within technical limits, for the i
version motion of SiH3

2; and~d! investigation of core corre
lation, diagonal Born–Oppenheimer correction~DBOC!, and
one- and two-electron relativistic terms on the inversion b
rier.
Downloaded 24 Oct 2002 to 128.192.2.84. Redistribution subject to AI
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II. ANHARMONIC FORCE FIELD

The anharmonic~quartic! force field39 of SiH3
2 has been

calculated at the RHF, CCSD-R12, CCSD~T!-R12, and
CCSD@T#-R12 ~Ref. 40! levels of theory, utilizing the pro-
gram packageDIRCCR12-9541 and the standard R12/B ap
proximation of linear R12 theory.42 A specially designed
@Si/H#5@16s11p6d5 f /7s5p4d# Gaussian basis set, desig
nated here as BS1, was employed for the calculation of
force field. As usual for basis sets employed in linear R
calculations, the BS1 basis is almost saturated at the leve
spdffunctions for Si andspdfor H but contains no functions
of higher angular momentum. Since in previousab initio
studies29–31it became evident that computations on SiH3

2 are
especially sensitive to the presence of diffuse functions in
one-electron basis, the BS1 set contains low-exponents, p, d,
and f functions. The 7s5p4d basis set for H is described i
full detail in Ref. 43, while the 16s11p6d5 f basis set for Si
has been derived as follows. The 14s9p primitive set of the
TZV basis set of Scha¨fer et al.44 has been augmented wit
both ~Gaussian exponents in parentheses! high-exponents
~450 000.0! and p ~2200.0! functions, as well as low-
exponents ~0.031! and p ~0.024! counterparts. To thissp
basis set, thed and f functions of the aug-cc-pV5Z45,46 basis
have been added, together with high-exponentd ~5.3! and f
~1.4! functions.

The symmetry displacement coordinates of SiH3
2 were

selected, in accordance with the most common choice
XY3 tetraatomics ofC3v symmetry, as follows:

S1~a1!5321/2~r 11r 21r 3!, S2~a1!5321/2~a11a21a3!,

S3a~e!5621/2~2r 12r 22r 3!,

S3b~e!5221/2~r 22r 3!,

S4a~e!5621/2~2a12a22a3!,

and

S4b~e!5221/2~a22a3!,

where r 1 , r 2 , and r 3 correspond to the three Si–H bon
length displacements,a1 , a2 , anda3 are the three H–Si–H
valence angle displacements, anda i is defined to be opposite
to r i( i 51,2,3).

The reference geometry for the force field calculatio
was obtained at the all-electron BS1 CCSD~T!-R12 level.
The optimized geometric parameters arer ~Si–H!
51.53753 Å and/~H–Si–H!595.196°. These values ar
almost the same as the previous best geometry,r ~Si–H!
51.537 Å and /~H–Si–H!595.1°, obtained at the
TZ2P1diff ~Si, H! CCSD level.31 The calculated
/~H–Si–H! values are most likely considerably more acc
rate than the best empirical estimate17 of 94.562.0°. Our
reference geometry is, of course, not a stationary point at
RHF and CCSD levels. Considerations for dealing with t
resulting residual gradients in force fields at these levels
theory, in particular what coordinate system the gradie
should be neglected in, have been extensively develope
Allen and Csa´szár.47

The silyl anion has 6 quadratic, 14 cubic, and 28 qua
symmetry-unique force constants.48–50 Symmetry relations
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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among the force constants~see Table I! were determined
from the appropriate tables of Refs. 49 and 50 and were
derived independently.51 Certain numerical constants in th
symmetry relations given in Table I differ from those
Amat and Nielsen49,50 due to the fact that they employe
restricted summations in the expansion of the poten
while we use fully unrestricted summations.

Since analytical derivatives are not available for line
R12 methods, anharmonic force fields at these levels mus
determined by numerical techniques.39,52 In this study force
constants of SiH3

2 were determined via carefully selecte
central-difference formulas39 and by unweighted least
squares fitting. The two approaches utilized exactly the sa
set of 79 energy points converged to almost machine pr
sion (;10212Eh). The energies were computed at structu
determined by simultaneous displacements of one to
symmetry coordinates. The displacements from the equ
rium structure were60.02 Å and60.04 rad, or integral mul-
tiples thereof, for the distances and angles, respectively.
the force constants, exceptF3a3a4b4b , were determined by
displacement of the coordinatesS1 , S2 , S3a , andS4a alone.
Elements of the quartic force fields, obtained using cent
difference formulas and least-squares fitting, are given
Table I. The agreement between the two approaches is
satisfactory for the quadratic, cubic, and almost all qua
constants, but for some of the smaller quartic constants
differences are substantial in a relative sense. It is telling
the uncertainties for these few constants, obtained in
least-squares fitting, are large. Nevertheless, these s
quartic constants have virtually no effect on the calcula
spectroscopic constants. Note, finally, that Shen, X
Yamaguchi, and Schaefer30 have reported cubic and quart
force constants for the ground electronic state of SiH3

2 pre-
viously, determined at the RHF and CISD levels, but th
did not report symmetry relations among the force consta
arising from the presence of the three-fold symmetry axi

The quadratic force constants at the CCSD-R12
CCSD~T!-R12 levels are in good agreement. This obser
tion is, of course, also inherently related to the use of
same reference structure for the two computations.47 The
quadratic force constants obtained at the RHF level di
substantially from the coupled-cluster results. Especially p
nounced is the difference for the umbrella mode, which is
greatest interest for this study. As expected, there are
small differences between the CCSD-R12 and CCSD~T!-
R12 cubic and quartic constants, with a few exceptions
the smaller and thus less important quartic ones. As m
tioned above, the CCSD~T!-R12 force field presented is ex
pected to correspond to the one- andn-particle asymptotes o
computational quantum chemistry rather closely. Fina
note that the differences between corresponding CCSD~T!-
R12 and CCSD@T#-R12 force constants never exceed 0.0
in the specified units; therefore, the latter are not listed
Table I.

III. VIBRATIONAL ENERGY LEVELS

The quartic force field representation of the potential
ergy hypersurface of the ground electronic state of SiH3

2 can
Downloaded 24 Oct 2002 to 128.192.2.84. Redistribution subject to AI
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be employed to determine the low-lying vibrational ener
levels of the anion through efficient techniques offered
vibrational perturbation theory.53–59

A. Second-order vibrational perturbation theory
„VPT2…

The simplest way to obtain vibrational energy leve
from a quartic force field is provided by second-order vib
tional perturbation theory~VPT2!. VPT2 was originally
developed53,58 for investigations around equilibrium struc
tures, and the accuracy of purelyab initio determinations of
anharmonic vibrational frequencies through this approac
well documented~see, e.g., Refs. 39, 56, 57, and 59!.

The quartic force fields, determined initially in symm
try coordinates~see Table I!, were transformed to Cartesia
coordinates analytically, using the programINTDER95.47,60

Transformation to normal coordinates utilized the progr
package SPECTRO.61 Determination of vibrational anhar
monic constants, necessary to obtain VPT2 frequencies,
lowed formulas presented in Ref. 55. Treatment of cu
~Fermi! resonances was performed following formulas giv
in Ref. 57. The spectroscopic constants determined from
BS1 RHF, CCSD-R12, and CCSD~T!-R12 quartic force
fields are given in Table II.

The quadratic force constants at the CCSD-R12 a
CCSD~T!-R12 levels, and therefore the frequencies det
mined therefrom, are in good agreement. For example,
harmonic symmetric (v1) and antisymmetric (v3) stretching
frequencies differ by only;4 and ;0 cm21, respectively.
Somewhat larger differences are observed for the bend
modes. The symmetric (v2, umbrella mode! and antisym-
metric (v4) bending modes decrease by 17 and 11 cm21,
respectively, in going from CCSD-R12 to CCSD~T!-R12,
showing certain importance of triple excitations in th
coupled-cluster wave function.

During determination of spectroscopic constants, a
therefore of anharmonic vibrational energy levels, using p
turbation theory, the main difficulty is the treatment of res
nances between strongly interacting zeroth-order sta
Fermi ~also called cubic! resonances occur whenn i1n j

'nk . In the BS1 CCSD-R12 and CCSD~T!-R12 predictions,
2v4 is very close to bothv1 andv3 . Therefore, the Ferm
resonances (v1,2v4) and (v3,2v4) have been consistentl
removed from the second-order treatments at all levels
theory. In Table II the values for the anharmonicity consta
obtained when the Fermi resonances are not remove
second-order are given in parentheses. The different tr
ments of the resonances result in different vibrational anh
monic constants and anharmonic frequencies becaus
varying partitions between first- and second-order. Nevert
less, once the anharmonic resonances are treated prop
the overall anharmonic corrections to the harmonic frequ
cies are not very dependent on the level of theory used
their determination. This was also found in the earlier VP
studies of SiH3

2 ,30,31as well as for most simple polyatomics
and can be readily rationalized.39,47

A few aspects of the VPT2 results warrant mention:~i!
The best previous theoretical values,30 $1830, 866, 1799,
957% cm21 for $n1 ,n2 ,n3 ,n4%, are in reasonable agreeme
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 24 O
TABLE I. Full quartic force field of SiH3
2 in symmetry coordinates.a

Constant

RHF CCSD-R12 CCSD~T!-R12

FINDIF FINDIF FINDIF LSQ

F1 0.012 27 0.004 78 0.000 01 0.000 01
F2 20.033 49 20.003 28 0.000 00 0.000 00
F11 2.261 01 2.177 71 2.168 73 2.168 74
F3a3a5F3b3b 2.133 03 2.108 23 2.107 16 2.107 16~4!
F22 0.655 65 0.564 84 0.546 89 0.546 89~1!
F4a4a5F4b4b 0.700 17 0.614 53 0.602 41 0.602 41~1!
F12 0.199 42 0.178 61 0.177 99 0.177 99~1!
F3a4a 20.053 41 20.046 17 20.046 39 20.046 39~1!
F111 26.0295 26.0014 26.0105 26.0110~11!
F112 20.2101 20.2065 20.2037 20.2033 ~1!
F13a3a5F13b3b 25.9489 25.8843 25.8845 25.8830~12!
F23a3a5F23b3b 0.1155 0.0675 0.0617 0.0621~6!
F122 0.1334 0.1068 0.1042 0.1050~1!
F222 0.3253 0.3051 0.2924 0.2925~2!
F14a4a5F14b4b 20.2734 20.2786 20.2781 20.2780 ~3!
F24a4a5F24b4b 20.4905 20.4079 20.3932 20.3933 ~2!
F13a4a5F13b4b 0.1398 0.1360 0.1356 0.1363~3!
F23a4a5F23b4b 0.1127 0.1144 0.1144 0.1148~1!
F3a3a3a52F3a3b3b 24.2083 24.1516 24.1503 24.1541 ~7!
F3a4a4a52F3a4b4b52F3b4a4b 0.0900 0.0925 0.0919 0.0918~1!
F3a3a4a52F3b3b4a52F3a3b4b 20.1683 20.1375 20.1333 20.1335 ~1!
F4a4a4a52F4a4b4b 0.1089 0.1245 0.1290 0.1298~1!
F1111 13.678 13.732 13.717 13.614~274!
F1112 20.458 20.432 20.438 20.438 ~20!
F113a3a5F113b3b 13.597 13.616 13.611 13.572~234!
F123a3a5F123b3b 20.150 20.157 20.157 20.160~104!
F1122 20.150 20.186 20.188 20.189 ~6!
F1222 0.673 0.652 0.651 0.651~10!
F114a4a5F114b4b 20.055 20.068 20.078 20.094 ~62!
F124a4a5F124b4b 0.085 0.099 0.101 0.102~26!
F113a4a5F113b4b 0.007 0.013 0.015 0.028~83!
F123a4a5F123b4b 20.027 0.011 0.015 0.012~89!
F13a3a3a52F13a3b3b 9.523 9.538 9.535 9.535~219!
F13a4a4a52F13a4b4b52F13b4a4b 0.051 0.052 0.056 0.062~41!
F13a3a4a52F13b3b4a52F13a3b4b 0.095 0.100 0.101 0.088~83!
F14a4a4a52F14a4b4b 20.072 20.038 20.035 20.035 ~27!
F223a3a5F223b3b 20.061 20.089 20.085 20.078 ~62!
F2222 0.799 0.605 0.519 0.523~21!
F224a4a5F224b4b 0.109 0.054 0.028 0.028~17!
F223a4a5F223b4b 20.181 20.173 20.173 20.173 ~21!
F23a3a3a52F23a3b3b 20.143 20.155 20.157 20.157~110!
F23a4a4a52F23a4b4b52F23b4a4b 0.010 0.007 0.006 0.005~21!
F23a3a4a52F23b3b4a52F23a3b4b 0.232 0.187 0.183 0.184~41!
F24a4a4a52F24a4b4b 20.511 20.473 20.475 20.475 ~14!
F3a3a3a3a53F3a3a3b3b5F3b3b3b3b 20.900 20.752 20.730 20.732~274!
F3a3a4a4a5F3b3b4b4b 20.238 20.228 20.230 0.235 ~5!
F3a3a3a4a53F3a3a3b4b53F3a3b3b4a5F3b3b3b4b 0.104 0.100 0.100 0.100~20!
F3a4a4a4a53F3a4a4b4b53F3b4b4a4a5F3b4b4b4b 20.086 20.112 20.115 20.115 ~10!
F4a4a4a4a53F4a4a4b4b5F4b4b4b4b 1.206 1.040 0.979 0.975~20!
F3a3a4b4b5F3b3b4a4a 20.518 20.475 20.474
F3a3b4a4b51/2* (F3a3a4a4a2F3a3a4b4b) 0.140 0.123 0.122

aUnits of the force constants are consistent with energy measured in aJ. distances in Å, and angles
FINDIF5finite-difference procedure; LSQ5unweighted linear least-squares fit~with standard errors in paren
theses!; for further details, see text. All force constants refer to unrestricted summations in the expansion
potential.
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with the present calculated values.~ii ! While the harmonic
frequency for the umbrella mode obtained at the B
CCSD~T!-R12 level is 858 cm21 and this is 21 cm21 lower
than that obtained at the CCSD TZ2P1diff ~Si,H! by Shen
and Schaefer,31 the difference between our more compara
BS1 CCSD-R12 result and the earlier theoretical value
only 4 cm21. ~iii ! The frequencies determined from the RH
ct 2002 to 128.192.2.84. Redistribution subject to AI
1

is

~and to a lesser extent from the CCSD! force field depend on
how the residual RHF~CCSD! gradients are treated at th
BS1 CCSD~T!-R12 reference geometry. In the RHF colum
of Table II vibrational frequencies were computed after n
glecting the forces~i.e., adding the ‘‘shift term’’!47 in the
internal coordinate space. The only significant difference
tween this treatment and results obtained from the Carte
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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projection scheme47 is 13 cm21, which occurs for the har-
monic frequency of the umbrella mode. Overall,n2 is sensi-
tive both to the basis set and the details of the electron
relation treatment employed, as well as to the treatmen
the residual forces.~iv! The x–K relations62 x115(2/3)x33

5(1/4)x13522g33 hold excellently for the vibrational an
harmonic constants of SiH3

2 .

B. Van Vleck perturbation theory

In this subsection we consider a more accurate treatm
of the molecular vibrations. The key feature of the approa
is the use of curvilinear normal coordinates coupled with
use of higher-order perturbation theory. We are motivated
pursue this higher-order approach due to the large numbe
possible resonance interactions and the possible difficu
of treating the umbrella motion as a perturbed harmonic
cillator ~note, in this respect, the variational results of R
30!. We begin this subsection by describing the coordina
and the form of the Hamiltonian. Having constructed t
Hamiltonian, we briefly review the essence of the pertur
tive approach. We then present the results of our perturba
calculations carried out to second-, fourth-, and sixth-ord

TABLE II. Spectroscopic constants for28SiH3
2 ~in cm21! obtained by

second-order vibrational perturbation theory~VPT2!.a

Constant RHFb CCSD-R12 CCSD~T!-R12

v1 1979 1942 1938
v2 939 875 858
v3 1931 1920 1920
v4 1034 970 959
v12n1 84~86! 93~26! 95~84!
v22n2 11 13 14
v32n3 97~98! 99~103! 101~62!
v42n4 21 22 23
n1 1895~1893! 1849~1948! 1843~1854!
n2 928 862 844
n3 1834~1833! 1821~1817! 1819~1858!
n4 1013 948 936
x11 212.72 213.87 214.14
x12 12.89 4.17 3.00
x13 254.08 255.83 256.35
x14 211.99~213.53! 212.73~87.86! 213.18~20.95!
x22 28.38 26.60 26.56
x23 23.16 21.68 21.75
x24 2.11 0.06 0.00
x33 220.82 221.38 221.57
x34 214.30~214.54! 214.14~217.30! 214.37~24.38!
x44 20.87~20.38! 20.86~225.20! 20.97~213.64!
g33 7.33 7.22 7.23
g34 21.52~20.60! 21.46~3.25! 21.44~238.75!
g44 0.78~0.44! 0.68~26.67! 0.70~25.95!

av i : harmonic vibrational frequencies;n i : anharmonic vibrational frequen
cies;x i j : vibrational anharmonic constants. All primary entries in the ta
were obtained after removing the@n1(A1)22n4

0(A1)# and @n3
61(E)

22n4
72(E)# Fermi resonances from the second-order treatment~the super-

scripts give the vibrational angular momentum state!; the resonance effects
were explicitly included in first-order during calculation of the anharmo
frequencies. Secondary entries in parentheses show the effect of inclu
all interactions in second-order. The quartic force fields, upon which
reported results are based, are given in columns 2, 3, and 4 of Ta
corresponding to the BS1 RHF, CCSD-R12, and CCSD~T!-R12 wave func-
tions, respectively.

bResidual forces are neglected in the internal coordinate space.
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The Van Vleck calculations follow those of Pak, Sibe
and Woods63 in their studies of AlF3 and SiF3

1 . The calcu-
lations are based on a zeroth-order representation of cu
linear normal modes.64,65 These normal modes are con
structed from linear combinations of the bend extens
coordinates $S2 ,S4a ,S4b% and the Simons–Parr–Finla
~SPF!66 stretch coordinatesr i5Dr i /r i for ( i 51 – 3). With
this choice of coordinates the rotationless (J50) Hamil-
tonian takes the general form

Hv5 1
2 PTGP1V1V8. ~1!

The kinetic energy contribution to Eq.~1! is expressed in
terms of the normal momentaPi , as well as theGi j matrix
elements, which in turn are functions of the normal coor
nates. This dependence was determined numerically foll
ing the methods outlined by Wilson, Decius, and Cross67

The remaining two contributions to Eq.~1! depend solely on
the normal coordinates. They are the potentialV and a mass-
dependent contributionV8. The V8 contribution is readily
evaluated, since it is a known function of theGi j matrix
elements and the determinant of the moment of ine
tensor.68 The potentialV @the CCSD~T!-R12 force field of
Table I# is reexpanded in terms of stretch–bend coordina
$r1 ,r2 ,r3 ,S2 ,S4a ,S4b% and then truncated at fourth-orde
With this choice the reexpanded potential and the origi
potential are identical through fourth-order when expand
in any common coordinate system. We have chosen to w
with the reexpanded potential, since this potential, written
terms of the SPF coordinates, is expected to be a more fa
ful representation of the true potential; i.e., the truncat
errors at fourth-order are smaller.

To carry out the perturbation theory, we follow
Nielsen,54 and separate the Hamiltonian in the form

Hv5H ~0!1lH ~1!1l2H ~2!1¯1lnH ~n!, ~2!

wherel is the perturbation parameter. To derive this Ham
tonian, we expandHv of Eq. ~1! by reexpressing the norma
coordinate dependences ofV,V8, and theGi j as a Taylor
series about the equilibrium configuration. The poten
terms of ordern are included inH (n22), while theGi j and
V8 contributions of ordern are included inH (n) andH (n12),
respectively. Having expandedHv , we rewrite it as a func-
tion of harmonic oscillator raising and lowering operato
We follow the work of Pak, Sibert, and Woods,63 who de-
scribe how the raising and lowering operators can be cho
to exploit the three-fold molecular symmetry. Hence, t
reader is referred to that work for a discussion of the sy
metry considerations.

The transformations are accomplished via successio
canonical transformations,

Kv5exp$ iln@S~n!,#%¯exp$ il2@S~2!,#%exp$ il@S~1!,#%Hv ,
~3!

where theS(n) are chosen such thatKv has the desired form
through ordern.69 There are many different forms the fina
Hamiltonian can take. In this work the Hamiltonian wa
transformed so that its matrix representation has a block
agonal form. The eigenvalues of the individual blocks a
obtained by matrix diagonalization. In this work each blo

ing
e

I
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is characterized by the quantum numberN52y11y212y3

1y4 . This choice allows for the stretch and bend states to
coupled via both Darling–Dennison and Fermi resonan
and, as the results of Table III demonstrate, leads to w
converged perturbative results, notwithstanding known d
culties with perturbative expansions of the anharmo
oscillator.70–72This convergence is a comforting result of th
present study. Most importantly, the vibrational fundame
tals of the BS1 CCSD~T!-R12 potential are determined to b
$1841, 844, 1821, 938% cm21.

The only experimentally observed vibrational freque
cies for SiH3

2 are those reported by Bu¨rger and Eujen16 in
hexamethylphosphoric triamide solution with K1 as the
counter cation, viz.$1888, 870, 1891, 899% cm21 for
$n1 ,n2 ,n3 ,n4%. In addition, from the position of the first two
hot bands in the photoelectron spectra of SiH3

2. Nimlos and
Ellison17 concluded that the umbrella vibrational mode of t
silyl anion has a vibrational frequency of 880 cm21. The
anharmonic frequencies calculated in this study deviate s
stantially from the measured values. For the symmetric
antisymmetric stretching modes the calculated frequen
@BS1 CCSD~T!-R12# are 45 and 72 cm21 lower than the
observed ones, respectively. Moreover, the calcula
umbrella-mode~inversion! frequency is 26 cm21 lower,
while the antisymmetric bend is 35 cm21 higher than the
observed frequencies in solution.16 Detailed experimenta
studies in the gas phase are needed to resolve these dis
ancies.

TABLE III. Selected CCSD~T!-R12 results for band origins~in cm21! using
second-, fourth-, and sixth-order Van Vleck perturbation theorya for 28SiH3

2

with N52v11v212v31v4 .a

Symmetry v1 v2 v3 l 3 v4 l 4

E~6!
2E(2)

E(6)
2E(4) E(6)

A1 0 1 0 0 0 0 20.34 20.01 844.09
E 0 0 0 0 1 1 20.27 20.01 937.78
A1 0 2 0 0 0 0 21.00 20.10 1673.37
E 0 1 0 0 1 1 20.23 20.05 1781.61
E 0 0 1 1 0 0 0.97 20.01 1821.46
A1 1 0 0 0 0 0 1.11 20.02 1840.69
A1 0 0 0 0 2 0 22.04 20.06 1873.61
E 0 0 0 0 2 2 21.00 20.05 1876.12
A1 0 3 0 0 0 0 22.69 20.34 2488.85
E 0 2 0 0 1 1 20.56 20.13 2610.16
E 0 1 1 1 0 0 0.21 20.02 2663.45
A1 1 1 0 0 0 0 20.49 20.04 2686.60
A1 0 1 0 0 2 0 21.42 20.14 2717.52
E 0 1 0 0 2 2 20.32 20.13 2718.88
A2 0 0 1 1 1 1 1.26 20.05 2737.59
E 0 0 1 1 1 1 0.35 20.04 2746.17
A1 0 0 1 1 1 1 0.55 20.06 2752.61
E 1 0 0 0 1 1 0.47 20.05 2768.80
A1 0 0 2 0 0 0 3.63 20.09 3572.04
E 0 0 2 2 0 0 3.82 20.08 3574.79
A1 2 0 0 0 0 0 20.07 20.04 3675.26

aStretch overtones are mixed by both quartic~Darling–Dennison! and cubic
~Fermi! resonances. For example, the state with transition energy at 36
cm21 has an overlap less than 0.6 with the 12 zeroth-order state.
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IV. INVERSION BARRIER OF SIH3
À

The conventional electronic structure computations
the determination of the inversion barrier of SiH3

2 were per-
formed with thePSI ~Ref. 73! andGAUSSIAN94 ~Ref. 74! pro-
gram systems.

Reference electronic wave functions were determined
the single-configuration restricted Hartree–Fock~RHF!
method.75 Dynamical electron correlation was accounted
by Møller–Plesset~MP! perturbation theory from second
through fifth-order~MP2-MP5!,76 and by the coupled cluste
~CC! method77 including all single and double~CCSD!78,79

and in cases triple excitations~CCSDT!.80,81 The CCSD~T!
method,82 which estimates the effect of connected triple e
citations through a perturbative term, was employed ext
sively. Computations utilizing the CCSD-R12 and CCSD~T!-
R12 levels of linear R12 theory41,42 have also been
performed. Extrapolation of the MPn series,83–85resulting in
MP`, was made via shifted@2,1# Padéapproximants when
fifth-order energies were available. In valence-on
correlated-level calculations the (1s,2s,2p) core orbitals of
silicon were kept doubly occupied. No virtual molecular o
bitals were frozen in any of the correlation treatments.

The basis sets chosen for the conventional calculati
include the correlation-consistent~d!-~aug!-cc-p~C!VXZ
families of basis sets developed by Dunning a
co-workers.45,46 The largest of the conventional basis se
employed here, d-aug-cc-pV5Z, includes basis functio
with angular momenta up toh on silicon andg on hydrogen.
The corresponding number of basis functions is 482, as c
pared to 54 functions in the smallest~aug-cc-pVDZ! set.
Since no doubly-augmented d-aug-cc-pVXZ basis sets are
available for Si,46 these sets have been constructed by add
an extra diffuse manifold to each shell with exponents tak
to be 1/3 of the corresponding lowest exponents in the a
cc-pVXZ sets. The BS1 basis set is the smallest one e
ployed during R12 calculations on the barrier. This basis
been first augmented, in an even-tempered manner desc
above, by an extra manifold of diffuse functions, resulting
the BS2 basis. The BS2 basis was then further augme
with five g functions on the Si atom, resulting in the BS
basis containing 328 contracted Gaussian functions. Whe
the BS1 basis is appropriate for explicitly correlated calcu
tions around the equilibrium geometry, special care is nee
when taking energy differences at substantially differe
structures. For example, previous CCSD-R12 and CCSD~T!-
R12 computations on the barrier to linearity of wat
revealed86 that use of basis sets containing the union of ba
functions at the reference equilibrium and transition-st
structures is preferable to the use of the traditional basis
Only such ICP~intramolecular counterpoise correction! basis
sets ensure that the resolution of the identity~RI! approxi-
mation has the same quality for the two calculations involv
in the barrier height determination.

The reference geometries for the barrier height deter
nation were obtained at the all-electron BS1 CCSD~T!-R12
level ~see Sec. II for theC3v structure!. The Si–H distance
for the planarD3h form is 1.476 41 Å, significantly shorte
than theC3v equilibrium Si–H bond distance of 1.537 53 Å

.3
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TABLE IV. Valence focal-point analysis of the inversion barrier~in cm21! of SiH3
2.a

Series I DEe~RHF! d@MP2# d@CCSD# d@CCSD~T!# d@CCSDT# d@BD~TQ!# DEe~CC!

Conventional
aug-cc-pVDZ~54! 9265 21175 1548 2147 22 231 8458
d-aug-cc-pVDZ~75! 9147 21224 1625 2167 @22# @231# @8348#
cc-pVTZ ~76! 11 872 21334 1413 2174 13 230 10 750
aug-cc-pVTZ~119! 9241 21147 1581 2212 22 228 8433
cc-pVQZ ~149! 10 444 21262 1447 2203
CVTZ ~161! 11 865 21381 1392 2195
d-aug-cc-pVTZ~162! 9124 21162 1643 2216 @22# @228# @8359#
aug-CVTZ ~204! 9231 21155 1569
aug-cc-pVQZ~222! 9147 21136 1572 2223
cc-pV5Z ~260! 10 261 21244 1461 2210
d-aug-cc-pVQZ~295! 9080 21153
CVQZ ~297! 10 461 21278 1445 2209
aug-CVQZ~370! 9164 21147
aug-cc-pV5Z~371! 9150 21140 1573 2228
d-aug-cc-pV5Z~482! 9091 21150
Extrapolation limit~`! 9092 21148 1574 2233 @22# @228# @8255#

Explicitly correlated~R12!
BS1 ~240! 9215 ~2478! 2233
BS2 ~283! 9079 ~2464! 2229
BS3 ~328! 9088 ~2501!
BS111CP ~366! 9186 ~2536!
BS21ICP ~436! 9092 ~2502!
BS31ICP ~481! 9093 ~2516!

Series II DEe~RHF! d@MP2# d@MP3# d@MP4# d@MP5# d@MP`# DEe~MP`!

Conventional
aug-cc-pVDZ~54! 9265 21175 1203 198 133 118 8442
d-aug-cc-pVDZ~75! 9147 21224 1260 192
cc-pVTZ ~76! 11 872 21334 1111 138 136 118 10 740
aug-cc-pVTZ~119! 9240 21147 1235 14 154 121 8406
cc-pVQZ ~149! 10 444 21262 1133 23
CVTZ ~161! 11 865 21381 187 217
d-aug-cc-pVTZ~162! 9124 21162 1303 27
aug-CVTZ ~204! 9231 21155 1227
aug-cc-pVQZ~222! 9147 21136 1247 237
cc-pV5Z ~260! 10 261 21244 1156 222
CVQZ ~297! 10 461 21278 1133 211
aug-CVQZ~370! 9164 21147 1247
aug-cc-pV5Z~371! 9150 21140 1260 259
Extrapolation limit~`! 9092 21148 1272 279 @154# @121# @18212#

aFor each basis set the total number of contracted Gaussian functions is given in parentheses. For co
level calculations the symbold denotes the increment in the relative energy (DEe) with respect to the preced
ing level of theory. For conventional calculations, the energy increments are given by the
RHF→MP2→CCSD→CCSD~T!→CCSDT→BD~TQ! and RHF→MP2→MP3→MP4→MP5→MP`, for Se-
ries I and Series II, respectively. For explicitly correlated~R12! calculations, the increments reported refer
the series RHF→CCSD→CCSD~T!; to highlight the difference between conventional and R12d@CCSD#
increments, the latter are given in parentheses. The higher-order correlation increments listed in brac
taken for the purpose of extrapolation from corresponding entries for smaller basis sets.
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This observation can be explained by noting that Si–H bo
in the planar structure are nominally87 formed from sp2

rather thansp3 hybrids. In accord with Bent’s rules,88 the
increaseds character should result in stronger and th
shorter bonds. The differences between the barrier heigh
the reference structures and at the respective optimized s
tures are estimated to be less than 5 cm21, as found in sev-
eral similar studies.89,90,86The use of fixed reference struc
tures for determination of the barrier height is thus am
justified.

Determination of the inversion barrier of SiH3
2 is per-

formed within the focal point scheme advocated by All
ct 2002 to 128.192.2.84. Redistribution subject to AI
s

s
at
c-

y

and co-workers.89,90,86,91,92 The entire valenceab initio
analysis of the barrier to inversion is laid out in Table IV
Auxiliary corrections to the barrier height due to core cor
lation and relativistic effects are collected in Tables V a
VI, respectively.

A. Extrapolation of energies

For the inversion barrier, twon-particle series have bee
investigated: coupled cluster theory~CC, Series I! and
Møller–Plesset perturbation theory~MP, Series II!. Extrapo-
lation to the complete basis set~CBS! limit for RHF theory,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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utilizing correlation-consistent basis sets of increasing qu
ity, is usually performed using the following exponenti
form:90,86,93,94

EX5ECBS1ae2bX. ~4!

The data presented in Table IV clearly show that augme
tion of the cc-pVXZ basis with diffuse shells turns out to b
absolutely necessary for SiH3

2, as can be judged from th
resultingDEe(RHF) barrier lowerings of$2631, 1297, 111%
cm21 for X5$3,4,5%, in order. Even withX55 the aug-
mented and unaugmented results are unusually differ
making the use of the cc-pVXZ sets inadequate at the RH
level. On the other hand, theX5$2,3,4,5% aug-cc-pVXZ bar-
rier values converge nicely:$9 265, 9 241, 9 147, 9 150%
cm21. Nevertheless, using a second set of diffuse functi
~d-aug-cc-pVXZ! results in barrier lowerings of$117, 67, 59%
cm21 for X5$3,4,5%, in order. Applying Eq.~4! to the
d-aug-cc-pV~T,Q,5!Z total energies results inECBS values of
2290.652 84Eh and 2290.611 31Eh for the C3v and D3h

structures, respectively. The resulting extrapolated RHF
version barrier is 9115 cm21. However, since the RHF cal
culations utilizing the largest conventional and ICP basis s
result in a remarkably well converged barrier, our extrapo
tion limit was taken as the average of the d-aug-cc-pV5Z
BS31ICP RHF values, 9092 cm21.

The correlation increments are seemingly much less s
sitive to the quality of the one-particle basis. For the extra
lation of the conventional correlated energies we have
lowed the approach presented in Ref. 90 and in a rec
paper by Halkieret al.95 In this approach the CBS correla
tion energy is estimated by the formula

ECBS~X,Y!5
EXX32EYY3

X32Y3 , ~5!

in which EX and EY denote correlation energies obtain
with correlation-consistent basis sets of cardinal numberX
and Y. The extrapolated aug-cc-pVXZ MP2 energy incre-
ments are20.171 17Eh and 20.176 40Eh at theC3v and
D3h structures, respectively. This gives an MP2 correction

TABLE V. Contribution of core correlation~in cm21! to the inversion bar-
rier of SiH3

2.a

Basis MP2 MP3 MP4 CCSD CCSD~T!

CVTZ ~161! 157 1100 192 186 190
aug-CVTZ ~204! 195 1114 191
aug-CVQZ~370! 177

aSee footnote ‘‘a’’ of Table IV for details.
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l-

a-

nt,

s

-

ts
-
d

n-
-
l-
nt

f

21148 cm21 for the barrier. The higher-order corrections g
smaller as the level of calculation is increased. The MP`–
MP5 and the BD~TQ!–CCSDT corrections, where availabl
are small~,32 cm21!, suggesting that the results obtaine
should also be considered as well-converged with respec
then-particle expansion. In this respect it is also notewort
that CCSD~T!, for which results are available up to the au
cc-pV5Z basis, approximates the full CCSDT barrier
within a few cm21. Overall, of the four categories possib
for ~basis set, correlation! convergence identified in Ref. 9
for barrier heights, SiH3

2 appears to belong to the~good,
good! case, i.e., neither basis set variation past aug-cc-pV
nor correlation increments past MP4 are very important fo
proper theoretical treatment. Nevertheless, it should be n
that while the calculated correlation increments are quite
sensitive to the extension of the~augmented! basis, correc-
tions beyond MP2 are substantial. It is also notable that:~i!
the ~T! corrections to the CCSD barrier calculated with t
conventional and the R12 techniques are well converged
agree with each other very nicely;~ii ! there are substantia
variations ind@CCSD# using linear R12 theory, although R1
results obtained with the largest basis sets agree reason
well with the conventional CCSD results; and~iii ! the R12
calculations confirm our previous finding86 concerning the
importance of ICP correction on barrier height determin
tions.

Although preference might be given for the Series I
sults over Series II due to better correlation convergence,
chose simply to average the final barriers from the two
trapolated series. Therefore, our valence focal-point anal
results in a barrier of 8234 cm21. The error associated with
this value is perhaps as large as680 cm21, which reflects
~inter alia! differences of 43 cm21 or less between the Serie
I @DEe(CC)# and II @DEe(MP`)# extrapolated results.

B. Core correlation

In order to investigate core correlation, traditional ba
sets designed to describe bonding involving valence e
trons must be augmented with tight~high exponent! Gauss-
ian functions able to describe the core regi
adequately.45,89,90,96–100 Such basis sets, denoted as c
pCVXZ for first-row atoms,45,46 are not available for silicon
from Ref. 46. To construct basis sets of this type, we co
pletely uncontracted the cc-pVXZ and aug-cc-pVXZ basis
sets and then augmented them with tight (2d,2 f ) sets,
whose exponents were obtained by even-tempered exten
into the core with a geometric ratio of 3. To avoid confusio
the resulting basis sets are denoted here simply as CVXZ and
TABLE VI. Relativistic corrections~in cm21! to the inversion barrier of SiH3
2.a

Basis

RHF MP2 CCSD~T!

D1 D2 MV Sum D1 MV Sum D1 D2 MV Sum

cc-pVTZ ~76! 2255.5 @11.8# 1331.2 177.5 2254.3 1332.3 178.0 2248.6 @11.7# 1325.8 178.9
aug-cc-pVTZ~119! 2205.1 11.8 1268.6 165.3 2209.0 1275.7 166.7 2202.5 11.7 1268.0 167.2
aug-cc-pVQZ~222! 2189.1 @11.8# 1241.4 154.1 2195.0 1254.5 159.5

aObtained with all electrons correlated. All values are given in cm21. D15one-electron Darwin term; D25two-electron Darwin term; MV5one-electron
mass–velocity term.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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aug-CVXZ. The results at various levels of theory for th
contribution of core correlation to the inversion barrier
SiH3

2 are collected in Table V. It is clear that the core co
relation effect on the barrier is substantial, and our best e
mate of this correction is180620 cm21.

C. Relativistic correction

The relativistic correction to the electronic energy
SiH3

2 has been gauged by a first-order perturbation the
approach applied to the one-electron mass–velocity~MV !
and the one- and two-electron Darwin~D1 and D2, respec-
tively! terms.86,101–105The calculations have been perform
with the DIRCCR12package.41

The results obtained at the RHF, MP2, and CCSD~T!
levels of theory using basis sets of differing quality are giv
in Table VI. A few aspects of these data warrant comme
~i! Taking a power series expansion of the exact solution
the Dirac equation for H-like ions in terms ofZa, whereZ is
the atomic number anda is the fine-structure constant, re
sults in101,105 simple formulas for predicting relativistic en
ergy corrections for atoms. For the ground state of Si
total relativistic energy lowering is;0.60Eh . The absolute
value of the relativistic correction determined in this stu
for SiH3

2 is 20.601Eh , in nice agreement with the abov
estimate.~ii ! The mass–velocity~MV ! term corrects the ki-
netic energy of the system, and it is always negative. T
one-electron Darwin~D1! term corrects the Coulomb attrac
tion, and it always increases the total energy of the syst
In agreement with this physical basis, the explicitly co
puted MV and D1 corrections are both substantial, ab
2 Eh , and they have opposite sign, canceling out most
their effect. ~iii ! The two-electron Darwin~D2! correction
term serves to reduce the repulsion between electrons;
negative, and it is expected to be diminutive, since it depe
on the minuscule probability of two electrons being at t
same point in space. Calculations show that the D2 ene
lowering is indeed small for SiH3

2, ;0.022Eh . This two-
electron contribution is not only petite but also virtual
identical in the planar and pyramidal structures, making
effect on the barrier, similar to the case of H2O,86 almost
negligible. Nevertheless, the magnitude of the D2 correc
for the barrier is comparable to the electron correlation c
tribution to the relativistic effect.~iv! The overall relativistic
shift on the barrier is not acutely sensitive to the level
theory, but this dependence is more pronounced than
served for molecules containing only first-row species.90,86

No clear convergence of this correction term is appar
from the results of Table VI; however, it is clear that it
going down with the expansion of the basis. Our final e
mate from Table VI is that effects due to special relativ
increase the inversion barrier of the silyl anion by150
cm21.

D. Diagonal Born–Oppenheimer correction „DBOC…

Computation of the diagonal Born–Oppenheimer corr
tion ~DBOC! was performed at the Hartree–Fock lev
within the formalism of Handy, Yamaguchi, and Schaefer106

and by means of theBORN program operating within thePSI
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package.73 As expected,107 the DBOC correction is small; it
is 212.9 cm21 at the DZP RHF level. The DBOC correctio
to the barrier height is very similar to that found for NH3,
210.7 cm21.90

E. Net inversion barrier

The best estimate of the inversion barrier from the v
lence focal-point calculation is 8234680 cm21. Appending
the small correction terms due to core correlation, spe
relativity, and the DBOC, the final net inversion barrier
SiH3

2 becomes DEe5823418015021358351 cm21

~23.87 kcal mol21!. The error estimate one can attach to th
value is perhaps6100 cm21. Although this value is substan
tially smaller than previous theoretical predictions,25,29,32the
barrier is still very high, preventing observation of splitting
due to the double-well inversion potential.

V. CONCLUSIONS

The potential energy hypersurface and anharmonic
brational energy levels of the ground electronic state of Si3

2

have been investigated here in an unusual confluence
cutting-edge theoretical results:

~i! The first CCSD~T!-R12 quartic force field for a poly-
atomic molecule has been determined with a@Si/H#
5@16s11p6d5 f /7s5p4d# basis, providing a local
representation of the potential energy hypersurfa
near equilibrium which is very close to theab initio
limit and which supersedes previous theoretical fo
fields30 for the silyl anion.

~ii ! Vibrational perturbation theory~VPT! has been ex-
tended through sixth-order to compute a manifold
anharmonic vibrational energy levels. The compu
tions reveal a strongly convergent pattern past seco
order, despite known problems in treating anharmo
oscillators via VPTn. The treatment employed allow
for the stretch and bend states to be strongly and pr
erly coupled via both Darling–Dennison and Ferm
resonances. The final predictions for the vibration
fundamentals are $n1 ,n2 ,n3 ,v4%5$1841,844,
1821,938% cm21.

~iii ! A valence focal-point analysis of the inversion barri
of SiH3

2 has been completed, incorporating explic
computations with basis sets as large
@8s7p6d5 f 4g3h/7s6p5d4 f 3g#, with correlation
treatments as extensive as MP5, CCSDT, a
BD~TQ!, and with extrapolations to both the one- an
n-particle limits. The valenceab initio limit is pre-
dicted to be 8234 cm21.

~iv! Further research has been completed to quantify
comprehend small effects on barriers normally n
glected in theoretical work, namely, core correlatio
relativistic, and DBOC contributions, evaluated he
to be $80, 50,213% cm21, respectively. In particular,
further data are presented on the magnitude of
two-electron Darwin~D2! relativistic shift.

~v! The final prediction for the inversion barrier of SiH3
2

is 83516100 cm21. This value is lower and has
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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much smaller uncertainty than both the best empiri
estimate17 of 900062000 cm21 and the best previou
ab initio prediction of 8880 cm21.
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