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General derivative relations for anharmonic force fields
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The brace notation, introduced by Allen and Csdszdr (1993, J. chem. Phys.,
98, 2983), provides a simple and compact way to deal with derivatives of
arbitrary non-tensorial quantities. One of its main advantages is that it builds
the permutational symmetry of the derivatives directly into the formalism. The
brace notation is applied to formulate the general nth-order Cartesian
derivatives of internal coordinates, and to provide closed forms for general, nth-
order transformation equations of anharmonic force fields, expressed as Taylor
series, from internal to Cartesian or normal coordinate spaces.

1. Introduction

One of the first steps in analyses of the internal motion of molecular species is the
selection of an appropriate set of structural and dynamical coordinates. Considerable
effort has been devoted toward understanding the properties of different orthogonal
or non-orthogonal, rectilinear or curvilinear coordinate systems, and the trans-
formation of scalar and vector quantities from one coordinate system to another
[1-16]. Thus, the theory is well established and many important aspects are covered in
standard textbooks [2, 9]. Still, as shown here, improvements can be made in
treatments of coordinate systems employed in theoretical chemistry.

Equations expressing the transformation of derivatives from internal coordinates
into the Cartesian space, and vice versa, are cumbersome due to the nonlinear nature
of common internal coordinate systems. About ten years ago Neto, in a series of papers
[10-14], introduced elements of tensor theory as an aid to derivation, simplification
and computation of these bulky expressions. This approach seemed logical, as tensor
theory is concerned with how particular mathematical quantities (a given set of
functions) behave under general coordinate transformations. However, most quan-

0026-8976 /96 $12:00 © 1996 Taylor & Francis Ltd



1214 W.D. Allen ef al.

tities which appear in anharmonic force field studies are non-tensorialt. Nevertheless,
the basic idea of Neto was to introduce derivatives of the metric tensor to express
second- and higher-order coefficients of the transformation equations, as usual in such
mathematical theories. More explicitly, Neto employed Christoffel symbols of the
second kind, which are third-order covariant affine tensors formed as appropriate
sums of partial derivatives of the metric tensor. To calculate the Christoffel symbols,
the metric tensor must be given in advance, as noted by Neto, which, with the aid of
computer algebra systems (CAS), can indeed be achieved easily [17]. Neto observed
[11] that the quadratic and cubic geometric derivative relations} can be cast into a
form involving Christoffel symbols of the second kind and their first derivatives. It is
shown here that a conceptually simpler and more compact representation of these
expressions can be achieved without any explicit reference to the usual elements of
tensor algebra and derivatives of tensors.

2. The brace notation

In the theory of molecular vibrations, complications arise from the transformation
of coordinates from one set to another when the transformation equations are
nonlinear. If two distinct sets of n independent coordinates are denoted by covariant
vector components r;and ¢, such a transformation would take the general form

ri= Xiq X P qq X qqq EX T 404040007t (1)
In this equation the summation convention has been adopted, where independent

summations are assumed over each index that is repeated as both a superscript and a
subscript. The transformation coefficients X  are defined by the equations

X[=0r/0q, o
X[ =0%r/0q,0q, "
X[ = 0°r,/0q,0q,0q., (4)
and
Ximu — 84ri/aqraanQtaqln (5)

etc. The presence of non-zero higher derivatives implies that the transformation is
nonlinear.

When we wish to use the X elements to transform the potential energy V, for
example, from the r representation to the ¢ representation, we obtain somewhat
complex transformation equations involving sums over many permutations of the
indices. For example, if the expansion of V7 in the two sets of coordinates is written

V=V°+ Vir-++Vijr-r-+'17Vijkr-r-rk+...
o2 ] 6 1]

=Vt V’q,+;'V”q,qs+'(‘;qu,qsqt+..., (6)
then it may be shown that the expansion coefficients are related by the equations
Vi=ViXi= ViX4r, (7)
Vo= VIXIX A VX = VX (r,sy+ VX frs), (8)
and Ve = VIR XX A VIX XXX XX )+ VX
= VX olrs, 4+ VX jrs, ty+ VX grst). 9)

T Neto showed, e.g., in equations (27) and (28) of [10], that the second-order transformation
equation can be expressed in a form which represents a formal tensor transformation.

1 Note that equations (26a)—(26¢) of [11] are equivalent to equations (8), (16) and (17)
of [16], respectively.
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Table 1. Totalnumber of terms, # (K, n), represented by the brace notation in second through
fifth order in relation to permutation groups S ,.

Group Class Order X, an Z(K,n)
2 12 1 {BI’BQ} 1
. 1B 1 (BLB.BY 1

12 3 (BB,B} 3
32 {(BBB) 1
s, 11 {ﬁl,ﬁ BB} 1
122 6 {BB.B,B} 6
13 8 (B B,B,.B} 4
2 3 (B B.BBY 3
4 6 (B B.B B 1
s, Is 1 {B.B, BB B} 1
152 10 {B BB, B, B, 10
123 20 (B B,B, B, B} 10
12215 {B B.B,B, B} 15
14 30 (B B,B BB} 5
23 20 {BB,B,.B B} 10
5 24 {B.B BB, B} 1

“ Itis clear, see also the text, that for a given
partition of segment length K in the group S,
Z(K,n) = n!/[ lk=1 (1N (m )], where Ais the
number of distinct lengths in the partition, /, is
the length of the kth segment and m, is the
number of occurrences of the same segment
length.

In equations (7)-(9) the brace notation [16] is introduced, which is defined as
follows:

oc‘oc‘ an{ﬂ 7/ ﬂ ﬂn 7/11
—ZX ol C(B Y, By  Ba¥a-)l, (10)

where X is an arbitrary quantity, and % enumerates all unique combinations €, of a
given composite list of indices, while

Xooas By s By Yy s BV 1 = X ngn X B (11)
and typically

al)
Xbne = | ————|, 12
“ (5%‘ 5qy‘ ) (12)

with ¢ and r denoting arbitrary coordinate systems. The following example,

Xoo P16t =X, o [Br 81+ X, [BS, N+ X, . [76, Pl
= ngxgz+ngxgz+ngxgz, (13)
elucidates the notation.

As is clear from the examples above, a central feature of the notation is that it
introduces in the braces the permutation of indices of coordinates with respect to
which the derivatives are to be formed. This has important ramifications if the brace
notation is to be used for quantities which are derivatives of scalars. To emphasize the
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close connection between permutational symmetry and the brace notation, the
number of terms represented by the brace notation is given, for a few representative
cases, in table 1. Note that the total number of terms indicated in the last column of
table 1 would not necessarily arise in every case, the structure of X might have to be
considered in order to ascertain the permutational properties of the braces [16].
Nevertheless, in the cases to follow, all terms referred to in table 1 are present.

3. Applications of the notation

Examples are presented to highlight the merits of the brace notation when working
with curvilinear internal coordinates as used in molecular spectroscopy, which are
scalars even in their most general definition, measuring arbitrary distances and angles
within a molecule.

1. B tensors

The brace notation proves powerful in the formulation of B tensor elements of
arbitrary order, i.e., the general nth-order derivatives of internal coordinates with
respect to the Cartesian position vectors of the constituent atoms. In demonstrating
the brace formulation here for three basic internal coordinates—bond distances (R),
valence bond angles (¢) and torsion angles (r)—the following notation is adopted: a,
b, c and d (generically a,or b)) represent constituent atoms; «, 8, 7, 6 and o (generically
a;) denote Cartesian variables x, y or z; .@%’K’“"‘ is an operator for the partition

A which divides a list of m, indices pu, = 4,0, 0,...a oy d, 0y, A, 0y, -
Ay O A, O 4 Ay O oo Ay Oy oo A Oy A Ol e anam 1nto Ksegments {l,,z =
1, 2 K} and _%(K mn) is the number of such unique partltlons Ny The 25 Wi
operator is prevalent in the algebra of the symmetric group S, and is similar to the
entity #,%,") defined by Allen and Csdszdr [16]; it maintains the initial lexical ordering
within g, but the segment lengths are now ordered arbitrarily as l1 < 12... < Ig.
Direct differentiation shows that for atom « the first- and second-order B tensor

elements of the bond-stretching coordinate R,, are simply

ao aRﬂb - aRﬂb ba
By =—7T"=Ro,— ) = — = — B} (14)
das da,
and
BB = PRy _ R UBEBF- 5 15
R = Ba,,@ﬂ,, - ﬂb( R PR aﬂ)' (15)

The quantity B is a component of the ubiquitous El’'yashevich-Wilson B matrix [2],
and it can be rendered collectively as b% = (B%, B%,B%) = e,,, where e,, is the unit
vector directed from a to b. In equation (15), §,4is the Kronecker delta symbol. A
common factor of R,} and products of lower-order tensor elements appear in all bond-
stretch derivative expressions. For all orders greater than two, the general formula
becomes

Z(9,1)
B4 = — R 2 BR(Z){‘@(}/"‘(aala%... aan,)}, (16)
Va
which involves partitions of the indices into two segments, these being applied to a

product of two lower-order B tensor elements for R, as signified by the R2)subscript
in the brace notation. To illustrate the notation, consider the fourth-order expression.
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The unique partitions of 4 into 2 segments are (13) and (22). As shown in table 1, the
braces for (13) and (22) embody 4 and 3 terms, respectively; hence,

dagdfaya, aRa - do apayas a agayas a agdpas as paodpa
B = 7805,,8[3,,8;,,85 R,A(B3 BSPTr™o 4 BAP Boer70 4 By Be7P® 4 g9 gty
— R A(BYEP B+ B B+ B B, (17)

The structure of equation (16) facilitates the recursive construction of high-order B
tensors from collections of lower-order counterparts with minimal arithmetic
requirements, a highly desirable property for practical applications which motivates
similar formulations for other coordinates.

For the valence bond angle ¢, the key to the general formulation is the
identification

By = Rijescdl(e,cey)e,—e,l, = —cscg X Byl B, (18)
oE(X,¥,2)

where e,, and e,. are again unit vectors directed from atoms a to b and b to c,
respectively. Note that the convenient contraction of terms into a dot product over
{x,y,z} of first- and second-order stretching tensors allows equation (16) to be utilized.
Differentiation of equation (18) with respect to the terminal atoms a and ¢, followed
by back substitution from the same equation to eliminate the original summation over
o, yields

By*P = —cot ¢By" By —cscdp D, BYPBY (19)
oELX, V,7}
and
By*P = —cot ¢B;“BJ—csc¢ D, BB (20)
of{ X, ¥,7}

This scheme can be implemented repeatedly to reveal the following generic form:

(K, 1)

B0 Aem me, Qg = z fx(@) z Bk P "’(aocl A0, ... A0y COlpy COpy, ... COLp)}
K=g
—csc¢ OE{XZY’Z} Raps Rpd acaocl aq, ... A0y, COCUny | CQumy,y - cay, (21)
in which
if K odd,
Sl(d) = (22)

il (—1)*2cot¢ if K even.

The double summation constituting the first term of equation (21) now includes all
partitions of n with number of segments K greater than 1, and the indices divided by
the operator @&V are applied via the brace symbol to products of K lower-order B
tensors of ¢. In the fourth-order case, the partition list is (13), (22), (122) and (14), the
respective brace symbols representing 4, 3, 6 and 1 terms. Thus,
By = — cot ¢(B;* B+ By By*""°+ By B;*P"°+ B By )
_ agap payas aga apas agas papa
cot $(By*P By O+ By BP0+ By ByP)
+(B;*B," B+ B," By’ B,/ + B;*B;° B,/
ap npa apas ap aoa a as pdaad
+B;"B;'B;""+ B;"B;° B;""+ B, B}’ B,
+cot gBy“B{’ By By’ ~csc¢ Y, Byl

oE{X, ,z}

(23)

Rpe

for the aaafayas derivative, with all a/c cross-derivatives being of identical form.
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The terminal-atom derivatives of the dihedral angle 7,,., are perhaps best obtained
from the customary first-order vector expression

€ X ey

b’ =
] s
R, 8102 ¢ 4

: (24)

because this form is devoid of sin 7 or cos 7 factors in the denominator which give rise

to point singularities at planar or perpendicular conformations. The substitutions
a

€, = b‘,}be and ey, = [Rysin ¢ue by, +ey]sec ¢y in the numerator of equation (24)
provide the compact form

Sin (2¢ape) B = 2(b3, X b ), . (25)

To differentiate the left side of equation (25), a generalized product rule for partial
derivatives is useful, as formulated conveniently in brace notation:

Z(o,1)
Bil, = B+ gBi"+ > (B d P35 (1) + B AP5 " (un)}). (26)
N

Accordingly, the recursive formula

. Ao da ... dogm — do da ... do c _ da dg ... do
SN (2 ) B4 = Dbt mX b ), — B BY e

AP Naa, ... aan) aa}) (27)

obapc)s

F(g,m)
o, 11
- ; (B,’Sin(2¢gbc){aa1¢(j )(aa2...aam)}+BSin(

is obtained for a-atom derivatives of . Alla/d terminal-atom cross-derivatives vanish,
as revealed by equation (24). The utility of equation (27) hinges not only on equation
(21) for the evaluation of by% %" but also on a means of computing B tensor
elements of the composite function sin (2¢,,.). Fortunately, the latter can be built up
from ¢, counterparts using another inductively-derived formula involving sums
over partitions:

B”alﬂaz---”a:nbanw, bamy, ... bon Cang @ny,. Cp —

P F(K,p)
z h i (§) z n/VKB¢<K)[¢(/VK’;p)(aaI aa,... aambaml bam+2 . ba, COny, COlny, - coap)l
Sk

K=
(28)
The summand therein involves a B-tensor bracket rather than a brace, whereas
I (- 1% 2c0s¢ if K odd,
h(¢) = i (29)

b (=1 2sing if K even,

and 7, is a combinatoric factor. If there are A, distinct lengths in the partition of p
. . A _ N _ .
into K segments, and length /; appears n, times, then 7 n;l;=p, Iygn; =K, and it
happens that
p!
Ny = % .
TTaymmy

=1

(30)

Translational invariance conditions reduce the number of explicit formulas of
arbitrary order which are required to generate complete sets of B tensors for force field
transformations. For any two-point coordinate (Q2) such as the bond distance R, all
b-atom derivatives can be replaced with a-atom counterparts according to

Bﬂa,ﬂaz---ﬂambamﬁbanwz---ban - (_ 1)“- mpaa da,..A0mA0n, Aoy ... oy (31)

Q

2
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For a general n-point coordinate (Q,), translational invariance can be invoked
successively to eliminate all indices involving an arbitrarily chosen atom a,:

aada..domdaoa a a .4 amda a.a .4 am ...9p0 4apa ...dpa
BQ‘ e, 10m A0 4y Dy 0m gy D 0m D, 0m gy B0 vy Dy 0m n0my, 4 Inlm, o+, n%m
n
— aoadao..doun ba a o .damaa a o .4 oy ... qpa ana ... o
= — E BQ‘ 4.2, 1%m bom b ,0m gy G 0m D, 0m g, D 0m gy D,0m n%m, 4+, 9n%m,_ +, n%m
n 2 2 2 3 1 1
b
1
_ m-m
=(—=1)"% "
4ada,.q9an bam 4 bam,..bm-mam 9 om 4 9 0m 4, q0m . 9n0tm 4 nom 4, Dn0tm
dllz 1 ‘l ‘lz‘z B “J‘IJ‘Z 3 n-,"1 n- "2 n
n 2 2 2 2 3 1 1 9
b b,...bm - m
2 1

(32)

where atoms b€ {a,;k = 1,3,4,...,n}. In essence, the first equivalence in equation (32)
constitutes an efficacious, recursive algorithm for building up B tensors involving
atom a,. For the valence bond angle ¢,,., equations (21) and (32) are thus sufficient to
compute a complete set of nth-order derivatives. For the dihedral angle 7,,,, explicit
derivative formulae involving a central atom cannot be avoided, however, because
only indices of atom b or ¢ can be fully replaced via equation (32). The use of rotational
invariance relations does not solve this problem, because their structure requires at
least some B tensor components of three distinct atoms as an initial input. Ostensibly,
explicit torsional derivative formulae for all combinations of a/b/d type are thus
necessary. However, any B tensor element involving both terminal atoms vanishes, so
that only diagonal a, b and d as well as off-diagonal a/b and b/d derivative types are
requisite. Equation (27) nicely accounts for the diagonal ¢ and d elements, but the
explicit formulae for the other three types are not compact.

Note, finally, that all formulae but the translational invariance conditions
presented in this section were checked with the powerful CAS program Mathematica
[18].

3.2. Force field transformation 1

This application of the brace notation considers nonlinear force constant
transformations between internal and Cartesian spaces. Because the molecular
potential energy surface does not depend on the external variables (translation and
rotation) of the system, the components of the Cartesian gradient can be determined
via a linear, tensorial transformation of the internal forces alone

V'= VB (33)

where V" and V' are used to denote Cartesian- and internal-coordinate potential
energy derivatives, respectively, and the summation should, of course, go through M,
the number of internal coordinates. In third order, a transformation expression for the
cubic force constant matrix in Cartesian coordinates arises by direct differentiation of
equation (33), resulting in

V™ = VIBirsty+ V IiBYrs, ty+ VI By s, 1} (34)

With the aid of the brace notation, the general transformation equation can be written
in the following abstract form:

(K,n

o ) n M Z )
ipdyein = z |: z VP‘PZ...PK z BP‘PZ...PK{ ;,11)(i1 l2 ln)}:| (35)

k=1 Lpp,. Pk n=y

In equation (35) no use of the Einstein summation convention was made to show
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details of the summation limits. The similar structure of equations (16), (21), (28) and
(35) isexpected as derivatives of internal coordinates, and derivatives of the molecular
potential energy, another scalar, are formulated therein. Note, finally, that a general
equation governing the inverse transformation of Cartesian force fields into internal
coordinate ones is given, using the brace notation, in [16].

3.3. Force field transformation 2

A simplified method of setting up the required nonlinear coordinate trans-
formations from curvilinear internal coordinates to simple normal coordinates has
been described, some time ago, by Hoy, Mills and Strey [7b]. The transformation
coefficients were called the L tensor elements and the transformation equation in
second and third orders were provided as

®" = A, = fUL{L} no sum over r, (36)
and
O™ = fULILL A fILEL AL L+ LY LY, (37)

where the coefficients A, = 4n2c2w? are the harmonic force constants; the first
derivative elements of the L tensor are identical to the familiar L matrix [2], the f ¥ and
[ are second- and third-order force constants in internal coordinates, respectively,
while @ and @™ are second- and third-order force constants in normal cordinates,
respectively.

In the brace notation the third- and fourth-order transformation equations,
presented in equation (11) of [7b], are simply rewritten as

@™ = fUL drs, 63+ UL s, 1) (38)
and

o™ = fML il S, b u} + L adrs, b, ul + /9L Ars, tuy+ L frst, u}). (39)

It is clear from the structure of the above equations that the transformation terms
can be cast into a general form, valid through nth order, as follows:

.. . n M 2&") n
Dy in = z |: z fP,Pz...PK /Vz Lplpz...PK{g(/;;’ )(il i2~.. il;)}:|. (40)

K=y Lp p,. Pk 1

The great similarity of equations (35) and (40) is obvious. The main difference
between the two equations is that while B can be given analytically, L;, for obvious
reasons, cannot. A further difference is that the first summation in equation (40) goes
only from K = 2, as in this case no first-order derivatives (forces) are of interest.

4. Summary

In the theory of molecular vibrations complications arise in nonlinear trans-
formation among coordinate sets, but it is shown here that the brace notation
introduced in equations (10)—(12) provides a simple and compact way to deal with the
derivatives arising in the equations. The main advantage of the notation is that it
builds the permutational symmetry of the derivatives directly into the formalism, thus
simplifying the appearance of the related expressions significantly and allowing a
straightforward way for their generalization. In this communication the brace notation
is applied to formulate the general nth-order Cartesian derivatives of internal
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coordinates. Due to the required translational invariance condition pertaining to the
derivatives, all Cartesian derivatives of the stretching and the bending coordinate can
be determined from the expression given for one centre. Closed forms for general, nth-
order transformation equations of anharmonic force fields, expressed as Taylor series,
from internal to Cartesian or normal coordinate spaces are also given. A related
expression, governing the inverse transformation of Cartesian force fields into the
internal space is given, using the same brace notation, in [16].
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Ministry of Education awarded to A.G.C. to cover his stay in Reading, and by the
Scientific Research Foundation of Hungary (OTKA F013962 to A.G.C. and T007294
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