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Abstract 

Several quartic force fields and a full sextic anharmonic force field for H,O have been determined from high-quality 
ab initio calculations, the highest at the aug-cc-pVQZ CCSD(T) level of theory. These force fields have been used to 
determine vibrational excited state band origins up to 15 000 cm - ’ above the zero-point level, using both a 
perturbation-resonance approach and a variational approach. An optimised quartic force field has been obtained by 
least squares refinement of our best ab initio results to fit the observed overtone levels of 5 symmetrically substituted 
isotopomers of water (Hi60, Hi70, HisO, D,O, and T,O) with an rms error of less than 10 cm-‘, using the 
perturbation-resonance model for the vibrational calculation. Predicate least squares refinement was used to provide 
a loose constraint of the refined force field to the ab initio results. The results obtained prove the viability of the 
perturbation-resonance model for use in larger molecular systems and also highlight some of its weaknesses. 0 1997 
Elsevier Science B.V. 
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1. Preview 

Theoretical, first-principles determination of the 
vibrational spectra of a polyatomic molecule re- 
quires a knowledge of the form of the potential 
energy surface (PES). The most viable approach 
to the description of the PES of a polyatomic 
molecule involves the determination of the anhar- 
manic (usually quartic) force field, defined as the 
coefficients in a Taylor-series expansion of the 
PES around a reference geometry, usually taken 
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as an equilibrium position. Such force fields are 
exceptionally well suited for perturbational treat- 
ments allowing determination of the required 
properties of the molecular system under study, 
and can also be employed in variational treat- 
ments. 

Prediction of harmonic and anharmonic force 
fields by the methods of molecular electronic 
structure theory has received much attention in 
recent years, mainly due to the systematic devel- 
opment of analytic methods for the evaluation of 
derivatives of the molecular electronic energy with 
respect to nuclear coordinates, which was initiated 
in 1969 by the formulation and implementation of 
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T;1hle I 
Species for which full anharmonic (at least quartic) force fields have been determined by methods of ah initio quantum chemistry,’ 

,3-atomic il-atomic 5-atomic 5 - -atomic 

BC‘N, BNC, B,C, Be,. 
&HZ, BrNO, CFI. 
c-HI. co,, cs,, c,. 
Ca3. CICN, CINC. 
GINO. FCN, FNC, 
FHCI-, FNO, FSN. 
F20. HCN. HCO, 
HCP, HCO+, HNC, 
HNO, HO,, HOC’. 
HOBr, HOCI, HOF, 
H20, H2S, H,Te, IHI-, 
KrF,, NF’, NH,, 
NOBr. NOT. NO,, 
N,O. OCS, O,, P,O, 
XeF, 

BH,, Be,, C,H2. 
C,HF, C2F2, C,, Ca,, 
HNCO. H2CN, 
H,CO, HJS, H,N,, 
H,O,, Mg,, NH,. NF,> 
PH,F, PH&I, PH,Br, 
PHJ, P,, SiH, 

CH,. CF,NH. 
CHCIF,. CHF,. 
CH,CIF, CH,F,. 
C,H,, CICO,H. 
H&CO. NH:, 
SiH,Br, XeF, 

C?H,, C,H,O. 
C,H; +. c’,,H,, 
HCON H , 

a Species for which full sextic force fields have been reported are indicated with bold letters. 

analytic forces for self-consistent-field Hartree- 
Fock (SCF) wave functions [l]. Following some 
pioneering works [2- 111, the first systematic stud- 
ies of vibrational anharmonicity and vibration- 
rotation interaction by SCF higher-derivative and 
electron correlation methods for asymmetric top 
[12] and linear [13] molecules still awaited the end 
of the 1980s. These studies complement the exten- 
sive literature on the experimental (sometimes 
called empirical) determination of anharmonic 
force fields, for which excellent reviews have been 
available for decades [14- 171. 

Determination of harmonic and anharmonic 
molecular force fields by methods of molecular 
electronic structure theory has now become one of 
the most successful applications of computational 
quantum chemistry. In Table 1 those species are 
indicated (without references to the original publi- 
cations) for which full ab initio force fields have 
been determined, at least at the SCF level of 
theory and at least up to quartic force constants. 
The two molecules, CO, and N,O, for which full 
sextic force field predictions have been reported 
[18,19] are indicated in this table with bold letters. 

All previous ab initio investigations of anhar- 
manic force fields of small and medium-sized 
polyatomic molecules [2-13,18-271 lead to the 
following conclusions about the overall precision 

of theoretically determined anharmonic force 
fields: 

(a) The contribution of electron correlation to 
the PES can usually be fit with low-order polyno- 
mials. Therefore, it is difficult to obtain high 
quality results for the calculated equilibrium ge- 
ometry, and also (but to a lesser extent) for the 
calculated quadratic force field. On the other 
hand, most calculated cubic and quartic force 
constants show only small variation with respect 
to basis set extension and treatment of electron 
correlation, and even results obtained at the SCF 
level seem to be quite reliable for these force 
constants. If the reference geometry chosen is 
correct, particularly accurate cubic and quartic 
force constants are obtained if methods incorpo- 
rating a large portion of the electron correlation 
energy with extended basis sets are employed. 

(b) If the calculated force constants are ob- 
tained at the corresponding optimized geometry, 
then a substantial part of the discrepancy between 
calculated and experimental force constants 
comes from the differences in the underlying ref- 
erence structures. For semi-rigid molecules, shift- 
ing the theoretical reference geometry close to the 
true equilibrium geometry results in force con- 
stants which are usually in dramatically better 
agreement with their experimental counterparts. 
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(c) Some of the higher-order force constants 
determined experimentally (especially the quintic 
and sextic constants) are phenomenological in 
nature, i.e. they do not directly correspond to the 
associated derivatives of the PES but are rather to 
be seen as fitting constants that allow for a num- 
ber of small model errors. 

Based on the analysis of diatomic and triatomic 
paradigms [20-221, the following points need to 
be further emphasised about the choice of the 
reference geometry for the ab initio prediction of 
harmonic and anharmonic force fields: 

(a) The molecular potential energy is com- 
prised of two sizeable terms which happen to be 
of similar magnitude and opposite in sign, viz. 
electronic (E,) and nuclear-nuclear repulsion 
( V,) contributions. The theoretical prediction of 
force constants becomes a rather unbalanced pro- 
cedure vis-a-vis cancellation of errors, because the 
V, contribution and its derivatives can be calcu- 
lated exactly while the E, contributions can only 
be determined approximately. 

(b) The E, and V, contributions to the forces 
(linear force constants) and the quadratic force 
constants nearly cancel each other, but for the 
higher-order force constants the contributions of 
the derivatives of V, become increasingly domi- 
nant. In particular, higher-order bond stretching 
derivatives depend strongly on nuclear-nuclear re- 
pulsions and hence on the reference geometry at 
which they are evaluated. The fact that the ap- 
proximate E, derivatives make smaller and 
smaller contribution to force constants of higher 
and higher order means that the anharmonic force 
constants can be calculated to greater precision 
than the geometries or the quadratic force fields. 

(c) For small reference bond length variations 
(&), it can be shown [23] that the percentage 
change (p,) in the predicted harmonic frequency 
at a given level of theory is approximately 50~ 6r, 
where p is the ratio of the cubic to quadratic force 
constant near equilibrium. For most simple 
molecules p E [ - 1, - 81 A - ’ , and thus even a 
small 6r z 0.002 A error gives rise to p, % - 
0.7%. Choice of the reference geometry may thus 
have pronounced effect (ca. 10 s of cm-‘) on the 
calculated harmonic and anharmonic wavenum- 
bers. 

In the determination of the anharmonic force 
field of the water molecule, the results of which 
are presented below, we have tried to incorporate 
some of the lessons to be learned from this discus- 
sion 

2. Introduction 

The water molecule is an asymmetric top tri- 
atomic molecule for which many attempts, of 
varying sophistication, have been made to deter- 
mine the anharmonic force field corresponding to 
its electronic ground state. 

The earliest experimental attempts were based 
on a study from 1956 by Benedict, Gailar, and 
Plyler [28], who analysed a large number of vibra- 
tional transitions for H,O, HDO, and D,O, re- 
porting harmonic wavenumbers (0,. 
anharmonicity constants x,,?, and vibration-rota- 
tion interaction constants c1,, D, etc, using the 
customary Dunham expansion [29] in powers of 
the vibrational quantum numbers v, and rota- 
tional operators J,, Jv, JZ. The o,, x,, and CI,. 
constants are the so-called ‘spectroscopic con- 
stants’, and early anharmonic force field calcula- 
tions were performed by first fitting experimental 
data to obtain the spectroscopic constants for 
each isotopomer, and second finding a force field 
to reproduce the spectroscopic constants, by least 
squares refinement or by some other method. This 
is the method known as second-order perturba- 
tion theory (VPT2). 

Kuchitsu and Morino [30] derived a quartic 
force field for water based on this method, but 
failed to treat resonances properly. Later Pariseau 
[31], as well as Smith and Overend [32], made 
further attempts to determine a quartic force field, 
and included both cubic (Fermi-type) and quartic 
(Darling-Dennison-type) resonances for the first 
time. Also using this approach, Hoy, Mills, and 
Strey [33], in an influential paper, derived an 
(incomplete) quartic force field for water by fitting 
the spectroscopic constants determined by BGP. 
This force field was the starting point for many 
later studies using more sophisticated models to 
calculate the vibrational spectrum. Hoy and 
Bunker [34] used a non-rigid bender model to 



calculate the energy levels, and this was later 
developed and extended by Bunker and co-workers 
[35], culminating in the work by Jensen [36a] using 
his Morse oscillator rigid bender internal dynamics 
(MORBID) [36b] model. A number of sophisti- 
cated variational studies have been performed for 
water [37--451. Carter and Handy [41] derived a full 
quartic force field using the HMS field as a starting 
point. Halonen and Carrington [42b] utilized 
Morse oscillators to describe the stretching motion 
of water, and this work was later extended by 
Kauppi and Halonen [42c]. Choi and Light [44] 
performed accurate (nearly) variational calcula- 
tions employing a discrete variable representation 
(DVR) and determined a very large number of 
highly excited vibrational states of water. Polyan- 
ski et al. [45] determined an especially high-quality 
PES representation for the electronic ground state 
of Hi60 by fitting it to a large number of vibration 
and vibration-rotation term values. Most of these 
variational models employed a Hamiltonian ex- 
pressed directly in curvilinear internal coordinates, 
and derived anharmonic force fields expressed in 
curvilinear internal coordinates, with varying de- 
grees of completeness regarding the number of 
force constants included. 

As far as theoretical studies [2,7,10,12,46,47] are 
concerned, Shavitt et al. [46a,b] were probably the 
first to make an attempt to determine the force 
constants of water from ab initio energy calcula- 
tions. In 1979, Botschwina [2] determined 19 out of 
the 47 sextic force constants of water, mostly at the 
RHF level. Bartlett et al. [lo] obtained a full 
quartic force field at the CCSDT-1 level using a 
39-ST0 basis set. Schaefer et al. [l 1,121 also in- 
cluded water in their studies of vibrational anhar- 
manic effects; they considered the feasibility of 
using computational quantum chemistry to predict 
the wide variety of spectroscopic constants which 
characterise the vibration-rotation spectra of semi- 
rigid molecules. Recently Martin et al. [47] used the 
QCISD(T) electron correlation treatment with a 
number of basis sets to calculate the full quartic 
force field of water by a least-squares fit to a grid 
of calculated energy points. Thus, the anharmonic 
(quartic) force field of water seems to be well 
established both by theoretical and by experimen- 
tal treatments. 

There have been several motivations for our 
research. One was to check whether a simple 
perturbation-resonance approach, which can po- 
tentially be employed for considerably largei 
molecular systems, would be successful in calculat- 
ing high-lying vibrational overtones of water up to 
18 000 cm - ’ above the zero-point energy. The 
various isotopic relationships between the spectro- 
scopic constants are not necessarily fulfilled if they 
are obtained by a fitting procedure employed 
independently for each isotopomer. We have there- 
fore attempted to fit a quartic force field, expressed 
in curvilinear internal coordinates, directly to the 
observed vibrational band origins of several sym- 
metrically substituted isotopomers of water (Hi60, 
Hi70, HAsO, DzO, and T,O) using the perturba- 
tion-resonance model. We have obtained a force 
field representation of the PES which gives an 
accuracy of a few cm - ’ up to about I5 000 cm -- ’ 
above the ground state. We have also made full use 
of high quality ab initio calculations, both to 
provide a starting point for the least squares 
refinement to the observed data, and to ‘predicate’ 
the refinement, and provide a yardstick with which 
to compare our results. We plan to include rota- 
tional constants in this calculation in the near 
future. Since a system containing protons is neces- 
sarily a difficult example for perturbational calcu- 
lations due to the relatively large amplitude 
vibrations, the vibrational wavenumber errors for 
water obtained from this treatment should serve as 
an upper bound for the errors obtained for heavier 
systems. We also wanted to investigate what effect 
the quintic and sextic terms in the anharmonic 
force field of water have on the calculated vibra- 
tional levels. Since this question cannot be an- 
swered with perturbation formulas presently 
available, a set of variational calculations, based 
on the exclusive use of rectilinear dimensionless 
normal coordinates, have been performed using 
the so-called vibrational configuration interaction 
(CI) formalism [8]. These calculations allowed 
several useful observations about the numerical 
transformation of anharmonic force fields ex- 
pressed in curvilinear internal coordinates into 
rectilinear normal coordinate space and about the 
precision of the variational calculations based on 
these transformed force fields. 
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3. Ab initio determination of anharmonic force 
fields 

From group theoretical arguments we find that, . . 
m Its C’,, ground electronic state, the water 
molecule has two geometric variables, and four 
quadratic, six cubic, nine quartic, 12 quintic, and 
16 sextic force constants. Since analytical deriva- 
tives are available only for the lower order force 
constants, there is a technical difficulty to obtain 
the high-order derivatives (force constants) from 
low-order analytic data. 

stantially the possibilities of human error in their 
evaluation. For this reason and to conserve space 
the finite-difference formulas employed to calcu- 
late the quartic and sextic force fields of H,O 
presented in Tables 2 and 3 are not detailed here. 
It is only noted that single, double, and triple 
displacements of sizes n x 0.02 (A, rad) (n = 
0, 1,2, 3) along the {stretch, stretch, bend} inter- 
nal coordinates chosen were needed for the 
numerical determination of the force field. All 
energies and gradients computed have been con- 
verged to almost machine precision. 

3.1. Differentiation techniques 3.2. Computational details 

The two basic methods for determining deriva- 
tives of the PES numerically are least-squares 
fitting and the use of finite difference expressions 
based on collocation polynomials. An early re- 
view of these numerical techniques for the calcula- 
tion of theoretical force fields up to third order is 
provided in an article by Fogarasi and Pulay [48]. 
Pitfalls associated with least-squares procedures 
are emphasised there. Although the finite-differ- 
ence formulas seem to be less economical, the cost 
associated with deriving these formulas and ob- 
taining the necessary quantum chemical informa- 
tion to evaluate them is well justified by the 
superior numerical accuracy obtainable. Indeed, 
Table 1 of Allen and co-workers [13] shows how 
accurate finite difference formulas are by compar- 
ing the complete quartic force field of HCN calcu- 
lated from analytic third derivatives, with the 
same result calculated from analytic first deriva- 
tives and carefully selected finite difference formu- 
las. All the deviations observed are just a fraction 
of l%, and in most cases they are even compara- 
ble with the truncation errors associated with 
obtaining the quartic constants by finite differ- 
ences of analytic third derivatives. Sophisticated 
computer algebra packages, like Mathematics 
[49], used in this w&k, are exceptionally well 
suited to obtain the complicated finite-difference 
formulas. Furthermore, they may not only be 
used to determine the necessary formulas, but 
they may also be used to solve the resulting sets of 
simultaneous equations, giving directly the re- 
quired force constants and thus decreasing sub- 

The basis sets selected for this study are the 
augmented (aug) correlation-consistent (cc) aug- 
cc-pVTZ and aug-cc-pVQZ basis sets of Dunning 
and coworkers [50,51]. These basis sets were cho- 
sen as it was felt that the inclusion of diffuse 
functions on the 0 atom should result in higher 

Table 2 
Force constants for the electronic ground state of water ob- 
tained with the aug-cc-pVQZ basis set” 

Term SCF MP2 CCSD CCSD(T) 

0.1622 
-0.0162 

f” 8.606 

;I.: - 0.039 0.236 
g:, -59.11 0.765 

;::: - - 0.009 0.084 

;::: -0.533 -0.316 
f  lX3L - 0.694 

7’ m-11’ 369.8 -0.75 
f lll'l' 0.44 

7: rrr a -1.23 0.81 

;::“6”, -0.24 0.51 
0.72 

-1.011 

0.0085 0.0307 0.0075 
0.0011 -0.0017 0.0000 
8.506 8.455 8.437 

-0.135 - 0.087 - 0.098 
0.260 0.253 0.256 
0.690 0.713 0.706 

-58.27 -58.51 -58.51 
-0.074 - 0.046 -0.055 
-0.140 -0.100 -0.106 
-0.458 -0.519 -0.516 
-0.342 -0.314 -0.321 
-0.706 -0.718 -0.715 
362.7 362.9 362.6 
-0.44 -0.65 -0.61 

0.19 0.36 0.31 
-1.52 - 1.40 - 1.44 

0.97 0.81 0.80 
-0.25 -0.25 -0.25 

0.61 0.63 0.63 
0.78 0.77 0.78 

-0.571 - 0.645 -0.622 

a The reference geometry employed for all calculations corre- 
sponds to the best present estimate of the equilibrium geome- 
try of water, namely rOH = 0.95843 A and ~~~~ = 104.44”. 



Table i 
Force constants for the electronic ground state of water” 

rum Set I Set II Set III MFG” IMM’ cH” C‘H” 

-0.0031 0.0075 
0.00 096 0.0000 

8.493 
-0.089 

0.260 
0.697 

-58.9 
-0.092 
-0.100 
-0.502 
-0.296 
- 0.682 
365.3 
- 0.069 

0.180 
- 1.406 

0.384 
-0.163 

0.660 
0.805 

-0.334 
- 2429.1 

3.89 
2.66 
0.82 
0.86 

-2.86 
0.36 

- 1 .oo 
0.28 

- 1.66 
- 1.36 
-3.41 

16 855.6 
-56.1 
-20.7 
-44.3 
- 18.0 
-11.8 

- 2.0 
-20.5 

-7.6 
-4.0 
-6.6 
16.8 

-1.7 
-1.1 
-4.1 

- 18.3 

8.437 8.456 8.448 
-0.098 -0.115 -0.103 

0.256 0.277 0.261 
0.706 0.708 0.709 

-58.51 - 58.49 - 59.0 
- 0.055 -0.051 - 0.055 
-0.106 -0.101 -0.096 
-0.516 - 1.017 -0.492 
-0.321 - 0.497 -0.300 
-0.715 -0.831 -0.692 
362.6 366.0 375.1 
-0.61 -0.59 -0.635 

0.31 0.32 0.023 
-1.44 -1.45 - I .60 

0.80 - 1.45 0.193 
-0.25 -0.24 -0.379 

0.63 -0.36 0.577 
0.78 0.73 0.736 

- 0.622 -0.211 -0.660 

8.454 
-0.101 

0.219 
0.697 

- 59.4 
0.253 
0.40 

-0.40 
-0.23 
-0.88 
384 
-5 

0.6 

-1.4 
0.6 

-0.1 

8.454 
-0.101 

0.219 
0.696 

-58.2 
-0.8 

0.4 
-0.6 
-0.2 
-0.670 
367 

7 
0.6 

-9.7 
2.3 

- 1.5 
0.8 
1.8 

-0.38 

8.446 
-0.102 

0.243 
0.700 

-58.9 
-0.003 
-0.01 
-0.52 
-0.29 
- 0.672 
377 

-1 
-2268 

[-4.81 
7368 

[91 

.I4 

8.439 
-0.105 

0.306 
0.707 

-55.4 
-0.32 
-0.25 
-0.45 
-0.34 
-0.73 
306 

2.6 
1.9 

-6.1 
-3.2 
-0.95 

0.12 
0.9 

-0.24 

- 
a Units of the force constants are consistent with energy measured in aJ, distances in A, and angles in radian. The Set I and Set II 
force fields were obtained from aug-cc-pVTZ CCSD(T) and aug-cc-pVQZ CCSD(T) calculations, respectively. Set III contains a 
refined set of force constants (for details see text). b [47]. ’ [33]. d [41]. e Potential energy function (PEF) B of [2]. Values in brackets 
are taken from PEF A. f [36a]. 
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precision for the calculated constants, especially 
those involving the bending mode. Only the pure 
spherical components of the basis functions have 
been employed. Electronic wave functions have 
been determined in this study at several different 
levels: self-consistent-field restricted Hartree- 
Fock (SCF), [52-541 second-order Moller-Plesset 
[53-551, coupled-cluster singles and doubles 
(CCSD) [56,57], and the coupled-cluster singles 
and doubles level including a perturbative estima- 
tion of connected triples [58] [usually abbreviated 
as CCSD(T)]. Analytic geometric first derivatives 
have been determined at the CCSD(T) level em- 
ploying the aug-cc-pVTZ basis set. The program 
system ACES II [59] has been used for the ab 
initio calculations. No orbitals have been kept 
frozen during these calculations. All anharmonic 
force field transformations, least-square refine- 
ments, and the determination of spectroscopic 
constants have been performed with a newly de- 
veloped set of codes [60]. 

3.3. Anhurmonic force fields 

Anharmonic force fields for H,O, determined at 
various levels of ab initio theory as part of the 
present study, are reported in Tables -2 and 3 
along with some of the available theoretical and 
experimental anharmonic fields determined previ- 
ously. 

In Table 2 quartic force fields obtained in this 
study at the aug-cc-pVQZ SCF, MP2, CCSD, and 
CCSD(T) levels are presented. The reference ge- 
ometry chosen for these calculations, with 
r,(OH) = 0.95843 A and a,(HOH) = 104.44”, is 
believed to be very close to the true equilibrium 
geometry of free water. Furthermore, by perform- 
ing all calculations at the same reference geome- 
try, the direct and indirect effects [23] (in other 
words, changes related to improved description of 
the electronic structure and changes due princi- 
pally to the shift of the true reference geometry at 
the particular level of theory, respectively) of in- 
clusion of electron correlation into the calcula- 
tions of force constants can be separated, and 
attention can be focused on the genuine direct 
effects. The aug-ccpVQZ basis set is considered to 
be close to the basis set limit; it principally lacks 

only basis functions which would be adequate to 
describe core-core and core-valence correlation 
effects [23]. Therefore, the SCF results presented 
should be very close to the Hartree-Fock limit. 
Treatment of electron correlation offered by the 
CCSD(T) method, especially with an aug-cc- 
pVQZ basis set, is of very high quality; near 
full-configuration-interaction (FCI) results are ex- 
pected. Thus, the aug-cc-pVQZ CCSD(T) quartic 
force field should give a very good representation 
of the true electronic ground state PES of free 
water around the equilibrium structure. Break- 
down of the Born-Oppenheimer approximation, 
on which the concepts of geometry and the PES 
are based, and neglect of relativistic effects from 
the calculations, is expected to produce only mar- 
ginal changes in the force constants, unimportant 
even at the level of precision we seek. Therefore, 
almost all remaining errors in this force field 
should be assigned to core-core and core-valence 
correlation effects, not considered explicitly in this 
study. These have indeed been shown to be im- 
portant for the accurate prediction of geometries 
and quadratic force constants [23], although at 
higher orders their effects seem to be small. (Also, 
in the case of water, the two hydrogens have no 
core electrons, so the bending motion is expected 
to be influenced much less than the stretching 
modes). This imprecision of the quartic force field 
can easily be corrected by slight adjustment of the 
calculated force constants to reproduce the exper- 
imental vibrational band origins in a least-squares 
calculation (see below). In summary, the high 
quality of the SCF constants and the rapid con- 
vergence of most higher-order force constants to- 
ward the almost exact CCSD(T) values is clearly 
evident from Table 2. These results prove once 
again the considerable utility of SCF quadratic 
and especially higher-derivative force constants. 

It is evident from Table 3 that all the experi- 
mental quadratic and cubic force constants agree 
quite well with each other and with the calculated 
values. Variances among correlated level force 
fields seem to be acceptable. Most ab initio 
higher-order stretch-stretch coupling constants 
are small, usually orders of magnitude smaller 
than the diagonal stretching force constants. 
Thus, they could safely be neglected in an empiri- 
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cal fit, unless they become important due to their 
role in resonance interactions. The bending mode 
of H,O appears to be quite harmonic, at least up 
to 4 quanta. The diagonal bending constants in 
higher orders are rather small, as are the stretch- 
bend interaction constants. 

Among the quadratic constants only the mag- 
nitude off’” warrants discussion. All high-level 
theoretical calculations of both this and previous 
studies agree that its value is close to 0.26 aJ 
A ~- ’ rad - ‘, while results from empirical force 
field refinements range from 0.219 [33] to 0.306 
aJ A - ’ rad- ‘, clearly bracketing the theoretical 
value. 

All cubic force constants are predicted to be 
negative by all ab initio calculations, and also in 
most empirical refinements, including the first re- 
liable published quartic force field of water [32]. 
Therefore, the fact that f rrr’ and f rra have been 
predicted to be positive in some experimental 
force field refinements (e.g. Hoy, Mills, and Strey 
[33] obtained values of 0.253 (15) aJ Ad3 and 
0.404 (200) aJ A P-2 for these two constants) 
should be regarded as weaknesses in their calcu- 
lation rather than indications that there were 
problems in the ab initio calculations. It is also 
noteworthy that the cubic stretch-stretch interac- 
tion constant f”’ is determined to be much 
smaller in absolute magnitude in the ab initio 
calculations (around - 0.09 aJ A- 3, than in em- 
pirical refinements; for example, Carter and 
Handy [41] found a value of - 0.8 (3) aJ A-’ 
for this constant. Note, however, that our own 
least-squares refinements (vide infra) also 
changed the value off”” considerably. 

In the quartic part of the force field pro- 
nounced deviations exist for some of the con- 
stants. First of all, it is noteworthy how different 
the calculated f”““” constants are. This is proba- 
bly due not only to basis set effects but also to 
higher-order contamination (round-off) and trun- 
cation effects during their determination. 

No meaningful comparison is possible for the 
quintic and sextic force constants as the only 
previous values have been determined by 
Botschwina [2] at a rather low level of theory, 
and then only for a few of the constants. Never- 
theless, both sextic constants frrrrrr and ~~~~~~~~ 

determined by Botschwina appear to be unreli- 
able. 

Finally, it is interesting to note that the signs 
of the stretch-stretch coupling constants in 
higher order do not seem to follow any simple 
rule, while the signs of the quadratic and cubic 
constants can be rationalized using simple argu- 
ments [13-15,611. 

4. A perturbation-resonance approach 

As shown here, a perturbation-resonance ap- 
proach, i.e. an approach which employs the 
VPT2 formalism but takes into consideration all 
cubic and quartic resonances identified, is able to 
result in highly accurate vibrational levels for 
water even up to 15 000 cm - ’ above the zero- 
point level. 

4.1. Second-order vibrational perturbation theory 
(VPTZ) 

Second-order vibrational perturbation theory 
(VPT2) [12- 17,621 results in relatively simple for- 
mulas for the calculation of vibrational anhar- 
monicity corrections and vibrational energy 
levels. In this approach only the quartic part of 
the anharmonic force field enters the formulas. 
However, one has to consider different types of 
resonances between the normal modes. 

VPT2 results in an approximate effective 
Hamiltonian A which is diagonal in the vibra- 
tional quantum numbers. The diagonal elements 
of the effective vibrational Hamiltonian for an 
asymmetric top molecule are given by: 

ffu.lhc = C wr(vr + l/2) 
i- 

+ r$,y -%s(vr + 1 P)(v,* + 1 ia (1) 

where o, are the harmonic vibration wavenum- 
bers, x,, are the vibrational anharmonicities, v, 
and v, are the vibrational quantum numbers for 
the state 1, and higher-order terms do not enter 
the expansion at this level of approximation. The 
standard expressions for x, for an asymmetric 
top molecule are 
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and for r # s 

Here 

x(--o,+~,--k)(-~,--os+wk) (3) 

and the B; and crS quantities are rotational con- 
stants and Coriolis coupling constants, respec- 
tively, for the principal axes y = a, b, and c. Thus, 
the x, contain second-order contributions from 
the cubic force constants and first-order contribu- 
tions from the quartic force constants. 

If no resonances are present, the effective vibra- 
tional Hamiltonian r? has no off-diagonal matrix 
elements. The true Hamiltonian H does have off- 
diagonal matrix elements; for example the matrix 
elements of cubic and quartic anharmonic terms 
in the potential energy always have off-diagonal 
matrix elements. However, the second-order per- 
turbation treatment transforms the true Hamilto- 
nian H into an effective Hamiltonian E?, which 
has diagonal elements modified by the perturba- 
tion treatment but no off-diagonal elements. This 
VPT2 treatment will obviously fail if cross terms 
in H connect nearly degenerate vibrational states. 
In this case one talks about resonances. Cubic 
anharmonic resonances are generally known as 
Fermi resonances, and various quartic resonances 
are possible of which the most familiar examples 
are Darling-Dennison resonances. If either cubic 
or quartic vibrational resonances are present, it 
becomes necessary to abandon the perturbation 

treatment of those particular off-diagonal ele- 
ments, reintroduce the necessary off-diagonal ma- 
trix elements explicitly into fi (see below), and 
diagonalize the resulting blocks of the effective 
Hamiltonian. In the case of a cubic vibrational 
resonance the formulas given for X, break down. 
and terms containing a resonance denominator 
(e.g. 20.4. - w, in x,,) must be removed. The 
modified anharmonicity constants are then usu- 
ally denoted with an asterisk, x,*,. 

4.2. Resonance terms 

It is necessary to consider two types of vibra- 
tional resonance for water, which introduce off- 
diagonal elements into the effective vibrational 
Hamiltonian. The first one is a cubic (Fermi-type) 
resonance of the type 

(v,,v,,v,~fil~+, - l,v, + Lv,) 

=; fi5**2Cv1(v2 + 1X% +w2 (4) 

(e.g. vi, v2 = 1, 0). The second one is a quartic 
(Darling-Dennison-type) resonance, for which 
the matrix elements can be written as 

(v,,v,,v,~m+, - 2+~t2,v3 + 23) 

= +,,.,,m, + l)(v, + xv3 + l)(v, + W' (5) 

These expressions are based on the so-called 
harmonically coupled anharmonic oscillator 
(HCAO) approximation [63]. +,22 is a cubic force 
constant in dimensionless normal coordinates, 
and the quartic resonance constant K11.33 is given 
by F41 

K 11.33 = - :4 
,133-4qp )2+9111~1= 

13 12 c1),3 

+ 1 h124223w2 +:33 -- 

44w:,-co: 2w, 
(6) 

where wr3 = (wi + w,)/2. In all these expressions 
the numbering of the fundamental vibrations of 
water follows the standard convention [62], i.e. r, 
and v3 are quantum numbers for the symmetric 
A, and asymmetric B, stretching vibrations, re- 
spectively, and v2 is the quantum number for the 
A, symmetry bending motion. 



There are also Coriolis resonances which affect 
the rotational but not the vibrational energies, 
which are not been further considered here. 

Several numerical values have been published 
for #,22 of Hi60. Pariseau [31] found 14iz2] = 
302.1 cm ~ ‘, indicating, correctly, the great signifi- 
cance of the related cubic resonance interaction. 
Smith and Overend [32] obtained a much smaller 
value, 71.7 cm - ‘. Kuchitsu and Morino [30] and 
Hoy et al. [33] obtained 255.4 cm- ’ and 167.5 
cm -I, respectively. The MFG, Set I, and Set II 
force fields result in the following values for 1&2): 
313.5, 324.6, and 307.5 cm- ‘, respectively. These 
high-quality ab initio values are to be compared 
with 258.6 cm--‘, the value obtained after a least- 
squares refinement of the Set II quartic force field 
(for details see section 4.4). From the MFG, Set I, 
Set II and Set III force fields the following values 
can be determined for K, ,33: - 196. I, - 196.9, 
- 197.6, and - 193.1 cm-‘, respectively. The 
appropriate theoretical values of the resonance 
constants of water thus seem to be well estab- 
lished. The changes observed in the $iz2 and 
K 11.33 constants upon force field refinements obvi- 
ously allow for the compensation of small model 
errors. 

4.3. Spectroscopic constants 

While comparison of anharmonic force con- 
stants is possibly the most meaningful way to 
compare different force field representations of 
the PES of a molecule, it is more usual to com- 
pare the anharmonic force fields by their ability to 
predict/reproduce standard rovibrational spectro- 
scopic constants. Therefore, the harmonic fre- 
quencies w, and anharmonicity constants x,,, and 
the vibration-rotation interaction constants a,, 
are presented in Table 4 for five symmetrically 
substituted isotopomers of water. One has to re- 
alise that the spectroscopic constants depend 
strongly on the quadratic part of the force field 
which is perhaps least accurately determined by 
methods of molecular electronic structure theory. 
Therefore, both the aug-cc-pVQZ CCSD(T) (Set 
II) and the refined (Set III, see below) set of force 
constants have been used to determine the spec- 
troscopic constants. Agreement between theoreti- 

cal and experimental spectroscopic constants is as 
good as one should expect [7.9913.65]. The excel- 
lent agreement between the present ub initio and 
the experimentally determined s,.,, constants is due 
to the good reproduction of the observed vibra- 
tional level structure of all water isotopomers 
based on these surfaces (see sections 4.5 and 5.2 
below). Note, however, the considerable change in 
the value of x,’ upon refinement of the quartic 
force field. The theoretical x values, obtained 
from the MFG. Set II, and Set III force fields 
agree with each other very well. On the other 
hand, agreement between the theoretical and ex- 
perimental (empirical) SI constants is not as im- 
pressive as seen for the x,., constants. The detailed 
ab initio results of Allen et al. [12.13] showed 
much larger variations among the CI values ob- 
tained at different levels of theory than for the x 
values. This observation has been confirmed in 
the present study though not detailed in here. It is 
also concluded that ab initio values for the ix 
constants converge to their limiting values much 
more slowly. 

For molecules containing two equivalent bonds 
of the general formula XH,, the so-called x-K 
relations [64,66] relate some of the vibrational 
anharmonicity constants xij and the quartic reso- 
nance constant K1,,33 as follows: 

1 1 1 
xl1 = x33 = - = - = 

4 
x,~ 

4 
K11,33 -AT, 

2 

where x, is the anharmonicity constant of the 
equivalent diatomic XH molecule. These relations 
are based on an approximate model, but they 
provide a useful check on the calculations because 
it has been observed experimentally that they hold 
well for all the diatomic hydrides of the type XH,. 
As the appropriate entries of Table 4 testify, the 
interrelations presented in Eq. (7) hold very well 
for the directly determined ab initio spectroscopic 
constants. 

4.4. Least-squares refinements 

In attempts to refine theoretical anharmonic 
force fields, the most useful set of experimental 
data include measured fundamentals, overtones, 
and combination bands, or alternatively the vibra- 
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tional term values of all known vibrational states 
referred to the ground state, and also rotational 
constants of the individual vibrational levels. In 
this study only vibrational band origins have been 
employed, although we plan to extend our pro- 
gram to include rotational constants in due 
course. 

To refine the anharmonic force field, a large 
non-linear least-squares calculation has to be per- 
formed to give the best agreement between the 
observed and calculated data. The derivatives of 
each of the data (in our case, measured vibra- 
tional wavenumber term values Ai) are formed 
with respect to each of the force constants fj 
regarded as a one-dimensional vector array, to 
form the Jacobian 

Jij = (di,/~ff’, (8) 

The J, values form an n deep by p wide matrix 
J, where iz is the total number of data and p is the 
total number of force constants refined. In our 
program we calculate the Jacobian elements nu- 
merically by finite differences, using single-sided 
displacements of an appropriate magnitude. 

If all force constants are being refined simulta- 
neously, the differences between the observed and 
calculated data, ei = &(obs) - &(calc), and the 
derivatives J,., are calculated for each datum A,, 
and the corresponding contributions are added to 
the scalar sum of weighted squares of differences 
eTWe, to the p x 1 vector JTWe, and to the p x p 
matrix J’WJ, where in this work we have taken 
the weight matrix W to be diagonal. The normal 
equations are then formed as 

JT WJAf = JT We (9) 

and the p x 1 vector of corrections to the force 
constants is obtained by inverting the matrix 
JTWJ followed by a matrix-vector multiplica- 
tion: 

Af= (JTWJ)-‘(JTWe) (10) 

Even when data on a number of isotopomers 
are included in the fit it may well be that a 
simultaneous refinement of all force constants 
gives an ill-conditioned problem, which results in 
numerical difficulties in the inversion of the ma- 
trix JT WJ. To make full use of the results of our 

ab initio calculations in which we have a lot ot‘ 
confidence and to overcome possible convergence 
problems, we have made use of the method 01 
‘predicate observations’. originally described by 
Bartell [67]. We do this by treating the ab initio 
values of the force constants as additional data. 
which are added to the experimental data, and arc 
given uncertainties g, and hence weights IT, = 1,’ 
crf that reflect our confidence in the quantum 
chemical calculation. This allows us to use the 
complete set of anharmonic force constants as 
refining parameters without risk of ill-condition- 
ing, because we can always constrain individual 
force constants by predicating them with a small 
uncertainty if this should prove necessary to make 
the least squares refinement stable. 

The Set III force field of Table 3 was obtained 
by the use of the just described predicate least- 
squares approach. Success of a predicate least- 
squares refinement of a high-quality ab initio 
quartic force field, as is the case in this study, rests 
basically upon the choice of the relative uncertain- 
ties (weights) of the force constants and the ob- 
servables. Many different choices have been 
explored during the course of this work. With 
reasonable weights only relatively small variations 
in the values of the refined force constants were 
observed. Furthermore, the final values of most 
(including all important) force constants did not 
prove to be too sensitive to the choice of the 
original force field (MFG, Set I, or Set II) and, 
just as importantly, force constants of all order 
could be refined simultaneously. The following 
force field elements deviated the most from their 
original, calculated values if the refinement condi- 
tions allowed: f “‘, f rr’X, f “‘, f rrr’a, f rr’7z. and f xn5(K. 
At the end, the following choices were made for 
the refinement whose results are reported in the 
different tables: (a) all the elements of the Set II 
force field are used as predicate values to comple- 
ment the observed band origins; (b) the diagonal 
stretching and bending force constants were given 
an uncertainty of 0.25% of their original value; 
and (c) all other force constants were given an 
uncertainty of 1% of their original value. Such 
weights attached to the anharmonic force field 
elements proved to be broadly consistent with the 
following uncertainties employed for the experi- 
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mental vibrational band origins: 0.1 cm - l for the 
P = 1 and P = 2 levels, 0.25 cm- ’ for P = 3, 4, 
1.0 cm-’ for P= 5, 6, and 2.5 cm-’ for P= 7 
and 8 (for the definition of the polyad quantum 
number P see Eq. (11) below). With this and most 
other choices of the weights the refinement could 
be considered converged after the second step, all 
further steps made only marginal adjustments of 
the force constants. It is clear from comparison of 
the Set II and Set III force fields of Table 3 that 
the Set II field is rather similar to the refined Set 
III field although the latter reproduces the experi- 
mental vibrational band origins with an average 
error considerably smaller than the former field. 

4.5. Vibrational levels 

Because of the resonances present in water be- 
tween certain normal modes, the most meaningful 
way to describe the vibrational spectrum of water 
in a perturbation-resonance approach is through 
the eigenvalues of a series of resonance polyad 
matrices characterised by the polyad quantum 
number P defined as 

P = 21’, + 1’2 + 215 (11) 

Both the Fermi resonance and the Darling- 
Dennison resonance described earlier fall within 
the resonance blocks defined by the quantum 
number P, thus giving rise to a mixing of the basis 
functions described by the same value of P. The 
Hamiltonian is thus represented as a block-diago- 
nal matrix, with blocks of increasing dimension as 
we go up in energy. 

The vibrational levels calculated from some of 
the quartic force fields determined as part of this 
study are collected in Table 5. It is immediately 
clear that the MFG and the Set II force fields 
produce similar vibrational levels, deviation be- 
tween the two sets of vibrational levels is seldomly 
larger than 15 cm -I, it is typically below 5 cm-‘. 
The overall agreement between the calculated vi- 
brational levels and the experimental band origins 
is excellent. Without any adjustment of the quar- 
tic force field elements, the mean error of the 
fundamentals is only about 6 cm-‘. As usual, 
most of the discrepancy comes from the harmonic 
and not the anharmonic part of the force fields. 

Inclusion of core-valence correlation during the 
theoretical calculation of the force field [23,68] 
would decrease the remaining errors. The some- 
times relatively large, 20-40 cm-’ error of the 
calculated vibrational overtone levels mostly de- 
creases to a few wavenumbers upon refinement of 
the force field for levels below some 12 000 cm -- I. 
Comparison of theoretical vibrational levels deter- 
mined from the refined, Set III, force field and 
experiment shows the considerable apparent pre- 
cision of the underlying quartic force field. 

The barrier for linearization for H-O-H 
configurations is rather low, around 11200 cm ~~ ’ 
This means that (a) energy spacings between con- 
secutive ‘pure’ bending states decrease from 
around 1550 to 1100 cm - ’ as 1~~ increases from 2 
to 6, complicating the resonance patterns 
throughout the energy levels; and (b) since the 
simple quartic expansion of the potential does not 
take into account the true symmetry of the bend- 
ing motion of water, it cannot be expected that 
energy level calculations, based on perturbation 
theory and on this potential, will yield reasonable 
highly excited bending states. Indeed, the uncor- 
rected Set II quartic force field reproduces the first 
four experimentally measured pure bending levels 
with an average error of only 2.6 cm - ’ (the 
average error is 4.0 cm-’ for the MFG force 
field), but for the (0 5 0) level the calculated 
value is larger than the experimental one by 22 
cm-‘, indicating a fast breakdown of the simple 
perturbation approach above v2 = 4, i.e. above 
about half of the barrier height. Furthermore. 
spacings of the bending progression (0 1~~ 0) de- 
creases constantly in the present calculations. 
while in the more detailed variational calculations 
of Choi and Light [44], where the potential is 
corrected to have the proper bending behavior, it 
is shown to go through a minimum around V, = 9, 
after which it increases again. 

5. A variational approach 

While historically perturbation theory was used 
first, in recent decades much effort has been 
devoted toward the variational determination of 
vibrational energy levels of polyatomic molecules. 



Ta
bl

e 
5 

Ca
lcu

lat
ed

 
an

d 
ob

se
rve

d 
vib

ra
tio

na
l 

ter
m

 
va

lue
s 

(cm
- 

‘) 
for

 
wa

ter
” 

PI
S 

Hi
60

 
Hi

’0
 

H;
*O

 
Di

e0
 

T1
60

 
2 

1 2 B2
 

3 B2
 

4 4 5 B2
 

6 B2
 

7 B2
 

MF
G 

[4
7]

 
Se

t 
II 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

15
98

.0
 

15
99

.2
 

15
95

.9
 

31
50

.0
 

31
51

.9
 

31
50

.2
 

36
65

.1
 

36
62

.9
 

36
57

.7
 

37
50

.8
 

37
47

.0
 

37
54

.6
 

46
60

.0
 

46
62

.4
 

46
65

.0
 

52
67

.1
 

52
64

.7
 

52
39

.7
 

53
28

.3
 

53
26

.2
 

53
33

.9
 

61
30

.7
 

61
32

.7
 

61
41

.7
 

68
11

.1
 

68
08

.6
 

67
74

.1
 

72
03

.4
 

71
97

.7
 

71
90

.8
 

74
49

.7
 

74
43

.5
 

74
48

.9
 

68
55

.8
 

68
54

.9
 

68
68

.7
 

72
53

.9
 

72
47

.1
 

72
52

.9
 

75
63

.0
 

75
64

.2
 

75
81

.3
 

83
10

.5
 

83
07

.4
 

82
66

.5
 

88
05

.2
 

87
98

.3
 

87
61

.6
 

90
15

.9
 

90
11

.1
 

90
11

.4
 

83
41

.2
 

83
41

.1
 

83
63

.2
 

88
39

.8
 

88
33

.2
 

88
22

.0
 

89
57

.8
 

89
57

.6
 

89
84

.3
 

97
68

.2
 

97
64

.1
 

97
19

.2
 

10
 3

23
.7

 
10

 3
16

.7
 

10
 2

73
.8

 
10

 5
21

.9
 

10
 5

24
.1

 
IO

 5
25

.4
 

10
 5

92
.6

 
10

 5
81

.7
 

10
 5

75
.1

 
10

 9
12

.8
 

10
 9

05
.1

 
10

 8
99

.9
 

97
86

.9
 

97
87

.0
 

98
19

.3
 

10
 3

50
.8

 
10

 3
44

.5
 

10
 3

33
.3

 
10

 6
09

.1
 

10
 5

97
.6

 
10

 5
99

.0
 

11
 0

36
.1

 
11

 0
26

.4
 

11
 0

32
.1

 
10

 3
15

.9
 

10
 3

13
.6

 
10

 3
51

.3
 

11
 

18
6.

4 
11

 
18

0.
7 

11
 

13
3.

8 
11

 8
00

.6
 

11
 7

93
.3

 
11

 7
42

.9
 

11
99

9.
3 

11
 9

95
.5

 
11

 9
99

.5
 

12
 1

94
.4

 
12

 1
82

.0
 

12
 

13
9.

4 
12

 5
06

.0
 

12
 4

96
.9

 
12

 4
54

.2
 

11
 1

94
.2

 
11

 1
94

.0
 

11
 2

38
.1

 
11

 8
22

.6
 

11
 8

16
.2

 
11

 8
03

.2
 

12
 2

03
.3

 
12

 1
91

.2
 

12
 1

69
.3

 
12

 5
80

.4
 

12
 5

72
.6

 
12

 5
77

.9
 

1 5
94

.7
b 

31
51

.6
b 

36
57

.1
b 

37
55

.9
b 

46
66

.S
b 

52
35

.0
b 

53
31

.2
b 

61
34

.0
b 

67
75

.1
 

b 
72

01
.5

b 
74

45
.1

b 
68

71
.5

b 
72

49
.S

b 
75

42
.4

’ 
82

74
.0

b 
87

61
 

.6
b 

9O
OO

.lb
 

83
73

.9
b 

88
07

.0
b 

- - 

10
 2

84
.4

b 
10

 5
24

.3
b 

10
 5

99
.7

b 
10

 8
68

.9
b 

98
33

.6
b 

10
 3

28
.7

b 
10

 6
13

.4
b 

11
 0

32
.4

b 

- - - 

12
 

13
9.

2b
 

12
 4

07
.6

b 
- 

11
 8

13
.2

b 
12

 
15

1.
3b

 
12

 5
65

.0
b 

15
92

.5
 

15
91

.3
b 

15
89

.4
 

31
43

.6
 

31
45

.0
b 

31
37

.7
 

36
53

.7
 

36
53

.2
b 

36
50

.1
 

37
47

.1
 

37
48

.3
b 

37
40

.3
 

46
55

.4
 

46
46

.9
 

52
32

.2
 

52
27

.S
b 

52
25

.5
 

53
22

.9
 

53
20

.3
b 

53
13

.1
 

61
29

.4
 

61
18

.4
 

67
63

.5
 

67
54

.0
 

71
82

.1
 

71
74

.3
 

74
35

.4
 

74
23

.4
 

68
54

.5
 

68
41

.9
 

72
41

.7
 

72
38

.7
b 

72
31

.7
 

75
66

.4
 

75
53

.1
 

82
53

.0
 

82
41

 
.O

 
87

49
.1

 
87

38
.1

 
89

94
.5

 
89

79
.4

 
83

46
.2

 
83

31
.0

 
88

07
.1

 
87

93
.9

 
89

67
.0

 
89

51
.6

 
97

03
.1

 
96

88
.8

 
10

 2
58

.5
 

10
 2

44
.8

 
10

 5
05

.6
 

10
 4

87
.9

 
10

 5
60

.8
 

10
 5

48
.1

 
10

 8
84

.3
 

10
 8

70
.5

 
97

99
.6

 
97

82
.0

 
10

 3
15

.6
 

10
 2

99
.8

 
10

 5
83

.5
 

10
 5

69
.7

 
11

 0
12

.2
 

10
 9

94
.7

 
10

 3
31

.8
 

10
 3

14
.4

 
11

 1
15

.2
 

11
 0

98
.7

 
11

 7
24

.8
 

11
 7

08
.7

 
11

 9
76

.7
 

11
 9

56
.4

 
12

 1
21

.3
 

12
 

10
5.

3 
12

 4
35

.0
 

12
 4

18
.0

 
11

 2
15

.8
 

11
 

19
5.

9 
11

 7
82

.7
 

11
 7

64
.5

 
12

 
14

3.
9 

12
 1

26
.6

 
12

 5
54

.5
 

12
 5

33
.8

 

15
88

.3
’ 

31
39

.1
b 

36
49

.7
b 

37
41

.6
b 

46
48

.5
b 

52
21

.3
b 

53
10

.5
b 

61
34

.1
b 

67
55

.5
b 

71
85

.9
b 

74
18

.7
b 

68
44

.6
b 

72
28

.9
b 

96
80

.8
’ 

10
 2

56
.6

’ 
10

 4
89

.4
’ 

10
 5

73
.9

’ 
10

 8
40

.0
’ 

97
95

.3
’ 

10
 2

95
.6

’ 
10

 5
85

.3
’ 

10
 9

93
.7

’ 

12
 3

12
.7

d 

11
 7

74
.P

 
12

 1
16

.8
d 

12
 5

20
.1

d 

11
79

.7
 

23
36

.2
 

26
71

.8
 

27
87

.2
 

34
70

.7
 

38
45

.7
 

39
58

.6
 

45
84

.2
 

49
93

.1
 

52
85

.7
 

55
32

.3
 

51
05

.5
 

53
76

.2
 

56
76

.9
 

61
17

.0
 

64
55

.0
 

66
95

.4
 

62
30

.0
 

65
43

.7
 

67
49

.6
 

72
18

.7
 

75
92

.9
 

78
28

.8
 

78
36

.3
 

80
79

.7
 

73
33

.0
 

76
80

.6
 

78
88

.5
 

82
24

.2
 

78
02

.4
 

82
99

.1
 

87
05

.8
 

89
46

.2
 

90
00

.2
 

92
40

.1
 

84
15

.3
 

87
93

.4
 

90
54

.9
 

93
78

.9
 

11
78

.4
 

23
36

.S
b 

26
71

.6
b 

27
87

.7
b .~
 

39
56

.2
 - 

52
91

.6
 

51
05

.4
 

53
74

.0
 

92
05

.9
’ 

99
6.

8 
19

76
.6

 
22

37
.1

 
23

66
.2

 
29

40
.4

 
32

30
.8

 
33

57
.3

 
38

88
.9

 
42

04
.9

 
44

35
.8

 
46

98
.4

 
43

30
.5

 
45

46
.3

 
48

22
.4

 
51

61
.9

 
54

27
.3

 
56

83
.9

 
52

87
.4

 
55

35
.7

 
57

41
.4

 
61

02
.6

 
63

95
.6

 
65

92
.3

 
66

50
.6

 
68

44
.6

 
62

28
.6

 
65

02
.7

 
66

14
.4

 
69

92
.7

 
66

46
.0

 
70

27
.9

 
73

45
.5

 
75

82
.5

 
76

01
 

.O
 

78
29

.3
 

71
54

.8
 

74
52

.0
 

76
64

.1
 

93
76

. 
I h

 
79

72
.5

 



Ta
bl

e 
5 

(c
on

tin
ue

d)
 

P/
S 

Hi
60

 
H”

0 2 
HA

*0
 

D1
60

 
2 

TA
CO

 

MF
G 

[4
7]

 
Se

t 
II 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

Se
t 

III
 

Ob
s. 

8 
11

 6
37

.5
 

11
 6

32
.5

 
11

 6
82

.7
 

12
 5

66
.3

 
12

 5
58

.5
 

12
 5

11
.0

 
13

 2
32

.3
 

13
 2

24
.6

 
13

 
17

0.
9 

13
 4

30
.6

 
13

 4
26

.2
 

13
 4

34
.0

 
13

 6
42

.9
 

13
 6

30
.1

 
13

 6
11

.7
 

13
 8

44
.9

 
13

 8
28

.7
 

13
 7

96
.3

 
14

 0
09

.1
 

13
 9

99
.6

 
13

 9
48

.0
 

14
 2

73
.6

 
14

 2
62

.2
 

14
 2

36
.4

 
14

 5
52

.5
 

14
 5

40
.5

 
14

 5
39

.1
 

BZ
 

12
 5

64
.2

 
12

 5
63

.1
 

12
 6

20
.3

 
13

 2
51

.6
 

13
 2

44
.7

 
13

 2
32

.9
 

13
 6

49
.3

 
13

 6
36

.6
 

13
 6

31
.9

 
13

 8
48

.2
 

13
 8

32
.2

 
13

 8
09

.1
 

14
 0

64
.3

 
14

 0
57

.7
 

14
 0

71
.4

 
14

 3
73

.0
 

14
 3

60
.8

 
14

 3
63

.8
 

13
 8

28
.3

b 
13

 9
10

.8
b 

14
22

1.
1b

 
14

 5
36

.9
b 

13
 6

52
.7

b 
13

 8
30

.9
b 

14
 0

66
.2

b 
14

 3
18

.8
’ 

11
 6

61
.1

 
11

 6
41

.8
 

88
35

.6
 

75
36

.5
 

12
 4

90
.2

 
12

 4
71

.7
 

93
58

.8
 

79
38

.1
 

13
 

15
0.

4 
13

 
13

2.
2 

97
95

.4
 

82
78

.3
 

13
 4

08
.6

 
13

 3
85

.9
 

10
 0

38
.7

 
85

32
.7

 
13

 5
91

.6
 

13
 5

73
.7

 
10

 1
25

.5
 

85
46

.1
 

13
 7

76
.6

 
13

 7
59

.1
 

IO
 2

96
.2

 
86

98
.9

 
13

 9
25

.9
 

13
 9

06
.3

 
10

 3
68

.6
 

87
89

.7
 

14
 2

17
.5

 
14

 2
00

.8
 

10
 5

65
.0

 
89

41
.0

 
14

 5
14

.6
 

14
 4

92
.8

 
10

 8
67

.3
 

92
50

.1
 

12
 5

95
.7

 
12

 5
73

.7
 

94
77

.3
 

80
66

.4
 

13
 2

09
.9

 
13

 
18

9.
4 

98
83

.6
 

83
84

.8
 

13
 6

10
.8

 
13

 5
92

.0
 

10
 1

77
.5

 
86

22
.8

 
13

 7
88

.4
 

13
 7

70
.1

 
10

 3
26

.1
 

87
51

.5
 

14
 0

45
.2

 
14

 0
21

.9
 

10
 5

06
.1

 
89

32
.3

 
14

 3
41

.2
 

14
 3

21
.2

 
IO

 7
22

.5
 

91
08

.8
 

a 
P 

de
no

te
s 

th
e 

po
lya

d 
qu

an
tu

m
 

nu
m

be
r 

(fo
r 

de
ta

ils
 

se
e 

tex
t), 

wh
ile

 
S 

th
e 

sy
m

m
etr

y 
(o

nly
 

th
e 

low
es

t 
ba

nd
 

wi
th

in 
a 

P 
su

bg
ro

up
 

be
lon

gin
g 

to
 

B,
 

is
 i

nd
ica

te
d 

by
 

th
e 

sy
m

bo
l 

B2
). 

b 
[3

6a
] 

’ 
[4

2b
]. 

’ 
L.

S.
 

Ro
th

m
an

, 
R.

R.
 

Ga
m

ac
he

, 
R.

H.
 

Ti
pp

in
g,

 
C.

P.
 

Ri
ns

lan
d,

 
M

.A
.H

. 
Sm

ith
, 

D.
C.

 
Be

nn
er

, 
V.

 
M

ala
thy

 
De

vi,
 

J.-
M

. 
Fl

au
d,

 
C.

 
Ca

m
y-P

ey
re

t, 
A.

 
Pe

rri
n,

 
A.

 
Go

ldm
an

, 
S.

T.
 

M
as

sie
, 

L.
R.

 
Br

ow
n, 

an
d 

R.
A.

 
To

th
. 

J.
 

Qu
an

tum
 

Sp
ec

tro
sc

. 
Ra

dia
t. 

Tr
an

sfe
r, 

48
 

(1
99

2)
 

46
9.

 
e 

J.-
P.

 
Ch

ev
illa

rd
, 

J.-
Y.

 
M

an
din

, 
J.-

M
. 

Fl
au

d,
 

an
d 

C.
 

Ca
m

y-P
ey

re
t, 

Ca
n. 

J.
 

Ph
ys

. 
65

 
(1

98
7)

 
77

7f
 

[4
5b

]. 



New variants of the traditional variational tech- 
nique [37]b[39] have successfully been employed for 
several tri- and tetra-atomic species [41,43,44,69- 
721. Suggestions for the improved determination of 
the appropriate kinetic and potential energy oper- 
ators in curvilinear internal coordinates, as well as 
new techniques for choosing compact basis sets 
made the procedure more appealing 1733771. Still, 
it is not seen how these techniques could be 
employed for the determination of highly excited 
vibrational states of molecules containing more 
than 5 atoms even in the distant future. 

A conceptually and technically simpler varia- 
tional technique, based on the exclusive use of 
dimensionless normal coordinates, has been sug- 
gested [8,78,79]. In the present study implementa- 
tion of this technique in ANHAR, the vibrational 
CI program of Pulay [8,80], has been employed. 
The purely vibrational Hamiltonian of this ap- 
proach is written as 

(12) 

where the ws are the harmonic frequencies, the qs 
are the dimensionless normal coordinates, the ps 
are the conjugate momenta, and the potential 
function is given as a power series expansion not 
restricted to quartic terms. An advantage of using 
normal coordinates is that the kinetic energy takes 
a diagonal form. Some of the disagreements 
between the perturbation-resonance and the varia- 
tional approaches, vide infra, may be due to the 
fact that the kinetic energy operator of Eq. (12), 
used in the variational calculations, is not the 
same as the one employed in the perturbation 
resonance approach. Because all symmetry-al- 
lowed off-diagonal anharmonic force constants 
appear in Vanh, the Hamiltonian is represented as 
a single giant matrix, block-diagonalised only as 
required by symmetry. It is worthwhile reiterating 
two key features [8] of the approach of Pulay: (1) 
to avoid the exponential increase of basis set size 
with increasing number of modes, an extensive 
configuration selection procedure is employed, 
analogous to that used in electronic structure 
theory. (2) Explicit formulation of the Hamilto- 
nian matrix is avoided, by a method similar to 
that used in the direct CI method of electronic 

structure theory. The desired eigenvalues and ei- 
genstates are determined iteratively using David- 
son’s matrix diagonalization method [8 I]. 

The nonlinear transformation of an anhar- 
manic force field expressed in curvilinear internal 
coordinate space into rectilinear normal coordi- 
nate space can be accomplished either analytically 
or numerically. Analytic transformation formulas, 
based on the so-called L-tensor formalism [33,82], 
transform an n th-order field in internal space into 
an &h-order field in normal coordinate space. 
Specific transformation formulas have been pub- 
lished [33] for the basic types of internal coordi- 
nates up to n = 4, but can be generalized to higher 
orders (A.G. Csaszar and I.M. Mills, unpublished 
results). A numerical transformation technique, 
based on orthogonal polynomials and least-square 
minimization, has been developed by Dunn [8]. In 
this approach a surface in normal coordinates is 
fitted to data generated from the curvilinear force 
constants. An advantage of the numerical trans- 
formation procedure over the analytic one is that 
the resulting normal coordinate surface may con- 
tain terms of arbitrary order (in fact, up to 8th 
order in the present program, VIBFIT [8]). This is 
important since higher than quartic terms in the 
potential are needed for accurate determination of 
higher vibrational levels when rectilinear coordi- 
nates are used in the variational procedure. In 
effect, the higher-order terms in the rectilinear 
normal coordinate representation of the potential 
compensate for the fact that molecular motion is 
curvilinear. 

Several force fields of Hi60 in dimensionless 
normal coordinates are reported in Table 6. They 
all have been obtained from the same theoretical 
anharmonic internal coordinate force field deter- 
mined at the aug-cc-pVTZ CCSD(T) level (Set I of 
Table 3). The Set A and Set B fields of Table 6 have 
been obtained from the complete internal coordi- 
nate quartic force field (Set I) by numerically 
transforming it into normal coordinate space in- 
cluding all quartic and sextic terms, respectively. 
The Set C and Set D fields have been obtained from 
the complete internal coordinate sextic field 



Table 6 

A.G. Cximir, I.M. Mills/Spectrochimica Acta Part A 53 (1997) 1101 -I 122 1117 

Elements of the anharmonic force field of Hi60 in dimensionless normal coordinates obtained from aug-cc-pVTZ CCSD(T) 
calculations” 

Term Exact Set A Set B Set C Set D 

3843.74 3844.50 
1641.18 1640.11 
3948.48 3949.19 
1821.86 1800.96 

78.05 70.30 
- 324.26 -355.18 
-263.76 - 262.42 
1822.10 1799.28 
269.18 264.29 
758.08 752.50 

62.12 59.40 
- 308.94 - 309.85 
- 162.61 - 157.84 
- 10.65 9.00 
161.96 755.16 
119.54 117.43 

-371.19 - 370.28 
165.43 758.90 

3843.79 3843.77 3843.79 
1641.19 1641.22 1641.19 
3948.52 3948.50 3948.52 
1822.09 1823.12 1821.90 

78.02 78.20 78.05 
- 324.54 - 323.85 - 324.26 
- 263.76 - 263.62 - 263.75 
1822.31 1823.31 1822.14 
269.19 269.40 269.19 
758.18 758.50 758.11 

62.10 62.09 62.12 
- 309.04 -309.12 - 308.95 
- 162.64 - 162.57 - 162.67 
- 10.41 - 10.97 - 10.65 
762.05 762.35 761.99 
119.54 119.61 119.54 

-372.26 -371.34 -371.20 
165.52 765.82 765.47 
-1.75 321.94 329.28 
-2.54 26.91 30.48 

- 185.99 - 185.99 - 179.07 
- 83.54 - 88.98 -91.14 
110.49 131.94 126.85 
188.32 113.91 116.73 
-2.43 334.56 342.29 
-4.55 334.17 342.01 

- 92.19 -87.24 - 85.40 
32.23 62.75 63.63 
16.52 53.36 54.54 

- 200.34 - 204.85 - 199.30 
-0.70 145.12 148.14 
- 1.12 16.84 18.93 

-49.50 - 106.70 - 106.00 
-27.35 - 60.48 -63.81 

96.41 93.19 89.52 
103.07 95.94 101.38 

-40.41 - 194.39 - 194.15 
-0.94 156.15 159.38 
- 1.56 156.71 160.01 
118.68 123.08 120.72 

-55.67 -111.64 -111.66 
-54.14 -112.63 - 112.67 
- 32.45 -43.12 -43.39 

9.38 33.98 34.62 
-2.33 161.05 163.04 

a Exact = complete quartic internal coordinate force field transformed using the analytic L-tensor formalism. Set A = complete 
internal coordinate quartic force field transformed into normal coordinate space up to quartic terms; Set B = complete internal 
coordinate quartic force field transformed into normal coordinate space up to sextic terms; Set C = complete internal coordinate 
sextic force field transformed into normal coordinate space up to sextic terms; Set D = complete internal coordinate sextic force field 
transformed into normal coordinate space up to octic terms, only terms up to sextic are reported. For the anharmonic force field 
in internal coordinates see the Set I results of Table 3. 
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Table 7 
Vibrational term values, in cm-‘, of non-rotating Hi60 determined from variational calculations” 

( I’, i . I,?) Exact Set A Set B Set c Set D 

(0 0 0) 4660.9 4665.4 4666.5 4653.8 4654. I 

(0 I 0) 1 S72.6 1575.9 1583.5 1577.1 1577.1 
(0 2 0) 3113.7 3119.3 3137.5 3115.9 31 lb.4 

(1 0 0) 3705.8 3716.3 3726.7 3671.2 3676.7 
(0 0 1) 3788.8 3798.3 3806.6 3750.4 3747.7 
(0 3 0) 4606.6 4612.7 4662.0 4607.6 4608.7 
il I 0) 5233.3 5254.9 5301.6 522X.9 5231.5 
(0 1 1) 5288.0 5305.5 5351.3 5281.7 5277.4 
(0 4 0) 6031.5 6036.4 6159.4 6044.8 6046.5 
(1 2 0) 6143.4 6777.0 6848.6 6748.5 6751.7 
- 

d For details see footnote to Table 6 and text. 

Oh>. 

1594.7 
3151.6 
3657. I 
3755.9 
4666.8 
5235.0 
5331.2 
6134.0 
6775. I 
- 

by numerically transforming it into normal coor- 
dinate space including all sextic and octic terms, 
respectively. The quartic normal coordinate con- 
stants labelled ‘exact’ in Table 6 have been ob- 
tained by the analytic transformation of the Set 
I quartic force field. 

Precision of the numerical transformation of 
the Set I quartic force field in internal coordi- 
nates into a quartic field in dimensionless nor- 
mal coordinates (Set A results of Table 6) does 
not seem to be satisfactory as deviations of 
some 20 cm-r from the ‘exact’ constants are 
observed for certain constants. Once terms up to 
sextic are included in the numerical transforma- 
tion procedure, the quartic part of the trans- 
formed force field reproduces the analytically 
obtained field to better than 0.1 cm- ’ on the 
average, as seen from comparison of the ‘exact’ 
and ‘Set B’ results. Although some quintic and 
sextic normal coordinate force constants are sig- 
nificantly different from zero in the Set B field, 
they become well determined only if a full sextic 
force field in internal coordinates is transformed 
into the normal coordinate space. It is expected 
that the quintic and sextic terms are converged 
only in the Set D field, i.e. when terms up to 
octic are included in the numerical transforma- 
tion procedure. The almost perfect agreement 
between the analytically transformed (‘exact’) 
and the Set D quartic force fields is also note- 
worthy. 

5.2. Vibrational levels 

While in Table 5 no particular labeling, except 
the one offered by the use of the polyad quantum 
number P, is given, in Table 7 the low-lying 
vibrational states of Hi60 are labelled according 
to the normal mode picture. Normal vs. local 
mode labeling and transitions between the two 
descriptions have been dealt with extensively for a 
number of molecules [42,62], among which water 
has become a paradigm. Therefore, no further 
discussion of the subject is offered in this paper. 

As observed repeatedly in previous studies of a 
similar nature [41,83], the same quartic force field 
as used in the VPT2 treatment (column ‘exact’ of 
Table 6) produces quite different vibrational levels 
variationally. Some deviations between the two 
treatments are as large as 60 cm - ’ for the low-ly- 
ing vibrational states of water. As a result, the 
excellent agreement between experiment- and the 
energy levels determined by the perturbation-reso- 
nance approach becomes rather poor. Therefore, 
at least for vibrations involving the hydrogen 
atom, quartic force fields expressed in dimension- 
less normal coordinates seem to be better suited 
for perturbation-resonance treatments than for 
variational ones. 

Some more important observations about the 
variational vibrational level calculations of this 
study: (a) The deviations up to 10 cm - ’ observed 
between the ‘exact’ and ‘Set A’ force field results 
move the Set A band origins even further away 
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from the experimental values. (b) The Set B-Set 
D fields yield considerably more precise theoreti- 
cal vibrational levels than the ‘pure’ quartic force 
fields (exact or Set A), i.e. inclusion of higher than 
quartic terms in the normal coordinate expansion 
of the potential seems to be clearly beneficial. (c) 
Vibrational levels calculated from the Set C and 
Set D force fields are, as expected, very similar. 
(d) Description of the pure bending vibrational 
levels is especially poor with all force fields except 
Set B, although the quartic internal coordinate 
force field, using the perturbation-resonance ap- 
proach, proved to be rather accurate in this re- 
spect. The good agreement obtained after 
expansion of the quartic aug-cc-pVTZ CCSD(T) 
force field in internal coordinates into a sextic 
field in normal coordinate space (the Set B results) 
is only fortuitious, as all other force field repre- 
sentations give considerably less precise but, when 
compared with each other, more consistent vibra- 
tional levels. (e) Comparison of the pure bending 
vibrational levels determined from the ‘exact’ and 
Set D force fields shows that proper inclusion of 
higher than quartic bending terms in the anhar- 
manic normal coordinate force field does not 
improve the description of the bending modes of 
water. (f) Inclusion of the quintic and sextic 
stretching force constants produces significant 
changes in the related vibrational levels; for exam- 
ple, comparison of the ‘exact’ and ‘Set D’ vibra- 
tional levels shows that v, and v3 change by - 29 
and -41 cm-‘, respectively. In both cases the 
fundamentals calculated from the sextic field (Set 
D) are in much better agreement with experiment 
than the fundamentals calculated from the quartic 
(‘exact’) field. 

6. Conclusions 

Several quartic force fields and a full sextic 
anharmonic force field for water have been deter- 
mined from high-quality ab initio calculations, the 
highest at the aug-cc-pVQZ CCSD(T) level of 
theory. All calculations have been performed at a 
fixed reference geometry (r,(OH) = 0.95843 A and 
a,(HOH) = 104.44”) taken from the literature and 
believed to be very close to the true equilibrium 

geometry of free water. With this choice evalua- 
tion of the quality of the force fields determined at 
different theoretical levels (SCF, MP2, CCSD, 
and CCSD(T) with basis sets of spdf and spdfg 
quality) is made easier as attention can be focused 
on the genuine direct correlation effects, i.e. on 
changes in the force field related to an improved 
description of the electronic structure. Previous 
experience suggests that almost all remaining er- 
rors in the aug-cc-pVQZ CCSD(T) force field 
should be assigned to core-core and core-valence 
correlation effects, not considered explicitly in this 
study. It is believed that elements of the aug-cc- 
pVQZ CCSD(T) force field of this study should 
be very close to the appropriate derivatives of the 
‘true’ PES of water. 

Two approaches have been utilized to calculate 
vibrational energy levels directly from the anhar- 
manic molecular force fields. In the first, so-called 
perturbation-resonance approach the diagonal el- 
ements of the vibrational Hamiltonian have been 
calculated from the standard formulas of VPT2 
theory, while the only off-diagonal elements were 
obtained from the consideration of two reso- 
nances: a cubic (Fermi-type) resonance and a 
quartic (Darling-Dennison-type) resonance. All 
spectroscopic constants and most lower-lying vi- 
brational energy levels calculated with this ap- 
proach are in good agreement with the available 
experimental (empirical) results, proving the high 
quality of the underlying anharmonic (quartic) 
force field and the viability of the perturbation- 
resonance approach at the same time. For exam- 
ple, the unadjusted aug-cc-pVQZ CCSD(T) force 
field predicts the vibrational fundamentals of 5 
symmetrically substituted isotopomers of water 
(H&O, H:,O, H&O, D,O, and T,O) with an aver- 
age error of less than 5 cm ~ ‘, and the first 4(2) 
pure bending levels of Hi60 (D20) with an aver- 
age error of only 2 cm - ’ . Agreement between the 
calculated and measured vibrational levels of wa- 
ter could even further be improved after a predi- 
cate least-squares refinement of the quartic force 
field based on the same perturbation-resonance 
approach. All available vibrational band origins 
up to 15 000 cm - ’ above the zero-point level of 
the same five isotopomers mentioned above have 
been included in the fitting procedure as experi- 



mental data. Keeping the geometry fixed, all quar- 
tic force field elements were refined simulta- 
neously while predicated toward their values 
obtained from the aug-cc-pVTZ CCSD(T) calcu- 
lations performed at the same geometry. The re- 
sulting force field reproduces the vibrational 
excited states considered with an rms error of less 
than 10 cm- ‘. It is believed that the refined force 
field predicts vibrational levels even somewhat 
further up the energy ladder with a similar preci- 
sion for all states but those in which the bending 
mode is highly excited. Since a system containing 
protons is necessarily a difficult example for per- 
turbational calculations due to the relatively large 
amplitude vibrations, the vibrational wavenumber 
errors for water obtained from this treatment 
should serve as an upper bound for the errors 
expected for heavier systems. 

It has been observed that a numerical transfor- 
mation procedure, based on orthogonal polyno- 
mials and a least-squares minimization and 
employed to transform a quartic force field ex- 
pressed in curvilinear internal coordinates into 
fields expressed in rectilinear dimensionless nor- 
mal coordinates, is able to reproduce the field 
obtained by an exact nonlinear transformation to 
better than 0.1 cm ~ ‘. Therefore, this numerical 
transformation scheme has been employed to 
transform the complete sextic internal coordinate 
force field of water, determined for the first time, 
to the space of dimensionless normal coordinates. 
These normal coordinate force fields have then 
been used in a variational CI procedure to calcu- 
late certain low-lying vibrational levels of Hi60. 
The results obtained indicate that (a) quartic force 
fields expressed in dimensionless normal coordi- 
nates seem to be better suited for perturbation- 
resonance treatments than for variational ones; 
(b) the stretching fundamentals calculated varia- 
tionally from the full sextic force field in normal 
coordinates are in considerably better agreement 
with experiment than the fundamentals calculated 
from the quartic part of the force field; and (c) 
difficulties arising from the use of rectilinear coor- 
dinates are especially pronounced for the bending 
levels. 
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