
M o l e c u l a r P h y s i c s , 1996, V o l . 89, N o . 5, 1213 ± 1221

General derivative relations for anharmonic force ® elds

By WESLEY D. ALLEN

Center for Computational Quantum Chemistry, University of Georgia, Athens,

GA 30602, USA

ATTILA G. CSA! SZA! R
Department of Theoretical Chemistry, Eo$ tvo$ s University, PO Box 32,

H-1518 Budapest 112, Hungary

VIKTOR SZALAY

Research Laboratory for Crystal Physics, Hungarian Academy of Sciences,

PO Box 132, H-1502 Budapest, Hungary

and IAN M. MILLS

Department of Chemistry, University of Reading, Whiteknights,

Reading, RG6 2AD, UK

(Recei Š ed 31 January 1996 ; accepted 18 April 1996)

The brace notation, introduced by Allen and Csa! sza! r (1993, J. chem . Phys.,

98, 2983), provides a simple and compact way to deal with derivatives of

arbitrary non-tensorial quantities. One of its main advantages is that it builds
the permutational symmetry of the derivatives directly into the formalism. The

brace notation is applied to formulate the general nth-order Cartesian

derivatives of internal coordinates, and to provide closed forms for general, nth-
order transformation equations of anharmonic force ® elds, expressed as Taylor

series, from internal to Cartesian or normal coordinate spaces.

1. Introduction

One of the ® rst steps in analyses of the internal motion of molecular species is the

selection of an appropriate set of structural and dynamical coordinates. Considerable

eŒort has been devoted toward understanding the properties of diŒerent orthogonal

or non-orthogonal, rectilinear or curvilinear coordinate systems, and the trans-

formation of scalar and vector quantities from one coordinate system to another

[1 ± 16]. Thus, the theory is well established and many important aspects are covered in

standard textbooks [2, 9]. Still, as shown here, improvements can be made in

treatments of coordinate systems employed in theoretical chemistry.

Equations expressing the transformation of derivatives from internal coordinates

into the Cartesian space, and vice versa, are cumbersome due to the nonlinear nature

of common internal coordinate systems. About ten years ago Neto, in a series of papers

[10± 14], introduced elements of tensor theory as an aid to derivation, simpli® cation

and computation of these bulky expressions. This approach seemed logical, as tensor

theory is concerned with how particular mathematical quantities (a given set of

functions) behave under general coordinate transformations. However, most quan-
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tities which appear in anharmonic force ® eld studies are non-tensorial ‹ . Nevertheless,

the basic idea of Neto was to introduce derivatives of the metric tensor to express

second- and higher-order coe� cients of the transformation equations, as usual in such

mathematical theories. More explicitly, Neto employed ChristoŒel symbols of the

second kind, which are third-order covariant a� ne tensors formed as appropriate

sums of partial derivatives of the metric tensor. To calculate the ChristoŒel symbols,

the metric tensor must be given in advance, as noted by Neto, which, with the aid of

computer algebra systems (CAS), can indeed be achieved easily [17]. Neto observed

[11] that the quadratic and cubic geometric derivative relations Œ can be cast into a

form involving ChristoŒel symbols of the second kind and their ® rst derivatives. It is

shown here that a conceptually simpler and more compact representation of these

expressions can be achieved without any explicit reference to the usual elements of

tensor algebra and derivatives of tensors.

2. The brace notation

In the theory of molecular vibrations, complications arise from the transformation

of coordinates from one set to another when the transformation equations are

nonlinear. If two distinct sets of n independent coordinates are denoted by covariant

vector components r
i

and q
r
, such a transformation would take the general form

r
i
¯ X r

i
q

r
­ "

#
X rs

i
q

r
q

s
­ "

’
X rst

i
q

r
q

s
q

t
­ "

# %
X rstu

i
q

r
q

s
q

t
q

u
­ ¼ . (1)

In this equation the summation convention has been adopted, where independent

summations are assumed over each index that is repeated as both a superscript and a

subscript. The transformation coe� cients X rs ¼

i
are de ® ned by the equations

X r
i
¯ ¥ r

i
} ¥ q

r
, (2)

X rs
i

¯ ¥ # r
i
} ¥ q

r
¥ q

s
, (3)

X rst
i

¯ ¥ $ r
i
} ¥ q

r
¥ q

s
¥ q

t
, (4)

and
X rstu

i
¯ ¥ % r

i
} ¥ q

r
¥ q

s
¥ q

t
¥ q

u
, (5)

etc. The presence of non-zero higher derivatives implies that the transformation is

nonlinear.

When we wish to use the X elements to transform the potential energy V , for

example, from the r representation to the q representation, we obtain somewhat

complex transformation equations involving sums over many permutations of the

indices. For example, if the expansion of V in the two sets of coordinates is written

V ¯ V e­ V ir
i
­ "

#
V ijr

i
r
j
­ "

’
V ijk r

i
r
j
r
k
­ ¼

¯ V e­ V rq
r
­ "

#
V rsq

r
q

s
­ "

’
V rst q

r
q

s
q

t
­ ¼ , (6)

then it may be shown that the expansion coe� cients are related by the equations

V r ¯ V iX r
i
¯ V iX

i
² r ´ , (7)

V rs ¯ V ijX r
i
X s

j
­ V iX rs

i
¯ V ijX

ij
² r, s ´ ­ V iX

i
² rs ´ , (8)

and
V rst ¯ V ijk X r

i
X s

j
X t

k
­ V ij(X rs

i
X t

j
­ X rt

i
X s

j
­ X st

i
X r

j
) ­ V iX rst

i

¯ V ijk X
ijk

² r, s, t ´ ­ V ijX
ij
² rs, t ´ ­ V iX

i
² rst ´ . (9)

‹ Neto showed, e.g., in equations (27) and (28) of [10], that the second-order transformation
equation can be expressed in a form which represents a formal tensor transformation.

Œ Note that equations (26 a)± (26 c) of [11] are equivalent to equations (8), (16) and (17)

of [16], respectively.



General deri Š ati Š e relations for anharmonic force ® elds 1215

Table 1. Total number of terms, , (K, n), represented by the brace notation in second through

® fth order in relation to permutation groups S
n
.

Group Class Order X a
"
a
#
¼ a

n
, (K, n)

S
#

1 # 1 ² b
"
, b

#
´ 1

S
$

1 $ 1 ² b
"
, b

#
, b

$
´ 1

12 3 ² b
"
b

#
, b

$
´ 3

3 2 ² b
"
b

#
b

$
´ 1

S
%

1 % 1 ² b
"
, b

#
, b

$
, b

%
´ 1

1 # 2 6 ² b
"
b

#
, b

$
, b

%
´ 6

13 8 ² b
"
b

#
b

$
, b

%
´ 4

2 # 3 ² b
"
b

#
, b

$
b

%
´ 3

4 6 ² b
"
b

#
b

$
b

%
´ 1

S
&

1 & 1 ² b
"
, b

#
, b

$
, b

%
, b

&
´ 1

1 $ 2 10 ² b
"
b

#
, b

$
, b

%
, b

&
´ 10

1 # 3 20 ² b
"
b

#
b

$
, b

%
, b

&
´ 10

12 # 15 ² b
"
b

#
, b

$
b

%
, b

&
´ 15

14 30 ² b
"
b

#
b

$
b

%
, b

&
´ 5

23 20 ² b
"
b

#
b

$
, b

%
b

&
´ 10

5 24 ² b
"
b

#
b

$
b

%
b

&
´ 1

a It is clear, see also the text, that for a given
partition of segment length K in the group S

n
,

, (K, n) ¯ n ! } [ 0 k

k= "
(l

k
!)mk (m

k
!)], where k is the

number of distinct lengths in the partition, l
k

is
the length of the kth segment and m

k
is the

number of occurrences of the same segment

length.

In equations (7)± (9) the brace notation [16] is introduced, which is de ® ned as

follows :

X a
"
a

#
¼ a

n
² b

"
c
"
¼ , b

#
c
#
¼ , ¼ , b

n
c

n
¼ ´

3 3
,

X a
"
a
#
¼ a

n
[ # , ( b

"
c
"
¼ , b

#
c
#
¼ , ¼ , b

n
c

n
¼ )], (10)

where X is an arbitrary quantity, and , enumerates all unique combinations # , of a

given composite list of indices, while

X a
"
a

#
¼ a

n
[ b

"
c
"
¼ , b

#
c
#
¼ , ¼ , b

n
c

n
¼ ] 3 X b

"
c
"
¼

a
"

X b
#
c
#
¼

a
#

¼ X b
n

c
n

¼
a
n

, (11)

and typically

X b
"
c
"
¼

a
"

3 0 ¥ nr a
"

¥ q b
"

¥ q c
"

¼ 1 , (12)

with q and r denoting arbitrary coordinate systems. The following example,

X a
"
a

#

² b c , d ´ 3 X a
"
a
#

[ b c , d ] ­ X a
"
a

#

[ b d , c ] ­ X a
"
a
#

[ c d , b ]

3 X b c
a
"

X d
a

#

­ X b d
a
"

X c
a

#

­ X c d
a

"

X b
a

#

, (13)

elucidates the notation.

As is clear from the examples above, a central feature of the notation is that it

introduces in the braces the permutation of indices of coordinates with respect to

which the derivatives are to be formed. This has important rami® cations if the brace

notation is to be used for quantities which are derivatives of scalars. To emphasize the
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close connection between permutational symmetry and the brace notation, the

number of terms represented by the brace notation is given, for a few representative

cases, in table 1. Note that the total number of terms indicated in the last column of

table 1 would not necessarily arise in every case, the structure of X might have to be

considered in order to ascertain the permutational properties of the braces [16].

Nevertheless, in the cases to follow, all terms referred to in table 1 are present.

3. Applications of the notation

Examples are presented to highlight the merits of the brace notation when working

with curvilinear internal coordinates as used in molecular spectroscopy, which are

scalars even in their most general de® nition, measuring arbitrary distances and angles

within a molecule.

3.1. B tensors

The brace notation proves powerful in the formulation of B tensor elements of

arbitrary order, i.e., the general nth-order derivatives of internal coordinates with

respect to the Cartesian position vectors of the constituent atoms. In demonstrating

the brace formulation here for three basic internal coordinatesÐ bond distances (R),

valence bond angles ( u ) and torsion angles ( s ) Ð the following notation is adopted : a,

b, c and d (generically a
i
or b

i
) represent constituent atoms ; a , b , c , d and r (generically

a
i
) denote Cartesian variables x, y or z ; 0 (K,mn ).

K
is an operator for the partition

.
K

which divides a list of m
n

indices l
mn

¯ a
"
a

"
a

"
a

#
¼ a

"
a

m
"

a
#
a

m
"
+ "

a
#
a

m
"
+ #

¼

a
#
a

m
#

a
$
a

m
#
+ "

a
$
a

m
#
+ #

¼ a
$
a

m
$

¼ a
n

a
mn Õ "

+ "
a

n
a

mn Õ "
+ #

¼ a
n

a
mn

into K segments ² l
i
; i ¯

1, 2, ¼ , K ´ , and , (K , m
n
) is the number of such unique partitions .

K
. The 0 (K,mn ).

K
operator is prevalent in the algebra of the symmetric group S

mn
and is similar to the

entity 0 (K,n )
a , .

de® ned by Allen and Csa! sza! r [16] ; it maintains the initial lexical ordering

within l , but the segment lengths are now ordered arbitrarily as l
"

% l
#
¼ % l

K
.

Direct diŒerentiation shows that for atom a the ® rst- and second-order B tensor

elements of the bond-stretching coordinate R
ab

are simply

Ba a

R
3

¥ R
ab

¥ a
a

¯ R Õ "
ab

( a
a
® a

b
) ¯ ®

¥ R
ab

¥ a
b

¯ ® Bba

R
(14)

and

Ba a a b

R
3

¥ # R
ab

¥ a
a
¥ b

a

¯ ® R Õ "
ab

(Ba a

R
Ba b

R
® d a b ). (15)

The quantity Ba a

R
is a component of the ubiquitous El’ yashevich± W ilson B matrix [2],

and it can be rendered collectively as ba
R

3 (Bax
R

, Bay
R

, Baz
R

) ¯ e
ab

, where e
ab

is the unit

vector directed from a to b. In equation (15), d a b is the Kronecker delta symbol. A

common factor of R Õ "
ab

and products of lower-order tensor elements appear in all bond-

stretch derivative expressions. For all orders greater than two, the general formula

becomes

Ba a
"
a a

#
¼ a a

n
R

¯ ® R Õ "
ab

3
, ( # ,n )

.
B

R( # ) ² 0 ( # ,n ). (a a
"
a a

#
¼ a a

n
) ´ , (16)

which involves partitions of the indices into two segments, these being applied to a

product of two lower-order B tensor elements for R
ab

, as signi® ed by the R ( # ) subscript

in the brace notation. To illustrate the notation, consider the fourth-order expression.
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The unique partitions of 4 into 2 segments are (13) and (2 # ). As shown in table 1, the

braces for (13) and (2 # ) embody 4 and 3 terms, respectively ; hence,

Ba a a b a c a d

R
3

¥ % R
ab

¥ a
a
¥ b

a
¥ c

a
¥ d

a

¯ ® R Õ "
ab

(Ba a

R
Ba b a c a d

R
­ Ba b

R
Ba a a c a d

R
­ Ba c

R
Ba a a b a d

R
­ Ba d

R
Ba a a b a c

R
)

® R Õ "
ab

(Ba a a b

R
Ba c a d

R
­ Ba a a c

R
Ba b a d

R
­ Ba a a d

R
Ba b a c

R
). (17)

The structure of equation (16) facilitates the recursive construction of high-order B
tensors from collections of lower-order counterparts with minimal arithmetic

requirements, a highly desirable property for practical applications which motivates

similar formulations for other coordinates.

For the valence bond angle u
abc

, the key to the general formulation is the

identi® cation

Ba a
u ¯ R Õ "

ab
csc u [(e

bc
± e

ba
) e

ba
® e

bc
] a ¯ ® csc u 3

r ` ² x,y,z ´

Ba r a a

Rab
Bcr

Rbc
, (18)

where e
ab

and e
bc

are again unit vectors directed from atoms a to b and b to c,

respectively. Note that the convenient contraction of terms into a dot product over

² x, y, z ´ of ® rst- and second-order stretching tensors allows equation (16) to be utilized.

DiŒerentiation of equation (18) with respect to the terminal atoms a and c, followed

by back substitution from the same equation to eliminate the original summation over

r , yields

Ba a a b
u ¯ ® cot u Ba a

u Ba b
u ® csc u 3

r ` ² x,y,z ´

Ba r a a a b

Rab
Bcr

Rbc
(19)

and

Ba a cb
u ¯ ® cot u Ba a

u Bcb
u ® csc u 3

r ` ² x,y,z ´

Ba r a a

Rab
Bcr cb

Rbc
. (20)

This scheme can be implemented repeatedly to reveal the following generic form :

Ba a
"
a a

#
¼ a a

mca
m+ "

ca
m+ #

¼ ca
n ¯ 3

n

K= #

f
K

( u ) 3
, (K,n )

.
K

B u (K ) ² 0 (K,n ).
K

(a a
"

a a
#
¼ a a

m
c a

m+ "
c a

m+ #
¼ c a

n
) ´

® csc u 3
r ` ² x,y,z ´

B
Rab,Rbc

[a r a a
"

a a
#
¼ a a

m
, c r c a

m+ "
c a

m+ #
¼ c a

n
], (21)

in which

f
K

( u ) ¯
1

2
3

4

1 if K odd,

( ® 1)K / # cot u if K even.
(22)

The double summation constituting the ® rst term of equation (21) now includes all

partitions of n with number of segments K greater than 1, and the indices divided by

the operator 0 (K,n ).
K

are applied via the brace symbol to products of K lower-order B
tensors of u . In the fourth-order case, the partition list is (13), (2 # ), (1 # 2) and (1 % ), the

respective brace symbols representing 4, 3, 6 and 1 terms. Thus,

Ba a a b a c a d
u ¯ ® cot u (Ba a

u Ba b a c a d
u ­ Ba b

u Ba a a c a d
u ­ Ba c

u Ba a a b a d
u ­ Ba d

u Ba a a b a c
u )

® cot u (Ba a a b
u Ba c a d

u ­ Ba a a c
u Ba b a d

u ­ Ba a a d
u Ba b a c

u )

­ (Ba a
u Ba b

u Ba c a d
u ­ Ba a

u Ba c
u Ba b a d

u ­ Ba a
u Ba d

u Ba b a c
u

­ Ba b
u Ba c

u Ba a a d
u ­ Ba b

u Ba d
u Ba a a c

u ­ Ba c
u Ba d

u Ba a a b
u )

­ cot u Ba a
u Ba b

u Ba c
u Ba d

u ® csc u 3
r ` ² x,y,z ´

Ba r a a a b a c a d

Rab
Bcr

Rbc
(23)

for the a a a b a c a d derivative, with all a } c cross-derivatives being of identical form.
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The terminal-atom derivatives of the dihedral angle s
abcd

are perhaps best obtained

from the customary ® rst-order vector expression

ba
s ¯

e
ba

¬ e
bc

R
ab

sin # u
abc

, (24)

because this form is devoid of sin s or cos s factors in the denominator which give rise

to point singularities at planar or perpendicular conformations. The substitutions

e
bc

¯ bc
Rbc

and e
ba

¯ [R
ab

sin u
abc

ba
u
abc

­ e
bc

] sec u
abc

in the numerator of equation (24)

provide the compact form

sin (2 u
abc

) Ba a
"s ¯ 2(b #u

abc
¬ bc

Rbc
) a

"

. (25)

To diŒerentiate the left side of equation (25), a generalized product rule for partial

derivatives is useful, as formulated conveniently in brace notation :

B l
n

f Ö g
¯ fB l

n
g

­ gB l
n

f
­ 3

, ( # ,n )

.
(B

f ,g
² 0 ( # ,n ). ( l

n
) ´ ­ B

g,f
² 0 ( # ,n ). ( l

n
) ´ ). (26)

Accordingly, the recursive formula

sin (2 u
abc

) Ba a
"
a a

#
¼ a a

ms ¯ 2(ba a
"
a a

#
¼ a a

mu
abc

¬ bc
Rbc

) a
"

® Ba a
"s Ba a

#
¼ a a

m
sin ( #

u
abc )

® 3
, ( # ,n )

.
(B s ,sin ( #

u
abc )

² a a
"
0 ( # ,n ). (a a

#
¼ a a

m
) ´ ­ B

sin ( #
u
abc ), s ² 0 ( # ,n ). (a a

#
¼ a a

m
) a a

"
´ ) (27)

is obtained for a-atom derivatives of s . All a } d terminal-atom cross-derivatives vanish,

as revealed by equation (24). The utility of equation (27) hinges not only on equation

(21) for the evaluation of ba a
"
a a

#
¼ a a

mu
abc

but also on a means of computing B tensor

elements of the composite function sin (2 u
abc

). Fortunately, the latter can be built up

from u
abc

counterparts using another inductively-derived formula involving sums

over partitions :

Ba a
"
a a

#
¼ a a

mba
m+ "

ba
m+ #

¼ ba
nca

n+ "
ca

n+ #
¼ ca

p ¯

3
p

K= "

h
K

( u ) 3
, (K ,p )

.
K

g .
K

B u (K ) [ 0 (K,p ).
K

(a a
"

a a
#
¼ a a

m
b a

m+ "
b a

m+ #
¼ b a

n
c a

n+ "
c a

n+ #
¼ c a

p
)].

(28)

The summand therein involves a B -tensor bracket rather than a brace, whereas

h
K

( u ) ¯
1

2
3

4

( ® 1)(K Õ " )/ # cos u if K odd,

( ® 1)K / # sin u if K even,
(29)

and g . is a combinatoric factor. If there are k . distinct lengths in the partition of p

into K segments, and length l
j

appears n
j

times, then R k .

j= "
n

j
l
j
¯ p, R k .

j= "
n

j
¯ K , and it

happens that

g . ¯
p !

0
k .

j= "

(l
j
!)n j (n

j
!)

. (30)

Translational invariance conditions reduce the number of explicit formulas of

arbitrary order which are required to generate complete sets of B tensors for force ® eld

transformations. For any two-point coordinate (Q
#
) such as the bond distance R

ab
, all

b-atom derivatives can be replaced with a-atom counterparts according to

Ba a
"
a a

#
¼ a a

mba
m+ "

ba
m+ #

¼ ba
n

Q
#

¯ ( ® 1)n Õ mBa a
"
a a

#
¼ a a

ma a
m+ "

a a
m+ #

¼ a a
n

Q
#

. (31)
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For a general n-point coordinate (Q
n
), translational invariance can be invoked

successively to eliminate all indices involving an arbitrarily chosen atom a
#
:

Ba
"
a

"
a

"
a
#
¼ a

"
a
m

"
a

#
a
m

"
+ "

a
#
a
m

"
+ #

¼ a
#
a
m

#
a

$
a
m

#
+ "

a
$
a
m

#
+ #

¼ a
$
a
m

$

¼ an
a
mn Õ "

+ "
an

a
mn Õ "

+ #
¼ an

a
mnQn

¯ ® 3
b

"

Ba
"
a
"
a

"
a

#
¼ a

"
a
m

"
b
"
a
m

"
+ "

a
#
a
m

"
+ #

¼ a
#
a
m

#
a

$
a
m

#
+ "

a
$
a
m

#
+ #

¼ a
$
a
m

$

¼ an
a
mn Õ "

+ "
an

a
mn Õ "

+ #
¼ an

a
mnQn

¯ ( ® 1)m
#
Õ m

"

3
b
"
b
#
¼ bm

#
Õ m

"

Ba
"
a

"
a

"
a

#
¼ a

"
a
m

"
b

"
a
m

"
+ "

b
#
a
m

"
+ #

¼ bm
#
Õ m

"

a
m

#
a

$
a
m

#
+ "

a
$
a
m

#
+ #

¼ a
$
a
m

$

¼ an
a
mn Õ "

+ "
an

a
mn Õ "

+ #
¼ an

a
mnQn

,

(32)

where atoms b
i
` ² a

k
; k ¯ 1, 3, 4, ¼ , n ´ . In essence, the ® rst equivalence in equation (32)

constitutes an e� cacious, recursive algorithm for building up B tensors involving

atom a
#
. For the valence bond angle u

abc
, equations (21) and (32) are thus su� cient to

compute a complete set of nth-order derivatives. For the dihedral angle s
abcd

, explicit

derivative formulae involving a central atom cannot be avoided, however, because

only indices of atom b or c can be fully replaced via equation (32). The use of rotational

invariance relations does not solve this problem, because their structure requires at

least some B tensor components of three distinct atoms as an initial input. Ostensibly,

explicit torsional derivative formulae for all combinations of a } b } d type are thus

necessary. However, any B tensor element involving both terminal atoms vanishes, so

that only diagonal a, b and d as well as oŒ-diagonal a } b and b } d derivative types are

requisite. Equation (27) nicely accounts for the diagonal a and d elements, but the

explicit formulae for the other three types are not compact.

Note, ® nally, that all formulae but the translational invariance conditions

presented in this section were checked with the powerful CAS program Mathematica

[18].

3.2. Force ® eld transformation 1

This application of the brace notation considers nonlinear force constant

transformations between internal and Cartesian spaces. Because the molecular

potential energy surface does not depend on the external variables (translation and

rotation) of the system, the components of the Cartesian gradient can be determined

via a linear, tensorial transformation of the internal forces alone

V r ¯ V iB r
i
, (33)

where V r and V i are used to denote Cartesian- and internal-coordinate potential

energy derivatives, respectively, and the summation should, of course, go through M ,

the number of internal coordinates. In third order, a transformation expression for the

cubic force constant matrix in Cartesian coordinates arises by direct diŒerentiation of

equation (33), resulting in

V rst ¯ V iB i ² rst ´ ­ V ijBij ² rs, t ´ ­ V ijk Bijk ² r, s, t ´ . (34)

W ith the aid of the brace notation, the general transformation equation can be written

in the following abstract form :

V i
"
i
#
¼ in ¯ 3

n

K= "
9 3

M

p
"
p

#
¼ pK

V p
"
p

#
¼ pK 3

, (K ,n )

n= "

Bp
"
p

#
¼ pK ² 0 (K ,n ). (i

"
i
#
¼ i

n
) ´ : . (35)

In equation (35) no use of the Einstein summation convention was made to show
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details of the summation limits. The similar structure of equations (16), (21), (28) and

(35) is expected as derivatives of internal coordinates, and derivatives of the molecular

potential energy, another scalar, are formulated therein. Note, ® nally, that a general

equation governing the inverse transformation of Cartesian force ® elds into internal

coordinate ones is given, using the brace notation, in [16].

3.3. Force ® eld transformation 2

A simpli® ed method of setting up the required nonlinear coordinate trans-

formations from curvilinear internal coordinates to simple normal coordinates has

been described, some time ago, by Hoy, Mills and Strey [7b]. The transformation

coe� cients were called the L tensor elements and the transformation equation in

second and third orders were provided as

U rr ¯ k
r
¯ f ijL r

i
L r

j
, no sum over r, (36)

and

U rst ¯ f ijkL r
i
L s

j
L t

k
­ f ij(Lrs

i
L t

j
­ L rt

i
L s

j
­ L st

i
Lr

j
), (37)

where the coe� cients k
r
¯ 4 p # c # x #

r
are the harmonic force constants ; the ® rst

derivative elements of the L tensor are identical to the familiar L matrix [2], the f ij and

f ijk are second- and third-order force constants in internal coordinates, respectively,

while U rr and U rst are second- and third-order force constants in normal cordinates,

respectively.

In the brace notation the third- and fourth-order transformation equations,

presented in equation (11) of [7b], are simply rewritten as

U rst ¯ f ijkL
ijk

² r, s, t ´ ­ f ijL
ij
² rs, t ´ (38)

and

U rstu ¯ f ijkl L
ijkl

² r, s, t, u ´ ­ f ijkL
ijk

² rs, t, u ´ ­ f ij(L
ij
² rs, tu ´ ­ L

ij
² rst, u ´ ). (39)

It is clear from the structure of the above equations that the transformation terms

can be cast into a general form, valid through nth order, as follows :

U i
"
i
#
¼ in ¯ 3

n

K= #
9 3

M

p
"
p

#
¼ pK

f p
"
p

#
¼ pK 3

, (K ,n )

. = "

L
p

"
p

#
¼ pK

² 0 (K ,n ). (i
"

i
#
¼ i

n
) ´ : . (40)

The great similarity of equations (35) and (40) is obvious. The main diŒerence

between the two equations is that while B r
i

can be given analytically, L r
j
, for obvious

reasons, cannot. A further diŒerence is that the ® rst summation in equation (40) goes

only from K ¯ 2, as in this case no ® rst-order derivatives (forces) are of interest.

4. Summary

In the theory of molecular vibrations complications arise in nonlinear trans-

formation among coordinate sets, but it is shown here that the brace notation

introduced in equations (10) ± (12) provides a simple and compact way to deal with the

derivatives arising in the equations. The main advantage of the notation is that it

builds the permutational symmetry of the derivatives directly into the formalism, thus

simplifying the appearance of the related expressions signi® cantly and allowing a

straightforward way for their generalization. In this communication the brace notation

is applied to formulate the general nth-order Cartesian derivatives of internal
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coordinates. Due to the required translational invariance condition pertaining to the

derivatives, all Cartesian derivatives of the stretching and the bending coordinate can

be determined from the expression given for one centre. Closed forms for general, nth-

order transformation equations of anharmonic force ® elds, expressed as Taylor series,

from internal to Cartesian or normal coordinate spaces are also given. A related

expression, governing the inverse transformation of Cartesian force ® elds into the

internal space is given, using the same brace notation, in [16].
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