Conformers of Gaseous α-Alanine

Attila G. Császár

Department of Theoretical Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary Received: November 15, 1995[®]

Accurate geometries, relative energies, rotational and quartic centrifugal distortion constants, dipole moments, harmonic vibrational frequencies, and infrared intensities have been determined from ab initio calculations for 13 conformers, corresponding to minima on the potential energy surface, of the neutral form of the amino acid α -alanine. The theoretical relative energy predictions, even after zero-point vibrational energy corrections, differ significantly from the experimental lower limits deduced from millimeter wave spectra. Energetic and structural results indicate necessary model improvements for a gas-phase electron diffraction study of α -alanine. The structural results obtained support the molecular constants measured for two conformers of low relative energy. The accurate calculated rotational and quartic centrifugal distortion constants and vibrational frequency data for the other conformers should aid in identification of the conformers by rotational and vibrational spectroscopies, respectively.

Introduction

Amino acids exist as zwitterions in the crystalline state and in solution, stabilized by electrostatic, polarization, and Hbonding interactions with their environment.¹⁻⁴ In the gas phase, where these intermolecular interactions have no effect, amino acids exist in their neutral form.^{1,2} The conformational flexibility of free, neutral amino acids is now well established both experimentally⁵⁻¹⁴ and theoretically.¹⁵⁻³⁹ This freedom is due to the fact that rotamers of amino acids may form intramolecular H-bonds of different strength, while steric strain and repulsion of lone electron pairs have a destabilizing effect. The conformational changes, resulting from the balance of all these effects, are accompanied by rather small overall changes in the total energy of the system.

The interest in the shapes and spectra of the conformationally flexible free amino acids, the building blocks of peptides, the backbones of proteins, stems from at least three reasons: (a) the search for the origin and signs of life in cool interstellar space, which can be aided by careful laboratory investigations of the structures and the related signals of these biomolecules; (b) the desire to establish the intrinsic tautomeric and conformational energetics and the underlying potential energy surfaces and hypersurfaces of these species which probably determine these characteristics of polypeptides and proteins; and (c) to stimulate and to provide vital data for the development of better, more efficient and/or reliable computational methods, whether they are nonempirical (like correlated-level ab initio and density functional³⁹ techniques) or empirical (like molecular mechanics) in nature.

Only relatively few experimental studies have been published on the shapes and spectra of free amino acids. Investigations^{5–8} of the microwave (MW) and millimeter wave (MMW) spectra of glycine, H₂NCH₂COOH, the simplest amino acid, resulted in accurate rotational constants for the two conformers of lowest energy. The MMW spectrum of α -alanine has been identified and analyzed by Godfrey et al.,⁹ who determined rotational and quartic centrifugal distortion constants and dipole moments for two conformers corresponding to those identified previously for glycine. Godfrey et al.⁹ also estimated relative abundances of certain α -alanine conformers at the temperature of their experiment, about 530 K, and determined approximate lower limits for conformational energies relative to that of α -alanine I of \sim 800 cm⁻¹ for IIA, \sim 700 cm⁻¹ for IIIA, and \sim 1200 cm⁻¹ for VI (for numbering of the conformers adopted in this study see Figure 1). The heavy-atom positions of the most stable conformers of glycine and α -alanine have been determined by Iijima, Tanaka, and Onuma¹⁰ and by Iijima and Beagley,¹¹ respectively, using the technique of gas-phase electron diffraction (GED). As far as the structure of α -alanine is concerned, Iijima and Beagley¹¹ concluded, on the basis of model refinements assuming internal rotation only around the C-C bond, that "the vapour of α -alanine consists of one conformer with a high potential barrier around the C-C bond", and consequently carried out their structural refinement for only one conformer. This finding is in contrast to indications of recent MMW⁹ and ab initio^{16,34b} studies, which suggest the coexistence of several conformers at the temperature of the GED experiment (about 500 K). Further experimental studies by low-resolution photoelectron spectroscopy¹³ did not yield any conformational information about α -alanine. Even after an extensive search of the literature no experimental studies, but a matrix infrared study of proline,^{12a} on the shapes and spectra of free amino acids other than glycine and α -alanine have been found.

Although there have been a number of nonempirical theoretical studies¹⁵⁻³⁹ published on free amino acids, only a few of them are exhaustive and dependable. This is due partly to the size of these systems and partly to demonstrated problems^{16,18,19,27,31} with entry-level theoretical calculations on these species, including, most importantly, the inability of the restricted Hartree-Fock (RHF) level of theory to predict the relative energies of the N-H···O and O-H···N H-bonded conformers in these systems. Most theoretical studies have been published on glycine (for a list of studies published prior to 1992 see ref 18), and only a few studies are available for $\alpha\text{-alanine.}^{9,16,24,25,34}$ Furthermore, none of the latter studies, except the most recent ones, 16,25,34 included results from correlated-level (post-Hartree-Fock) calculations. In entry-level (4-21G RHF) ab initio calculations Schäfer and co-workers examined two α -alanine conformers of low relative energy^{24a,b} and the N-C-C=O torsional potential energy curve.^{24c} In an extensive study at the RHF level Godfrey et al.9 reported 6-31G** RHF relative energies and several molecular parameters of six conformers of α -alanine (conformers I, II, III, IV,

[®] Abstract published in Advance ACS Abstracts, February 1, 1996.

Figure 1. Conformers of α -alanine considered in this study and their atom numbering.

V, and VI of Godfrey et al.⁹ correspond to conformers I, IIA, **IIB**, **IIIA**, **IIIB**, and **VI**, respectively, of Figure 1). Császár¹⁶ reported limited 6-311++G** MP2 results for α -alanine I, IIA, IIIA, VI, and VII. In their detailed study Gronert and O'Hair^{34b} located 10 conformers of α -alanine and characterized them by 6-31G* RHF and MP2 calculations. Their numbering scheme is somewhat different from the one employed in this study; their conformers 1–10 correspond to I, IIA, IIIA, IIB, IVA, IVB, **IIIB**, **VA**, **VB**, and **VI**, respectively, of this study. Cao et al.²⁵ determined all 13 conformers investigated in this study; their conformers 1-13 correspond to I, IIB, IIA, IIIA, IIIB, IVA, IVB, VA, VB, VI, VII, VIIIA, and VIIIB. Some notable small basis ab initio RHF calculations have been performed by Schäfer and co-workers on larger amino acids, namely, on selected conformers of serine,^{20,21} cysteine,²² valine,²³ and threonine,²³ and by Sapse et al.35 on proline. Recently, Gronert and O'Hair34 reported results of medium-level RHF and MP2 calculations for 51 conformers of serine and 42 conformers of cysteine.

Computational Details

Theoretical computations performed in this study follow a strategy based on high-quality ab initio results obtained for glycine.¹⁸ This strategy takes advantage of the observation¹⁸ that in most cases higher order (MP3, MP4, MP ∞ , CCSD, and CCSD(T); definitions of these correlated-level ab initio methods are given below) contributions to the energy differences of the conformers of glycine either are small or seem to cancel out; thus, large basis set MP2 calculations should result in highly accurate relative energies.

Several basis sets have been selected for this study. Most of them contain both polarization and diffuse functions, as the need for including these functions in the basis set for calculations on hydrogen-bonded systems has long been recognized.⁴⁰ The smallest basis set employed is the 6-31G** basis.⁴¹ The 6-311++G** basis,⁴² used most often in this study, contains 181 contracted Gaussian functions (CGFs) for α -alanine. The

correlation-consistent, polarized-valence cc-pVTZ, aug-ccpVTZ, and cc-pVQZ basis sets of Dunning and co-workers^{43,44} have also been used in some calculations on α -alanine and cisand *trans*-formic acid. (Note that only the augmented (aug) basis set contains diffuse functions.) The cc-pVTZ and augcc-pVTZ basis sets contain 278 and 437 CGFs for α-alanine, respectively. The same extended basis set as used in a previous study on glycine¹⁸ (denoted here as 7s6p3d2f) has been employed in some single-point RHF and MP2 calculations. Its core part was constructed from the 13s8p primitives of Partridge⁴⁵ according to (6,3,1,1,1,1) and (4,1,1,1,1) schemes for the s and p functions, respectively, of the C, N, and O atoms and by a (6s/4s) contraction of the unscaled exponents of Huzinaga⁴⁶ for hydrogen and was augmented by three sets of d and two sets of f functions (3d2f) on C, N, and O atoms, by two sets of p and one set of d functions (2p1d) on hydrogens, and by one set of diffuse s and p functions on each atom, resulting in 436 CGFs for α -alanine. All polarization function exponents were taken from Dunning;43 all diffuse function exponents were chosen to be one-third of the lowest related s and p exponents. All d and f sets of all basis sets, except 6-31G**, where the six Cartesian d functions have been employed, included only the five and seven pure spherical harmonics, respectively.

Electronic wave functions were determined by the singleconfiguration, self-consistent-field, restricted Hartree-Fock (RHF) method,47-49 by second-, third-, and fourth-order Møller-Plesset⁵⁰ theory, i.e., MP2, MP3, and MP4(SDTQ), by coupled cluster (CC) methods including all single and double excitations (CCSD) and in cases, additionally, a perturbative correction for contributions from connected triple excitations (CCSD(T)),⁵¹⁻⁵⁴ and by a density functional (DFT) approach usually abbreviated as B3LYP.55 Extrapolation of the perturbation series to estimate the infinite-order energy (MP∞, obtained by estimating the exact correlation energy within a given one-particle basis set) was performed using a formula suggested by Pople and coworkers.^{56,57} The \mathcal{T}_1 diagnostic values of coupled cluster theory^{54c} are around 0.013 and 0.017 for the different conformers of α -alanine and formic acid, respectively, suggesting that both molecules can adequately be described by single-reference-based electron correlation methods. For α -alanine(formic acid) the six(three) lowest 1s core orbitals and the six(three) highest 1s* virtual orbitals were kept frozen in all MPn and CC treatments except 6-311++G** MP2(full) geometry optimizations, where all orbitals were correlated.

The geometrical structures of the conformers of α -alanine were optimized at the 6-31G** RHF and at the 6-311++G** RHF, DFT(B3LYP), and MP2(full) levels of theory. The residual Cartesian gradients were in all cases less than 1×10^{-4} hartrees/bohr. To determine whether the optimized structures correspond to minima on the potential energy surface of α -alanine and to avoid problems arising from the nonzero force dilemma,⁵⁸ the 6-311++G** RHF Cartesian quadratic force constants were determined at the respective optimized geometries employing analytic second derivatives.^{59,60}

Electronic structure computations were performed with the program packages ACES II,⁶¹ GAUSSIAN94,⁶² PSI,⁶³ and TURBOMOLE.⁶⁴ For the calculation of the quartic centrifugal distortion constants the package ASYM20 was employed.⁶⁵

Results and Discussion

The stable conformers of α -alanine can be built up perhaps most straightforwardly from the eight conformers of glycine (an amino acid with R = H) corresponding to minima on its potential energy surface (PES).¹⁸ Three of the glycine conformers belong to the C_s point group, while five have C_1 symmetry. The C_s symmetry conformers (I, VI, and VII in the notation of ref 18) have equivalent C_{α} hydrogens, and as suggested by the systematic calculations of this study, upon substitution of one of them by a methyl group this equivalence is maintained, resulting in only one corresponding stationary point on the PES of α -alanine. On the other hand, the C_1 symmetry conformers have nonequivalent C_{α} hydrogens, and according to detailed calculations presented below, upon the $R = CH_3$ substitution this nonequivalence seems to be maintained, resulting in two different α -alanine conformers, corresponding to conformers IIn, IIIn, IVn, Vn, and VIIIn of glycine. Thus, the close correspondence between the conformational behavior of α -alanine and glycine results in 13 relevant conformers for α -alanine. It is perhaps of general interest to note at this point that during their conformational search Godfrey et al.⁹ missed more than half of the stable conformers of α -alanine; Gronert and O'Hair,^{34b} despite their own warning about the "need to undertake a systematic survey of all the reasonable rotamers in amino acid studies" and their careful search for conformers employing semiempirical (AM1 and PM3) and entry-level ab initio (3-21G RHF) calculations, failed to identify three stable conformers on the PES of α -alanine; and only Schäfer and coworkers²⁵ located all 13 conformers. The likely existence of all 13 conformers but **IIIB** is established in the present study and in ref 25.

Table 1 contains relative (in cm^{-1}) and total (in hartrees) energies obtained for all the conformers. (See Figure 1 for the notation applied. The numbering scheme follows that adopted for glycine;¹⁸ that is, numbering of the conformers reflects the relative energies of the distinct α -alanine conformers obtained from 6-311++G** MP2(full) geometry optimizations, while in those cases where two conformers belong to the same basic structure, which formally appear as the D and L enantiomer pairs on Figure 1, the letters A and B following the Roman numbers are used to distinguish them.) Although α -alanine has 33 independent geometry parameters, structural results are given in Table 2 only for the 21 most important ones. Table 3 contains some theoretical and the available experimental rotational and quartic centrifugal distortion constants and dipole moments. Harmonic vibrational frequencies, infrared intensities, and (relative) zero-point vibrational energies (ZPVEs) of all α -alanine conformers are presented in Table 4. The high-quality ab initio data presented in Table 5 for the energy difference between cis- and trans-formic acid clearly support the computational strategy employed in this study, as the post-MP2 energy corrections seem to be always smaller than $\sim 50 \text{ cm}^{-1}$.

Energies. Similarly to glycine,¹⁸ the relative energies of the α -alanine conformers **I**-**VIIIB** are determined by the interplay of the five different types of H-bonds (1-5 of Figure 2) that can be formed in these compounds, the cis vs trans arrangement of the carboxylic functional group (6 and 7 of Figure 2), the steric strain, and the repulsion of lone electron pairs on the N and O atoms. A rather interesting approximate, qualitative picture emerges if one completely neglects the effects of steric strain and lone electron pair repulsion and assigns independent energy contributions to the H-bonds and the carboxylic functional group. Naturally, H-bonding properties cannot be ascribed, in the traditional sense, to the cis COOH arrangement. However, as can be seen from results of high-level theoretical calculations performed on cis- and trans-formic acid (see Table 5), the cis form has a considerably lower total energy. The best estimate of the corresponding energy difference is 1550-(100) cm^{-1} , where the error attached to the estimate accounts for the neglect of higher level geometry optimizations, the

Figure 2. Simple structural units in α -alanine conformers.

incompleteness of the basis sets employed, and remaining errors in the treatment of electron correlation. The core-core and core-valence effects, which were shown⁶⁶ to be important in several extensive calculations attempting to produce quantitative energy and property estimates, are predicted⁶⁷ to have a negligible effect, 0.7 cm⁻¹, on the energy difference between cis- and trans-formic acid, favoring the trans form. (Due to the large size of the basis sets employed, calculation of corecore and core-valence effects is rather expensive; thus, they have not been determined explicitly for α -alanine but were assumed to be similarly negligible.) The results of Table II of ref 18 and Table 1 of this paper suggest that the following energy values can be assigned to the five different H-bonds of Figure 2: $\mathbf{1} = -1500 \text{ cm}^{-1}$, $\mathbf{2} = -3000 \text{ cm}^{-1}$, $\mathbf{3} = -1000$ cm^{-1} , $4 = -1100 cm^{-1}$, and $5 = -650 cm^{-1}$. (These energy values are in accord, when appropriate, with the qualitative picture presented by Hu et al.¹⁵ and with the linear regression analysis estimates of Gronert and O'Hair.^{34b}) These data clearly assess the importance of the related bonding effects as follows: (a) the O-H···N H-bond, 2, has the largest stabilization effect; (b) the stabilization contribution of 1, the N-H···O H-bond, is only about half as large as that of 2, even though it's made up by two bifurcated H-bonds; (c) the N-H···OH bifurcated H-bond, 3, seems to be even weaker. With the numbers given above the relative energies of all the glycine and α -alanine conformers investigated can be determined. Appropriate sums of these simple estimates agree within about 250 cm^{-1} with the relative energy values obtained from high-level theoretical computations.

Another important observation is that the energy order of the conformers of α -alanine coincides with the order observed for the eight stable conformers of glycine.¹⁸ This means, among other things, that the global minima on the glycine and α -alanine potential energy surfaces have a cis COOH arrangement and two N-H···O H-bonds, while the next lowest energy conformer has a trans COOH arrangement and an O-H ... N H-bond. The near equivalence of the total energies of conformers I, IIA, and **IIB** can now be understood as a result of replacing the strong O-H···N H-bond of II with considerably less stable N-H···O H-bonds, which, on the other hand, allow for the more stable cis COOH arrangement, making up for the difference. It is of interest to note at this point that at several correlated levels of theory α -alanine IIA is calculated to be more stable than α -alanine I, at the cc-pVTZ MP2 level by almost 100 cm⁻¹. All available experimental data (the GED study of Iijima and Beagley¹¹ and the MMW spectrum analyzed by Godfrey et al.⁹) suggest that α -alanine I is the true global minimum on the potential energy surface of α -alanine. Due to remaining errors in the relative energy predictions at the MP2 level (neglect of

higher level geometry optimizations, incompleteness of the basis sets employed, remaining errors in the treatment of electron correlation, and neglect of core–core and core–valence correlation effects), the only certain statement about the calculated energy difference between α -alanine I and II is that it must be small. Note, furthermore, that the difference in the zero-point vibrational energy (ZPVE) corrections (see Table 4) of α -alanine I and II, 110 cm⁻¹ after correction for the systematic overestimation of the frequencies at the 6-311++G** RHF level, tends to stabilize α -alaine I over II. Thus, this correction puts the theoretical predictions more in line with the experimental observations.

A further similarity between the potential energy surfaces of glycine and α -alanine is that both amino acids have five distinct conformers below a relative energy value of 1000 cm⁻¹, while the remaining "high-energy" conformers corresponding to minima on the appropriate potential energy surfaces have relative energies between 1500 and 2400 cm⁻¹. Note also that while ZPVE corrections increase the effective energy difference of conformers **IIA** and **IIB** with respect to **I**, the vibrational effects tend to stabilize conformers **VI–VIII**.

It can also be noticed that electron correlation stabilizes all conformers relative to **I**; that is, the RHF level of theory overestimates the relative energies of the α -alanine conformers in all cases. This overestimation is, nevertheless, not completely systematic. Most importantly, the RHF level fails completely during prediction of the relative energy of **IIA** and **IIB**. While in general the difference between 6-311++G** SCF and MP2 energy predictions is only about 300 cm⁻¹, for **II** it is above 800 cm⁻¹.

Recently, Barone et al.³⁹ investigated the conformational behavior of gaseous glycine by density functional (DFT) methods. On the basis of the comparison of results from different DFT approaches and the high-quality ab initio results of Császár,¹⁸ they concluded that while standard density functional methods have difficulties in coping with the subtle energy differences in amino acids, hybrid functionals, such as B3LYP,⁵⁵ have much promise and approach the quality of MP2 calculations at a fraction of the cost. The present $6-311++G^{**}$ B3LYP optimizations support this view. Not only the calculated geometry parameters but also the energy differences appear to be of high quality. Thus, use of the B3LYP functional with a sufficiently large basis may open up the way to studies on related medium-sized biomolecules, e.g., oligopeptides and their analogues.

At this point it is worth emphasizing that while Godfrey et al.9 could observe rotational lines corresponding to conformers I and IIA, they did not report any experimental measurements for IIB, a conformer which, according to the present calculations, should have about the same energy. This is even more surprising if one considers the fact that the dipole moment of IIB is as large as that of IIA, 5.6 D. The reliability of all relevant theoretical data determined for IIB strongly suggests that it should be possible to observe this conformer by rotational spectroscopy. Failure of the observation of **IIB** should not suggest a lack of reliability in ab initio predictions but might be indicative of the existence of low rotational barriers, resulting in fast relaxation following the rotational and kinetic cooling during the jet expansion experiments. It is noted that in a recent jet expansion MMW study Godfrey and Brown⁸ questioned the reliability of recent ab initio relative energy predictions for the conformers of free glycine. This author believes that this scepticism is unfounded and that the lack of observation of certain low-energy conformers in the vapor of glycine and/or

method		VIII	IB	IIIA	IIIB	IVA	IVB	VA	VB	IV	ΝII	VIIIA	VIIIB
6-31G** RHF	0	905	827	524	Geometry O 564	ptimization 639	662	722	006	2474	3039	3117	3227
6-311++G** RHF	$(-321.888\ 180)$ 0	(.884 056) 848	(.884 414) 867	(.885 792) 421	(.885 608) 515	(.885 267) 542	(.885 162) 581	(.884 890) 646	(.884 080) 765	(.876 910) 2350	(.874 335) 2815	(.873 979) 2888	(.873 475) 2987
6-311++G** DFT(B3LYP)	$(-321.970\ 926)$	$(.967\ 063)$ 10	(.966 976) 5	(.969 010) 373	(.968 578)	(.968 456) 457	(.968 278) 509	(.967 984) 693	(.967 443) 787	(.960 218) 2002	(.958 100)	(.957 766) 2424	(.957 312) 2428
6-311++G** MP2(full)	$(-323.856\ 078)$ 0	(.856 033) 51	(.856 054) 166	(.854 378) 335	$\frac{c}{449^{b}}$	(.853 994) 420	(.853 760) 514	(.852 920) 621	(.852 492) 705	(.846 956) 2025	с 2324	(.845 032) 2425	(.845 014) 2537
~	(-323.103013)	(.102 783)	(.102 256)	(.101 489)	(.100 969)	(.101 101)	(.100 673)	(.100 182)	$(.099\ 801)$	(.093 787)	(.092 424)	(.091 962)	(.091 454)
					Single-Poi	nt Energy							
6-31G** RHF// < 211++C** MD2/6.11)	0 (1010	993 7 880 404)	519 1 887 6561	692 1 881 8651	610	627 (807 167)	683 / 881 000)	886 / የደብ በደብኑ	2503	3078	3102	3225
$6-311++G^{**}$ RHF//	(610 C00.17C_)	(0 1+ 000.) 999	1034	(000 700) 443	(200 100.) 628	(.002 24U) 533	(.002 102) 569	(.001 202) 633	(1006 000.) 771	(CIU CIO.) 2357	(1945) 2845	(.00 0/0.) 2878	(070 0/0.) 2984
6-311++G** MP2(full)	(-321.967 238)	(.962 687)	(.962 528)	(.965 222)	(.964 374)	(.964 809)	(.964 645)	(.964 353)	(.963 724)	(.956 500)	(.954 277)	(.954 126)	(.953 641)
cc-pVTZ RHF//	0	932	982 (201 201)	490	602	509	570	668 (882 22 4)	843	2138	2615	2638	2781
0-311++U** MF2(IUII) aug-cc-nVT7 RHF//	(0/0 C66.176-) 0	(1041 401) 073	(102 166.)	(444 c22) 481	(166 266.)	(800 066.) 100	(20 266)	(400 266.) 647	(400 166.)	(006 006.)	(00/ 006.)	(800 084.)	(200 286.)
$6-311++G^{**}$ MP2(full)	$(-322.000\ 405)$	(.996 201)	(.995 902)	-01 (.998 215)		(.998 172)	(200 202)	(.997 458)					
7s6p3d2f RHF//	0	915	977	486	599	488	524	642	809	2074	2523	2545	2662
6-311+++G** MP2(full)	(-322.001 915)	(.997 748)	(.997 465)	(002 666.)	$(.999\ 186)$	$(199 \ 691)$	(.999 529)	(166 866.)	(.998 228)	(.992 466)	(.990419)	(.990 318)	(989 786)
6-311++G** DFT(B3LYP)//	0	28	-3 -3	383		465	519	697	797	2017	2127	2438	2450
6-311++G** RHF c 21C** MD2//	(-323.855752)	(.855 626)	(.855 767)	(.854 007)	777	(.853 633) 405	(.853 387)	(.852 578)	(.852 121)	(.846 577)	(.846 078)	(.844 664)	(.844 609)
0-210 · ME 2// 6-311++G** RHF	(-377 810 166)	120	147 (809.496)	4.76 (808 078)	(808 141)	49.0 (807 910)	100 (807 677)	004 (807 141)	(806 378)	(799 960)	(798 099)	(797 747)	1301
6-311++G** MP2//	0	163	276	358	506	419	505	(.00/ 171) 612	(0/C 000.) 712	2024	2353	2419	2533
6-311++G** RHF	(-322.983 731)	(.982 988)	(.982 473)	(.982 100)	(.981 427)	(.981 824)	(.981 429)	$(.980\ 941)$	(.980 487)	(.974 511)	(.973 011)	(.972 711)	(.972 190)
cc-pVTZ MP2//	0	-96	7	379	437	402	502	642	783	1818	2025	2218	2285
$6-311++G^{**}$ MP2(full)	$(-323.175\ 162)$	$(.175\ 601)$	(.175 128)	(.173 436)	(.173 173)	(.173 320)	(.172 874)	(.172 237)	(.171 594)	(.166 877)	(.165 934)	(.165 058)	(.164 749)
aug-cc-pVTZ MP2// 6-311++G** MD7/fiill)	0 (-373 206 196)	-7/8 -7/6 551)		393 704 403)		385							
7s6p3d2f MP2//	0	(100 002.)	93	(COT TOZ.) 402	428	391	449	631	787	1792	1966	2174	2213
6-311++G** MP2(full)	$(-323.242\ 056)$	(.242 243)	(.241 630)	(.240 226)	$(.240\ 104)$	(.240 275)	$(.240\ 010)$	(.239 183)	(.238 468)	(.233 892)	(.233 098)	(.232 149)	(.231 974)
6-31G** MP3//	0	296	267	489	496	509	540	617	839	2192	2694	2688	2780
$6-311++G^{**}$ MP2(full)	(-322.840 613)	(.839 263)	(.839 398)	(.838 383)	(.838 352)	(.838 293)	(.838 153)	(.837 800)	(.836 789)	(.830 625)	(.828 338)	(.828 365)	(.827 946)
6-31G** MP4(SDTQ)/	0	203	190	467	433	494	549	642	819	2175	2652	2657	2782
6-311++G** MP2(tull) 6-31G** CCSD//	$(-322.885\ 392)$	$(.884\ 469)$	(.884 527) 339	(.883 262) 475	(705 407) (1883 407)	(.883 142) 505	(.882 879) 537	(.882 466) 600	(.881 659) 813	(.875 484) 2239	(.873310)	(.873 284) 2732	(.872718) 2845
$6-311 + + G^{**} MP2(full)$	(-322.853 279)	(.851 717)	(.851 736)	(.851 114)	(.851 128)	(.850 979)	(.850 831)	(.850 544)	(.849 573)	(.843 079)	(.840 779)	(.840 830)	(.840 314)
6-31G** CCSD(T)//	0	223	210	467	438	493	546	619	810	2196	2675	2677	2794
6-311++G** MP2(full)	(-322.882 183)	(.881 165)	(.881 226)	(.880 053)	(.880 186)	(.879 935)	(769 697)	(.879 361)	(.878 491)	(.872 178)	(369 995)	(986 986)	(.869 452)
^a All total energies in hartree	s, all relative energy	gies in cm ⁻¹ .	The 6-31G**	, 6-311++G	**, cc-pVTZ,	7s6p3d2f, ai	nd aug-cc-pV	rz basis sets	consist of 12	25, 181, 278,	436, and 43	7 CGFs, resp	ectively (for
details, see text). For the notati found.	on of the conforme	rrs see rigure	I. // means "a	at the geomet	ry of". " Note	that the pote	ntial energy s	urtace is exti	emely flat ar	ound the stati	onary point.	V No stationa	ry point was

TABLE 1: Relative and Total Energies of α -Alanine Conformers^a

TABLE 2:	Selec	ted Th	neoret	ical (6	311++(G** RE	IF and	MP2) a	nd Exp	eriment	al (GE	D) Ge(metry	Param	eters for	· α-Alaı	iine ^a								
		Ι		П	IA	Π	B	Η	[A	IIIB	IV≀	_	IVB		VA		VB		ΙΛ		ШЛ	ΙΛ	ШA	ΠΛ	B
param	RHF	MP2	expt ^b	RHF	MP2	RHF	MP2	RHF	MP2	RHF	RHF	MP2 1	SHF M	IP2 R	HF MI	2 RH	F MP	2 RHI	F MP.	2 RHF	MP2	RHF	MP2	RHF	MP2
$r(C_1C_2)$	1.523	1.521	1.507	1.531	1.353	1.534	1.539	1.523	1.520	1.525	1.514 1	.512 1	516 1.5	515 1.5	18 1.51	7 1.51	6 1.512	2 1.53	1 1.53	1 1.535	1.535	1.524	1.523	1.526	1.527
$r(C_1N_3)$	1.443	1.452	1.471	1.458	1.468	1.460	1.470	1.448	1.457	1.454	1.447	.456 1	.447 1.4	456 1.4	55 1.46	5 1.45	2 1.46]	1 1.44	1 1.45	0 1.445	1.452	1.445	1.454	1.445	1.454
$r(C_1O_4)$	1.329	1.356	1.347	1.319	1.342	1.319	1.340	1.331	1.359	1.333	1.327	.353 1	.328 1.2	354 1.3	31 1.35	8 1.33	0 1.357	7 1.33.	5 1.36	1 1.329	1.356	1.332	1.357	1.331	1.356
$r(C_1=0_5)$	1.184	1.211	1.192	1.180	1.208	1.180	1.208	1.184	1.211	1.183	1.183	.210 1	.183 1.2	210 1.1	82 1.20	8 1.18	3 1.209	9 1.17	7 1.20	5 1.179	1.205	1.177	1.204	1.177	1.205
$r(O_4H_6)$	0.946	0.968	0.977	7 0.949	0.980	0.949	0.981	0.946	0.968	0.946	0.946 (0.968 0	.946 0.5	968 0.9	46 0.96	8 0.94	6 0.968	3 0.94.	2 0.96	4 0.942	0.966	0.942	0.963	0.941	0.963
$r(C_2C_8)$	1.532	1.530	1.545	: 1.530	1.527	1.526	1.524	1.530	1.528	1.521	1.538	.537 1	529 1.5	526 1.5	21 1.51	8 1.53	5 1.535	5 1.53.	3 1.53	1 1.530	1.528	1.538	1.537	1.532	1.530
$\langle (HN) \rangle$	1.000	1.016	1.014	1.000	1.015	0.999	1.014	1.000	1.015	1.000	1.000 1	.016 0	.999 1.(0.4 0.9	10.1 66	5 1.00	0 1.016	5 1.00	0 1.01	6 0.997	1.012	1.000	1.016	0.998	1.014
$\langle r(CH) \rangle$	1.084	1.092		1.084	1.093	1.085	1.093	1.085	1.093	1.084	1.086	.094 1	.084 1.(0.1 200	84 1.09	2 1.08	6 1.092	1 1.08	5 1.09.	3 1.084	1.093	1.086	1.094	1.085	1.094
$\angle(C_1C_2N_3)$	113.3	113.7	110.1	110.3	109.4	110.1	109.4	114.6	115.2	112.1	108.5	07.9 1	08.8 10	8.2 108	3.8 108.	4 109.	4 109.3	3 113	3 113.	7 116.8	117.5	108.4	107.7	108.8	108.0
$\angle (C_2C_1O_4)$	112.2	111.4	110.3	: 115.5	114.0	115.2	114.0	112.9	111.7	111.5	112.3	11.7 1	12.6 11	11.8 111	.7 110.	7 112.	5 111.]	1 115.	7 115.	7 117.4	116.5	116.1	116.0	116.2	116.0
$\angle (C_2C_1=0_5)$	125.4	125.4	125.6	122.0	122.6	122.6	122.6	124.8	125.5	126.4	125.0	24.8 1	25.0 12	5.1 126	 5.0 126. 	3 125.	0 125.7	7 123.2	9 123.	8 121.7	122.3	123.2	123.0	123.5	123.5
$\angle (0_4 C_1 = 0_5)$	122.4	123.1		122.4	123.4	122.2	123.4	122.2	122.8	122.1	122.6	23.4 1	22.3 12	3.0 122	2.3 123.	0 122.	5 123.1	1 120.4	4 120	5 120.9	121.2	120.7	120.8	120.3	120.4
$\angle(C_1C_2C_8)$	109.6	108.3	111.6	108.7	108.1	111.3	110.4	109.2	108.6	111.4	108.5	07.8 1	12.7 11	2.4 111	.4 110.	9 109.	5 108.8	3 109.	5 108	3 108.8	107.9	108.4	107.8	113.3	113.3
$\angle(C_1O_4H_6)$	108.9	106.2	112.3	108.8	104.0	108.7	103.8	108.9	106.0	108.9	108.8	06.1 1	08.6 10	5.8 108	3.9 106.	1 108.	9 106.2	2 112	3 109.	0 111.0	107.1	112.2	108.7	112.6	109.1
$\langle \angle (C_2N_3H) \rangle$	110.5	109.2	113.3	112.1	111.6	111.7	111.2	111.8	110.8	111.7	111.2	09.4 1	11.5 11	0.4 111	1 110.	0 111.2	2 109.7	7 110.	7 108.	8 116.4	115.4	111.2	108.9	111.6	110.2
$\tau(N_3C_2C_1O_4)$	166.0	161.3	162.8	20.4	18.2	19.4	11.8	45.4	44.5	60.2	152.6	50.7 1	68.2 16	5.7 -5	0.4 -50	.6 -48	.9 -47.	6 163.	8 158.	8 17.4	19.8	149.3	147.2	169.2	163.7
$\tau(N_3C_2C_1O_5)$	-14.5	-20.5		-161.4	-164.4	-163.0	-169.7	-135.9	-137.3	-119.3	-30.1 -	-32.5 -	- 14.7 - 1	16.9 13]	.8 131.	1 133.	4 135.2	2 -17.	4 -23	.9 -163.	7 -162.5	5 -33.9	-37.1	-13.8	-19.5
$\tau(C_8C_2C_1O_4)$	-70.3	-76.6		-101.0	-101.7	148.0	138.6	-78.7	-78.7	-175.2	-81.8 -	-84.4 4	5.4 44	.0 -1	72.5 -17	1.6 78.1	79.0	-73.	-79	.5 - 107.	7 -104.3	3 -85.3	-88.3	47.0	42.5
$\tau(C_2C_1O_4H_6)$	178.7	176.9	180.0	1 -4.3	-5.1	-4.6	-2.3	178.3	177.4	-179.1	177.0	75.6 1	77.1 17	6.9 -1	79.8 -17	9.9 - 17	9.6 -178	3.7 - 2.8	3 -6.2	2 -3.3	-5.1	-7.8	-10.1	-4.2	-6.5
$\tau(H_9N_3C_2C_1)$	58.4	57.8		86.8	91.5	90.0	9.66	61.9	58.1	65.2	48.2	:7.9 3	9.4 42	3 60.	6 61.1	60.9	64.4	57.6	58.0	58.5	54.8	43.7	43.7	33.3	36.2
$\tau(H_{10}N_3C_2C_1)$) -60.2	-58.4		-151.8	-148.7	' -149.3	-140.9	-59.4	-59.7	-56.5	169.8	66.3 1	61.7 16	2.0 -1	78.7 -17	9.5 -17	2.2 -177	7.8 -60	5 -57.	.7 -78.0	-77.8	165.4	162.1	156.1	156.1
^a Distance	s (r) in	angstro	oms; a	mgles (∠	\leq and τ)	in degre	ses. ^b Re	ference	11. For	uncertai	nties of	the par	ameters	determ	ined see	the origi	nal publ	ication.	Paran	neters pri	inted in i	talics w	ere assi	a med a	ou pu
refined.)		,)))	•			•					

 α -alaine should be attributed to the existence of low-barrier relaxation pathways if sensitivity problems can be ruled out. Partly on the basis of the measured dipole moment compo-

nents for conformers I and IIA and the observed integrated areas of the strongest lines in the MMW spectra of the conformers, Godfrey et al.⁹ report the following experimentally determined approximate lower limits for conformational energies relative to those of α -alanine I: IIA = ~800 cm⁻¹, IIIA = ~700 cm⁻¹, and $VI = \sim 1200 \text{ cm}^{-1}$. Thus, Godfrey et al. contributed the relatively easy detection of α -alanine IIA to its large dipole moment (see, however, comments in the preceding paragraph). All the experimental estimates of Godfrey et al.9 are significantly different from the high-quality correlated-level ab initio relative energy predictions of this report: the present calculations predict the energies of α -alanine I and II to be about the same, while for conformers **III** the theoretical predictions are considerably lower and for **VI** considerably higher than their experimental counterparts. Although it is rather uncertain what error limits should be attached to the theoretical values, a somewhat conservative estimate would be $\pm 200 \text{ cm}^{-1}$, suggesting that the differences between theory and experiment deserve further study.

It is also clear from the data of Table 1 that once a sufficiently flexible basis set (such as 6-311++G**, applied throughout this study and in ref 18 as one of the smallest basis sets) is used for optimization of the geometry of the different conformers of glycine and α -alanine, the choice of reference geometry selected for the subsequent single-point energy calculations is rather irrelevant. For example, Table 1 shows that, with the 6-311++G** basis set used throughout, for conformers IIIA, IVA, IVB, VI, VII, and VIIIA of α -alanine the differences between the relative energies at the RHF//RHF and RHF// MP2(full) levels (where // means "at the geometry of") are a mere +22, -9, -12, +7, +30, and -11 cm⁻¹, respectively. Furthermore, if one compares the MP2//MP2 and MP2//RHF results, it turns out that the differences are comparably small, spreading from -8 (IVB) to +29 cm⁻¹ (VII). All these differences are small and certainly much smaller than the expected error limits of these calculations. Thus, they can be regarded as insignificant. The RHF//RHF and RHF//MP2, and the MP2//MP2 and MP2//RHF, energy differences between conformers **I** and **II** of α -alanine are always around 130 cm⁻¹. These differences, though still rather small, appear to be less tolerable. Thus, one can conclude that single point MP2 energies obtained at HF geometries for amino acids, at least for glycine and α -alanine, are rather accurate, as conventional wisdom would imply. As detailed in ref 16, these results help to clarify some recent statements of Frey and co-workers²⁷ about the imprecision of RHF geometry optimizations of amino acids and their claim that single-point MP2 energies obtained at RHFoptimized geometries are "potentially highly inaccurate". The extensive relative energy results of Gronert and O'Hair^{34b} obtained for a number of alanine, serine, and cysteine conformers also support the view that the warnings of Frey et al.²⁷ were somewhat unfounded. It is now obvious that although RHF theory completely fails in predicting the energy difference between N-H···O and O-H···N H-bonded conformers, for the other, less important, conformers the predicted relative energies seem to be reasonably accurate.

In summary, all the new and previous¹⁸ theoretical results seem to indicate that there is a great similarity between the conformational behavior of glycine (an amino acid with R =H) and α -alanine (R = CH₃).

Geometries. As expected and revealed in Table 2, changes in bond lengths among the conformers of α -alanine are rather

TABLE 3: Theoretical (RHF, DFT(B3LYP), and MP2) and Experimental Rotational Constants, Quartic Centrifugal Distortion Constants, and Dipole Moments of α -Alanine^{*a*}

		Ι				IL	A			IIB		Ш	[A	II	B	IV	Ά
param	RHF	DFT	MP2	expt ^b	RHF	DFT	MP2	expt ^b	RHF	DFT	MP2	RHF	MP2	RHF	$MP2^{c}$	RHF	MP2
A/MHz B/MHz C/MHz D _J /kHz	5160.0 3136.1 2283.9 1.552	5055.4 3037.8 2262.8	5084.8 3053.9 2305.6	5066.1 3100.9 2264.0 1.567	5079.4 3182.5 2370.5 1.253	4951.6 3218.0 2284.5	5003.8 3202.7 2351.0	4973.1 3228.3 2307.8 1.411	4983.9 3456.6 2172.0 0.469	4855.6 3408.7 2149.9	4872.1 3447.6 2175.0	5144.5 2859.2 2525.7 2.771	5078.4 2839.4 2503.8	5163.7 3219.5 2226.0 2.428	5125.0 2889.0 2400.0	5165.7 3061.2 2374.4 1.620	5063.6 3028.5 2381.3
D _{JK} /kHz	(1.261) -0.931 (-0.725)			-1.064	(1.021) -0.157 (-0.109))		-0.335	2.706			-1.588		-1.666		-0.986	
<i>D</i> _K /kHz	1.038 (0.844)			0.87	0.561 (0.469)	,		0.84	-1.861			0.529		1.056		1.115	
d1/kHz	-0.584 (-0.471)			-0.571	-0.335 (-0.270)		-0.408	-0.250	I		-0.483		-1.022		-0.606	
d ₂ /kHz	-0.446 (-0.358)			-0.446	-0.335 (-0.268)		-0.395	-0.119			-0.965		-0.776		-0.448	
$\mu_{\rm a}/{\rm D}$	0.6			0.622	5.4			4.924	5.0			0.2		0.7		0.9	
$\mu_{\rm b}/{ m D}$	1.2			1.60	1.4			1.4	2.4			1.2		1.3		2.2	
$\mu_{ m c}/ m D$ $\mu_{ m tot}/ m D$	0.5 1.4			0.339 1.8	0.5 5.6			0.279 5.13	0.4 5.6			1.3 1.8		0.2 1.4		0.1 2.4	
		IVB		VA		V	В		VI		VI	I	,	VIIIA		VIII	B
param	RHF	MI	P2 F	RHF	MP2	RHF	MP2	RH	F M	IP2	RHF	MP2	RHF	⁷ MI	2 1	RHF	MP2
A/MHz B/MHz C/MHz D _J /kHz D _J /kHz d ₁ /kHz d ₂ /kHz μ_a /D μ_b /D μ_c /D	$5145.1 \\ 3368.7 \\ 2177.8 \\ 0.676 \\ 1.423 \\ -0.598 \\ -0.31^{2} \\ -0.142 \\ 0.6 \\ 1.5 \\ 1.7 \\ 2.4 \\ \end{bmatrix}$	503: 337 2159 8 7 2	2.1 51 7.7 33 9.6 21 0.3 0.9 -0 -0 -0 1.5 1.7 2.7	88.8 42.0 88.8 774 926 0.166 0.338 0.163 7 9 7 7	5073.0 3341.3 2173.5	$5123.5 \\2889.5 \\2541.9 \\1.738 \\-0.029 \\0.012 \\-0.327 \\-0.520 \\2.2 \\0.2 \\1.9 \\2.9$	5035.7 2892.5 2520.2	$\begin{array}{c} 5 \\ 5 \\ 5 \\ 2 \\ 2 \\ 3123 \\ 2 \\ 301 \\ 1.392 \\ -0.6 \\ 0.803 \\ -0.4 \\ -0.3 \\ 1.7 \\ 2.7 \\ 1.7 \\ 3.6 \end{array}$.3 50. .9 30. .9 23: 2 43 3 92 86	46.8 5 20.9 3 24.7 2 24.7 1 - - 3 2 0 4	048.6 151.7 1299.3 .842 -0.708 0.420 -0.608 -0.591 3.6 2.6 2.7 3.5	4988.0 3101.7 2296.9	5112 3033. 2406. 2.068 -1.61 1.263 -0.76 -0.61 3.1 3.5 1.3 4.9	3 502 6 298 1 241 8 57 8	9.2 50 2.2 33 3.7 21 0. 2. - - 3. 2. 2. 3. 2. 4.)78.6 379.4 175.6 679 504 1.790 0.324 0.198 3 9 3 9 9	4974.9 3391.3 2146.6

^{*a*} All theoretical values were obtained with the 6-311++G^{**} basis set . The quartic centrifugal distortion (QCD) constants correspond to Watson's *S*-reduced Hamiltonian. The theoretical QCD constants reported in parentheses were obtained from unscaled quadratic force fields. All other QCD constants were obtained from crude SQM^{71,72} force fields with scale factors of 0.9 for all stretches and 0.8 for all bends. ^{*b*} Reference 9. For uncertainties of the rotational and QCD constants and dipole moment components see the original publication. ^{*c*} See footnote *b* to Table 1.

small. Still, the spread of bond distances for all characteristic single bonds (C-N, C-O, C-C) is larger than 0.02 Å. The most significant differences can be observed between the C-N and C–O distances of α -alanine I and II. There are some notable changes among the bond angles; probably most important is the dependence of the CCN and CCO angles on the orientation of the NH₂ and OH groups, respectively. The CCN angle changes between 107.7° (VIIIA) and 117.5° (VII), while the CCO angle changes between 111.4° (I) and 116.5° (VII). While part of this spread in the bond angles should be attributed to sizable through-space repulsions, the trans-angle rule proposed by Räsänen et al.,68 stating that "if in a conformer of a primary alcohol or amine a CC or CH bond is trans to an XH bond (X = O,N), the corresponding XCC or XCH angle will be considerably smaller than that for other configurations", is clearly valid for the conformers of α -alanine. For example, the CCO angle of **I** is 111.4°, while that of **IIA** is 114.0°, in agreement with the "trans" vs "cis" arrangement of the CC bond as compared to the OH bond. The tilt and asymmetry of the methyl group are similar to those described by Boggs et al.⁶⁹ in asymmetric environments.

Comparison of Table 2 of this study and Table III of ref 18 suggests that there are only a few characteristic differences between the structures of the related conformers of α -alanine and glycine. Structural changes, especially in the bond lengths, seem to be rather small, never larger than about 0.005 Å. These latter differences should hardly be detectable by experimental methods for molecules of this size and of low symmetry. Some angles change more noticeably; especially pronounced is a decrease of 1.9° in the CCN angle of α -alanine **I** as compared

to glycine **Ip**.¹⁸ Note that the CCN angles of the conformers of α -alanine seem to be smaller by about 2–3° than the CCN angles of the respective glycine conformers.

In contrast to all other conformers, **IIIB** might not correspond to a minimum on the true potential energy surfaces (PES) of α -alanine. The PES is extremely flat around the **IIIB** minimum, and position of the minimum greatly depends on the level of theory at which it is located. Cao et al.²⁵ did not recognize this and speculated that "at the MP2 computational level [this] conformer is in good agreement with [a] set of [experimental] rotational constants and dipole moments". However, as Table 3 shows, the fortuitous agreement between experiment and the 6-311G** MP2 rotational constants disappears if diffuse functions are added to the basis. Thus, it appears that there is no ambiguity in assigning the measured rotational constants to conformer **IIA**.

The only experimental attempt so far to determine geometries for α -alanine conformers is the GED study of Iijima and Beagley.^{11,70} During determination of the structure of the lowest energy conformer of α -alanine Iijima and Beagley concluded, on the basis of model refinements assuming internal rotation only around the C–C bond, that "the vapour of α -alanine consists of one conformer with a high potential barrier around the C–C bond", and consequently, they carried out the structural refinements assuming the presence of only one conformer in the gas, that of conformer **I**. The energy results of Table 1 suggest a substantially different picture: the vapor of α -alanine should contain, especially at 500 K, the temperature of the GED experiment, several conformers in noticeable concentration. As the geometry results obtained for α -alanine indicate (see Table

TABLE 4: 6-311++G^{**} RHF Vibrational Frequencies, Infrared Intensities, and Zero-Point Vibrational Energies (ZPVEs) of α -Alanine Conformers^a

	I		IIA	4	III	B	III	A	III	В	IV	A	IV	B	V	A	V	B	V	I	VI	I	VII	IA	VII	IB
ν_i	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int	freq	int
1	4115	124	4034	208	4033	221	4117	130	4117	127	4114	128	4118	11	4119	130	4119	132	4175	87	4170	107	4180	94	4193	92
2	3810	8	3825	13	3822	14	3821	9	3822	44	3827	12	3839	14	3829	10	3822	8	3809	10	3871	15	3827	15	3842	20
3	3736	4	3745	7	3735	6	3738	4	3734	3	3741	5	3752	6	3747	3	3738	3	3735	6	3764	7	3741	8	3754	9
4	3266	21	3268	15	3275	13	3259	27	3261	25	3241	46	3266	26	3269	24	3253	38	3262	21	3275	15	3243	31	3255	23
5	3242	39	3231	42	3227	44	3249	37	3248	39	3234	35	3239	35	3242	28	3231	30	3232	43	3243	36	3224	39	3225	38
6	3207	13	3201	14	3186	14	3230	6	3195	15	3214	6	3177	25	3176	28	3228	12	3172	20	3223	7	3164	29	3161	37
7	3170	21	3168	23	3167	22	3172	19	3181	18	3164	22	3099	47	3104	51	3163	21	3165	29	3163	25	3158	35	3088	49
8	1993	431	2019	440	2016	422	1994	440	1997	403	2000	412	1996	436	2005	415	2005	459	2026	377	2018	386	2031	358	2026	394
9	1811	28	1800	47	1799	42	1805	47	1800	42	1784	62	1783	63	1794	45	1791	41	1813	32	1787	47	1783	61	1782	58
10	1617	10	1618	12	1617	15	1616	3	1610	4	1625	20	1621	17	1617	9	1619	14	1618	13	1615	4	1621	21	1623	9
11	1613	6	1615	6	1608	3	1610	8	1607	5	1611	8	1612	5	1608	7	1609	4	1606	6	1614	9	1610	6	1612	24
12	1552	13	1536	25	1541	154	1540	10	1554	2	1572	29	1553	19	1571	15	1546	34	1554	9	1535	12	1565	30	1546	10
13	1525	4	1527	396	1536	151	1520	13	1522	51	1528	4	1540	7	1537	39	1529	5	1531	2	1502	24	1532	5	1541	41
14	1492	31	1487	41	1509	158	1475	68	1511	4	1479	23	1476	7	1479	20	1480	64	1481	150	1471	372	1471	109	1479	17
15	1411	6	1469	63	1440	67	1455	16	1419	13	1427	16	1439	37	1429	25	1460	21	1408	210	1444	61	1424	322	1424	415
16	1385	2	1375	2	1334	13	1374	15	1364	11	1354	63	1339	48	1357	5	1362	75	1381	95	1351	21	1339	31	1329	4
17	1290	198	1315	3	1318	7	1324	178	1293	261	1269	286	1311	148	1294	298	1307	111	1267	6	1289	3	1267	37	1282	10
18	1249	151	1233	17	1249	16	1237	18	1242	73	1257	13	1248	162	1248	60	1204	76	1235	44	1245	26	1239	18	1241	40
19	1173	33	1149	42	1177	62	1140	91	1166	30	1187	15	1199	5	1186	14	1179	33	1169	42	1140	34	1186	14	1199	5
20	1100	1	1093	1	1097	1	1099	3	1099	8	1115	11	1105	1	1102	1	1105	26	1101	2	1075	1	1114	8	1104	1
21	1004	34	1008	47	1012	36	997	22	1004	9	990	2	1010	1	1009	4	992	10	1004	82	997	10	988	5	1009	4
22	976	125	947	93	949	112	943	150	947	139	917	173	913	107	942	65	918	153	981	83	874	17	922	179	911	117
23	866	38	875	5	881	5	857	30	882	53	864	42	872	71	872	97	861	53	873	10	814	10	872	18	876	53
24	819	41	823	5	811	9	850	47	817	37	835	38	801	63	811	72	851	28	812	4	700	81	825	11	801	16
25	691	10	782	141	/90	142	665	44	657	/5	693	36	658	14	646	63	659	56	/01	10	596	30	708	15	637	14
20	525	127	085	12	570	12	623	134	509	84	028 540	100	522	00	524	20	572	105	338	4	570	41	343	102	332	2
27	333	20	580	2	572	2	207	13	545	34	207	20	333	14	234	20	200	13	4/4	110	550	105	480	123	4/0	83
28	220	14	415	10	202	10	212	15	220	12	220	3	250	14	428	1	206		411	10	269	39 57	397	0	450	30
29	330	8 2	200	20	201	10	200	25	210	13	338	10	339	1	206	4	320	19	265	18	221	3/ 15	339	9 24	212	12
21	203	17	262	29	202	10	290	22	264	30	207	10	292	20	270	40	200	20	203	14	279	21	200	24	240	20
22	240	4/	203	2	293	13	230	1	204	1	230	42	231	20	2/0	5	230	6	243	55	2/0	21	230	40	249	20
32	24Z 55	1	249 71	2	250 62	1	249 45	1	252	1	230 63	42	241 61	20	243 50	1	240 62	1	234 62	2	240 50	2	247 56	40	241 52	29 6
AZDAE	55	5	+122	2	+108	1	+10	1	_1	1	-25	2	-32	1	-18	1	-24	1	-72	9	-124	5	_07	5	-98	0
	0		1122		1100		110		4		25		52		10		24		12		124		21		90	

^{*a*} Frequencies (ν_i ; freq) in cm⁻¹; intensities (int) in km/mol; relative zero-point vibrational energies (Δ ZPVE), measured with respect to the ZPVE of **I**, 25407 cm⁻¹, in cm⁻¹. All theoretical values were obtained at the 6-311++G** RHF level at the respective fully optimized reference geometries. The scale factor of 0.89 might be a reasonable estimate for frequency (and consequently ZPVE) corrections.

TABLE 5: Ab Initio Data (cm ⁻¹) for the Energy Difference between <i>cis</i> - and <i>trans</i>	s-Formic A	ACId"
---	------------	-------

	RHF	Δ MP2	Δ MP3	Δ MP4	ΔMP∞	MP∞	$\Delta CCSD$	$\Delta CCSD(T)$	CCSD(T)
6-31G** (55)	2110	-159	-59	+22	+4	1918	-28	-6	1917
6-311++G** (80)	1885	-262	-43	-7	-3	1570	-15	-21	1587
cc-pVTZ (118)	1741	-174	-43	+15	0	1539	-11	-12	1544
aug-cc-pVTZ (184)	1658	-164	-23	-2	-2	1467	+1	-12	1483
cc-pVQZ (225)	1668								
$CV(TZ) (262)^{b}$	1725	-161							

^{*a*} See the section Computational Details for basis set and theoretical level notations. For each basis set the total number of contracted Gaussian functions is listed in parentheses. Contributions to the energy difference relative to the next lower level of theory are denoted by the symbol Δ . The Δ CCSD values are relative to those obtained at the MP2 level. All energy data reported were obtained at 6-311++G** MP2(full) optimized geometries, which are as follows for the *cis(trans)* conformers: r(C=O) = 1.2046(1.1978) Å; r(C-O) = 1.3468(1.3533) Å; r(O-H) = 0.9685(0.9635) Å; r(C-H) = 1.0957(1.1033) Å; $\angle(H-C=O) = 125.26(123.98)^\circ$; $\angle(O-C=O) = 125.24(122.68)^\circ$; $\angle(C-O-H) = 106.34(108.38)^\circ$. ^{*b*} See refs 66c and 67 for a description of the basis set.

2), the unfounded assumption about the presence of only one conformer in the gas during the course of the GED experiments resulted in considerable differences between Iijima and Beagley's structural results and the present high-quality ab initio results including their conclusion that "the methyl group strongly hinders the rotation of the acid group". As one should not place too much emphasis on absolute values of calculated geometry parameters, it is probably more telling that experimental changes in the GED geometry of α -alanine I¹¹ as compared to glycine I¹⁰ are hardly ever reproduced by the 6-311++G** MP2(full) geometries of this study and of ref 18. It is therefore suggested that a new joint structural refinement of GED and now available microwave data, predicated toward correlated-level *ab initio* structural parameters, quadratic force fields, and relative ener-

gies, be performed for α -alanine, just as it was suggested for glycine.^{16,18}

The accuracy of the theoretical geometry parameters determined for conformers **I** and **IIA** of α -alanine in this study is supported by the good agreement between the corresponding calculated and experimental⁹ rotational constants (see Table 3), albeit the agreement between theory and experiment is not as impressive as observed for glycine¹⁸ (correction of the experimental rotational constants for effects of vibrations might improve this agreement as it did for glycine **I**). The improved quality of the 6-31++G** MP2(full) rotational constants over the 6-31G** RHF constants determined by Godfrey et al.⁹ can be seen from the fact that deviation of the 6-311++G** MP2(full) values from their experimental counterparts is considerably more systematic. The $6-311++G^{**}$ DFT(B3LYP) rotational constants are in the best overall agreement with the measured values.

Table 3 also contains theoretical and experimental quartic centrifugal distortion (QCD) constants and dipole moments. For α -alanine I and IIA, where comparison of theory and experiment is possible, a nice agreement can be observed. While the directly calculated QCD constants of I are only in reasonable agreement with the measured values,⁹ if the 6-311++G** RHF quadratic force field is transformed into internal coordinate space and a crude, simple but well-established scaling of the force constants, similar to the one advocated in the scaled quantum mechanical (SQM) force field approach,^{71,72} is applied (0.9 for the stretching and 0.8 for the bending coordinates), the agreement between theory and experiment becomes excellent, in line with previous theoretical studies of QCD constants.⁷³⁻⁷⁹ It can also be seen from this and previous studies73,75-77 at the HF level of theory that a simple multiplication of the directly calculated QCD constants by 1.2 brings the calculated values in much better agreement with experiment and with QCD constants calculated from SQM force fields. Note that QCD constants obtained only from scaled force fields are reported in Table 3 for the conformers for which no experimental data are available. Somewhat surprisingly, the agreement between theory and experiment is less satisfactory, even after scaling, for IIA. The reason for this is not obvious. The theoretical estimates given for the yet unobserved conformers should be most valuable during search for these conformers by MW and MMW spectroscopies.

Vibrational Spectra. The plethora of information contained in the 6-311++G** RHF theoretical vibrational frequencies and infrared intensities presented in Table 4 for the α -alanine conformers would allow interpretation of a carefully executed experimental investigation of the gas-phase vibrational spectrum of α -alanine. As, to our best knowledge, no such study has been performed, this task is left for the future. Furthermore, due to the lack of experimental data, no elaborate scaling, like the one resulting in a scaled quantum mechanical (SQM) force field,^{71,72,80} is attempted here. (Note that the uniform scale factor of 0.89 is a reasonable estimate for direct frequency corrections at the 6-311++G** RHF level and can be applied when predictions of this study are to be compared with experiments.) The frequency results obtained confirm that all optimized structures I-VIIIB correspond to minima on the potential energy surface of α -alanine.

The results summarized in Table 4 reveal that there are some normal modes which do not change significantly from one conformer to another (including ν_8 (C=O str), which changes between 1993 (I) and 2031 (VIIIA) cm⁻¹, and the usually rather intense band ν_{22}), while some normal modes having high IR intensity shift considerably. Most notably, conformer IIA has characteristic, high-intensity bands: ν_{13} at 1527 cm⁻¹ and ν_{25} at 782 cm⁻¹. High-intensity normal modes whose frequency does not change from one conformer to another should serve as indicators of the presence of α -alanine, while characteristic shifts should help identification of α -alanine conformers in its gas.

The frequency data of Table 4 also contain important information about the internal bondings of the conformers and about the relative strength of the different H-bonds. For example, the O–H stretch (ν_1) frequency shifts considerably from its free value of about 4115 cm⁻¹ (**I**) to 4034 cm⁻¹ (**IIA**) when involved in H-bonding. Some of this shift, however, is due to the change from a *cis* to a *trans* COOH arrangement, which itself¹⁵ produces an about 60 cm⁻¹ shift. (Note that the upward shift in the predominantly C=O stretch mode, ν_8 , from α -alanine I to II can also be observed in formic acid. This change is also in line with the almost 0.007 Å shorter C=O bond length in *trans*-formic acid as compared to *cis*-formic acid.) A less pronounced shift in the N-H stretch frequencies (ν_2 and ν_3) can be observed upon H-bonding, also indicating that the N-H+···O H-bond is considerably weaker than the O-H···N H-bond.

Conclusions

The large amount of high-level *ab initio* data presented in this and previous^{16,18,25,34b} studies not only shapes our understanding of the conformational behavior of simple free amino acids but also provides vital data for different types of experiments applicable to probe these molecules. In particular, the following conclusions can be drawn about the shape and spectra of free α -alanine and about their determination by experimental techniques and by methods of electronic structure theory.

1. It seems that introduction of the methyl group for the amino acid α -alanine with $R = CH_3$ to replace one of the hydrogens of glycine (R = H) has a rather small effect on either the geometry or the conformational preferences of α -alanine. As a consequence, 13 stable conformers of α -alanine have been located on α -alanine's potential energy surface. Note that in two previous theoretical studies only six and 10 out of the 13 conformers have been found by Godfrey et al.⁹ and by Gronert and O'Hair,^{34b} respectively, while Cao et al.²⁵ located all 13 of them. Since characterization of conformationally flexible molecules, such as α -alanine, requires the identification of all major conformers, these problems emphasize the need to conduct extremely careful, systematic surveys of all possible conformers at relatively high levels of theory when the conformational behavior of these species is to be determined.

2. There is a general tendency at the restricted Hartree-Fock (RHF) level of theory to overestimate the relative energies of all conformers of α -alanine. This overestimation is, however, not systematic. More importantly, as calculations employing almost complete basis sets indicate, the RHF level of theory completely fails in predicting the energy difference between N-H···O and O-H···N H-bonds. (Unfortunately, these are just the type of interactions responsible for stabilization of the lowest energy conformers of glycine, α -alanine, and most similar amino acids.) For the other, less important, conformers not only the predicted geometries but even the predicted relative energies seem to be reasonably accurate. The large set of data presented in this and previous papers^{16,18,34b} do not seem to support earlier conclusions of Frey et al.27 about the imprecision of RHF geometry optimizations of amino acids and their claim that single-point MP2 energies obtained at RHF-optimized geometries are "potentially highly inaccurate". Still, the use of correlated levels of theory in the calculation of most of the relative energies of amino acid conformers is strongly advocated, as interest will probably be focused on the low-energy, H-bondstabilized conformers.

3. The DFT(B3LYP) calculations on glycine³⁹ and α -alanine suggest that at this relatively inexpensive level of electronic structure theory characterization of the conformational behavior of amino acids can be accomplished. Use of the B3LYP functional with sufficiently large basis sets may open the way to reliable studies on related medium-sized biomolecules, e.g., oligopeptides and their analogues.

4. Partly on the basis of the measured dipole moment components for conformers I and IIA and the observed integrated areas of the strongest lines of different conformers,

Godfrey et al.⁹ reported experimentally determined approximate lower limits for conformational energies relative to those of α -alanine **I**. All of their estimates are significantly different from the high-quality theoretical relative energy predictions of this report. The discrepancies deserve further study.

5. Energy estimates, based on the approximate, qualitative picture obtained by completely neglecting the effects of steric strain and lone electron pair repulsion and assigning independent energy contributions to the different possible H-bonds and the carboxylic functional group, clearly assess the importance of the related energy effects as follows: (a) the O-H···N H-bond has the largest stabilization effect; (b) the stabilization contribution of the N-H···O H-bond is only about half as large as that of the O-H···N H-bond, even though it's made up by two bifurcated H-bonds; (c) the N-H···OH bifurcated H-bond seems to be even weaker; (d) the energy difference between the *cis* and *trans* COOH arrangements is 1550(100) cm⁻¹, favoring the *cis* form. Appropriate sums of the corresponding simple estimates agree within about 250 cm⁻¹ with the relative energy values obtained from high-level theoretical computations.

6. A GED analysis by Iijima and Beagley¹¹ resulted in the heavy-atom structure of the lowest energy conformer of α -alanine. Their model for structure refinement, however, should be revised based on the newly available theoretical and experimental data, and the analysis should be repeated since significant changes in some structural parameters are expected.

7. Agreement between the 6-311++G** DFT(B3LYP) and MP2(full) rotational constants and experiment is excellent for the two low-energy forms of α -alanine, I and IIA. The rotational constants determined for the other, yet unobserved, conformers should have a comparable accuracy and thus aid the search for these conformers by rotational spectroscopy. Failure to detect IIB, a conformer having a large dipole moment and a relative energy similar to that of IIA, deserves special attention.

8. In line with previous theoretical studies^{73–79} the calculated quartic centrifugal distortion (QCD) constants are in excellent agreement with experiment for **I** once the quadratic force field is scaled. Accuracy of the calculated QCD constants for **IIA** is considerably lower.

9. The calculated vibrational spectra of the conformers of α -alanine reveal that different conformers have some highintensity bands in different regions of the spectrum. These considerable shifts in the normal modes would probably allow identification of a number of conformers in the gas-phase or in the low-temperature inert gas matrix vibrational spectrum of α -alanine.

Acknowledgment. Most of the research described was carried out during a stay of the author, supported by an Eötvös Fellowship of the Hungarian Ministry of Education, with Professor Ian M. Mills (Department of Chemistry, University of Reading), whose hospitality is gratefully acknowledged. The research described was also supported by the Scientific Research Foundation of Hungary (OTKA T017604). Most calculations reported have been performed on an IBM SP/2 computer system whose purchase was made possible by a grant from "Catching up with European Higher Education" (FEFA III/1052).

References and Notes

- (1) Levy, H. A.; Corey, R. B. J. Am. Chem. Soc. 1941, 63, 2095.
- (2) Donohue, J. J. Am. Chem. Soc. 1950, 72, 949.
- (3) Takagi, S.; Chihara, H.; Seki, S. Bull. Chem. Soc. Jpn. 1959, 32, 84.
- (4) Junk, G.; Sevec, H. J. Am. Chem. Soc. 1963, 85, 839.
- (5) Brown, R. D.; Godfrey, P. D.; Storey, J. W. V.; Bassez, M. P. J. Chem. Soc., Chem. Commun. 1978, 547.

(6) (a) Suenram, R. D.; Lovas, F. J. J. Mol. Spectrosc. 1978, 72, 372.
(b) Suenram, R. D.; Lovas, F. J. J. Am. Chem. Soc. 1980, 102, 7180.

(7) Brown, R. D.; Godfrey, P. D.; Storey, J. W. V.; Bassez, M. P.; Robinson, B. J.; Batchelor, R. A.; McCulloch, M. G.; Rydbeck, O. E. H.;

- Hjalmarson, A. G. Mon. Not. R. Astron. Soc. 1979, 186, 5.
 (8) Godfrey, P. D.; Brown, R. D. J. Am. Chem. Soc. 1995, 117, 2019.
 (9) Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. J. Am. Chem. Soc. 1993, 115, 9687.
- (10) Iijima, K.; Tanaka, K.; Onuma, S. J. Mol. Struct. 1991, 246, 257.
 (11) Iijima, K.; Beagley, B. J. Mol. Struct. 1991, 248, 133.
- (12) (a) Reva, I. D.; Stepanian, S. G.; Plokhotnichenko, A. M.; Radchenko, E. D.; Sheina, G. G.; Blagoi, Y. P. *J. Mol. Struct.* **1994**, *318*,
 (b) Reva, I. D.; Plokhotnichenko, A. M.; Stepanian, S. G.; Ivanov, A.
- Y.; Radchenko, E. D.; Sheina, G. G.; Blagoi, Y. P. Chem. Phys. Lett. 1995, 232, 141.
 (13) (a) Debies, T. P.; Rabalais, J. W. J. Electron Spectrosc. Relat.
- (13) (a) Debies, 1. P.; Rabalais, J. W. J. Electron Spectrosc. Relat. Phenom. **1974**, *3*, 315. (b) Klasinc, L. J. Electron Spectrosc. Relat. Phenom. **1976**, *8*, 161.
- (14) (a) Grenie, Y.; Lassegues, J. C.; Lagrange, C. G. J. Chem. Phys. **1970**, 53, 2980. (b) Grenie, Y.; Lagrange, C. G. J. Mol. Spectrosc. **1972**, 41, 240.

(15) Hu, C.-H.; Shen, M.; Schaefer, H. F., III. J. Am. Chem. Soc. 1993, 115, 2923.

(16) Császár, A. G. J. Mol. Struct. 1995, 346, 141.

- (17) Wright, L. R.; Borkman, R. F. J. Am. Chem. Soc. 1980, 102, 6207.
 (18) Császár, A. G. J. Am. Chem. Soc. 1992, 114, 9569.
- (19) Csaszar, A. G. J. Am. Chem. Soc. 1992, 114, 9507.
 (19) Palla, P.; Petrongolo, C.; Tomasi, J. J. Phys. Chem. 1980, 84, 435.

(20) van Alsenoy C.; Scarsdale, J. N.; Sellers, H. L.; Schäfer, L. Chem.
 Phys. Lett. 1981, 80, 124.

(21) van Alsenoy, C.; Kulp, S.; Siam, K.; Klimkowski, V. J.; Ewbank, J. D.; Schäfer, L. J. Mol. Struct. (THEOCHEM) **1988**, 50, 169.

(22) Schäfer, L.; Siam, K.; Klimkowski, V. J.; Ewbank, J. D.; van Alsenoy, C. J. Mol. Struct. (THEOCHEM) 1990, 63, 361.

(23) Schäfer, L.; Kulp-Newton, S. Q.; Siam, K.; Klimkowski, V. J.; van Alsenoy, C. J. Mol. Struct. **1990**, 209, 373.

(24) (a) Sellers, H. L.; Schäfer, L. J. Am. Chem. Soc. 1978 100, 7728.

(b) Sellers, H. L.; Schäfer, L. *Chem. Phys. Lett.* **1979**, *63*, 609. (c) Siam, K.; Klimkowski, V. J.; Ewbank, J. D.; Van Alsenoy, C.; Schäfer, L. J.

Mol. Struct. (THEOCHEM) 1984, 110, 171.

(25) Cao, M.; Newton, S. Q.; Pranata, J.; Schäfer, L. J. Mol. Struct. (THEOCHEM) 1995, 332, 251.

(26) Schäfer, L.; Sellers, H. L.; Lovas, F. J.; Suenram, R. D. J. Am. Chem. Soc. 1980, 102, 6566.

(27) Frey, R. F.; Coffin, J.; Newton, S. Q.; Ramek, M.; Cheng, V. K.
 W.; Momany, F. A.; Schäfer, L. J. Am. Chem. Soc. 1992, 114, 5369.

(28) Clementi, E.; Cavallone, F.; Scordamaglia, R. J. Am. Chem. Soc. 1977, 99, 5531.

(29) Dixon, D. A.; Lipscomb, W. N. J. Biol. Chem. 1976, 251, 5992.

(30) (a) Ramek, M. Int. J. Quantum Chem., Quantum Biol. Symp. 1990,
 17, 45. (b) Ramek, M.; Cheng, V. K. W.; Frey, R. F.; Newton, S. Q.;

Schäfer, L. J. Mol. Struct. (THEOCHEM) 1991, 235, 1.
 (31) (a) Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1991, 113,

7917. (b) Jensen, J. H.; Baldridge, K. K.; Gordon, M. S. J. Phys. Chem. **1992**, *96*, 8340.

(32) Vishveshwara, S.; Pople, J. A. J. Am. Chem. Soc. 1977, 99, 2422.
(33) Destro, R.; Marsh, R. E.; Bianchi, R. J. Phys. Chem. 1988, 92, 966.

(34) (a) O'Hair, R. A. J.; Bowie, J. H.; Gronert, S. Int. J. Mass Spectrom. Ion Processes 1992, 117, 23. (b) Gronert, S.; O'Hair, R. A. J. J. Am. Chem. Soc. 1995, 117, 2071.

(35) Sapse, A. M.; Mallah-Levy, L.; Daniels, S. B.; Erickson, B. W. J. Am. Chem. Soc. **1987**, 109, 3526.

(36) Yu, D.; Armstrong, D. A.; Rauk, A. Can. J. Chem. 1992, 70, 1762.
 (37) Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett. 1992, 199, 261.

(38) Vijay, A.; Sathyanarayana, D. N. J. Phys. Chem. 1992, 96, 10735.

(39) Barone, V.; Adamo, C.; Lelj, F. J. Chem. Phys. 1995, 102, 364.

(40) Frisch, M. J.; Pople, J. A.; Del Bene, J. E. J. Phys. Chem. 1985, 89, 3664.

(41) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.

(42) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. **1980**, 72, 650. (b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. **1983**, 4, 294. (c) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. **1984**, 80, 3265.

(43) Dunning, T. H. J. Chem. Phys. **1989**, 90, 1007.

(44) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. **1992**, 96, 6796.

(45) Partridge, H. Near-Hartree-Fock Quality Gaussian Type Orbital Basis Sets for the First- and Third-Row Atoms. NASA Technical Memorandum 101044; 1989.

(46) (a) Huzinaga, S. J. Chem. Phys. **1965**, 42, 1293. (b) Allen, W. D.; Schaefer, H. F., III. J. Chem. Phys. **1988**, 89, 329.

(47) Roothaan, C. C. J. *Rev. Mod. Phys.* **1951**, *23*, 69; *Ibid.* **1960**, *32*, 179.
(48) Pulay, P. *Mol. Phys.* **1969**, *17*, 197.

(49) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986.

(50) (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b)
Krishnan, R.; Frisch, M. J.; Pople, J. A. J. Chem. Phys. 1980, 72, 4244.
(51) (a) Čízek, J. J. Chem. Phys. 1966, 45, 4256. (b) Čízek, J.; Paldus,

(a) Charles (1990) (1990

(52) Bartiett, R. J.; Dykstra, C. E.; Paldus, J. in *Advanced Theories and Computational Approaches to the Electronic Structure of Molecules*; Dykstra, C. E., Ed.; Reidel: Dordrecht, 1984, p 127.

(53) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.

(54) (a) Scuseria, G. E.; Scheiner, A. C.; Lee, T. J.; Rice, J. E.; Schaefer, H. F., III. J. Chem. Phys. **1986**, 86, 2881. (b) Scuseria, G. E.; Lee, T. J. J. Chem. Phys. **1990**, 93, 5851. (c) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. Symp. **1989**, 23, 199. (d) Lee, T. J.; Scuseria, G. E. In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy; Langhoff, S. R., Ed.; Kluwer: Dordrecht, 1995; p 47.

(55) (a) Dirac, P. A. M. Proc. Cambridge Philos. Soc. 1930, 26, 376.
(b) Becke, A. D. Phys. Rev. B 1988, 38, 3098. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (d) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (e) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.

(56) Pople, J. A.; Frisch, M. J.; Luke, B. T.; Binkley, J. S. Int. J. Quantum Chem., Symp. 1983, 17, 307.

(57) Handy, N. C.; Knowles, P. J.; Somasundram, K. *Theor. Chim. Acta* **1985**, 68, 87.

(58) Allen, W. D.; Császár, A. G. J. Chem. Phys. 1993, 98, 2983.

(59) (a) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Fox, D. J.; Vincent, M.

A.; Schaefer, H. F., III. J. Mol. Struct. **1983**, 103, 183. (b) Handy, N. C.; Schaefer, H. F., III. J. Chem. Phys. **1984**, 81, 5031.

(60) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem., Symp. 1979, 13, 225.

(61) Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett, R. J. Int. J. Quantum Chem., Symp. **1992**, 26, 879.

(62) Frisch, M. J.; et al. *Gaussian 94*, Revision B.2; Gaussian Inc.: Pittsburgh, PA, 1995.

(63) PSI Version 2.0; Psitech, Inc.: Watkinsville, GA, 1991.

(64) (a) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. **1989**, 162, 165. (b) Turbomole User Guide, version 2.3.0; Pierum Technologies: San Diego, 1002

Biosym. Technologies: San Diego, 1993. (65) Hedberg, L.; Mills, I. M. J. Mol. Spectrosc. **1993**, 160, 117.

(66) (a) Allen, W. D.; East, A. L. L.; Császár, A. G. Structures and Conformations of Non-Rigid Molecules; Laane, J., Dakkouri, M., van der Veken, B., Oberhammer, H., Eds.; Kluwer: Dordrecht, 1993; p 343. (b) Császár, A. G. J. Phys. Chem. **1994**, 98, 8823. (c) Császár, A. G.; Allen,

W. D. J. Chem. Phys. 1996, 104, 1. (d) Martin, J. M. L. Chem. Phys. Lett. 1995, 242, 343.

(67) To evaluate core correlation effects the cc-pVTZ basis was completely uncontracted and polarized into the core region by adding two sets of tight d and f polarization manifolds to it, resulting in an extended basis denoted, similarly to previous studies,^{66c} as CV(TZ). By freezing the C and O 1s core and all virtual orbitals greater than 150 au in energy, the *cis*-*trans* energy difference of formic acid was found to be 1564.2 cm⁻¹ at the MP2 level. An analogous set of MP2 calculations with all orbitals correlated subsequently gave an energy difference of 1564.9 cm⁻¹, indicating a negligible, -0.7 cm^{-1} , contribution of core-core and core-valence correlation to the *cis*-*trans* energy difference.

(68) Räsänen, M.; Aspiala, A.; Homanen, L.; Murto, J. J. Mol. Struct. 1982, 96, 81.

(69) Flood, E.; Pulay, P.; Boggs, J. E. J. Am. Chem. Soc. 1977, 99, 5570.

(70) It is noted here that, using GED data, Ewbank and co-workers (Ewbank, J. D.; Klimkowski, V. J.; Siam, K.; Schäfer, L. J. Mol. Struct. **1987**, 160, 275) determined the structure of the lowest energy conformer of the methyl ester of α -alanine. As expected, also on the basis of results presented in this study, the molecular intensities measured proved to be consistent with a form corresponding to α -alanine **I**.

(71) Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A. J. Am. Chem. Soc. **1983**, 105, 7037.

(72) Allen, W. D.; Császár, A. G.; Horner, D. A. J. Am. Chem. Soc. 1992, 114, 6834.

(73) Császár, A. G.; Fogarasi, G. J. Chem. Phys. 1988, 89, 7646.

(74) Clabo, D. A., Jr.; Allen, W. D.; Remington, R. B.; Yamaguchi, Y.; Schaefer, H. F., III. *Chem. Phys.* **1988**, *123*, 187.

(75) Császár, A. G.; Fogarasi, G.; Boggs, J. E. J. Phys. Chem. 1989, 93, 7644.

(76) Wlodarczak, G.; Burie, J.; Demaison, J.; Vormann, K.; Császár, A. G. J. Mol. Spectrosc. **1989**, 134, 297.

(77) Császár, A. G. Chem. Phys. Lett. 1989, 162, 361.

(78) Allen, W. D.; Yamaguchi, Y.; Császár, A. G.; Clabo, D. A., Jr.; Remington, R.; B.; Schaefer, H. F., III. *Chem. Phys.* **1990**, *145*, 427.

(79) Bogey, M.; Bolvin, H.; Cordonnier, M.; Demuynck, C.; Destombes, J. L.; Császár, A. G. J. Chem. Phys. **1994**, 100, 8614.

(80) An early application of SQM theory for molecules of biological interest was the prediction of the fundamental vibrations of uracil (Harsányi, L.; Császár, P.; Császár, A.; Boggs, J. E. *Int. J. Quantum. Chem.* **1986**, *29*, 799).

JP9533640