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On the form of the exact quantum mechanical vibrational kinetic 
energy operator for penta-atomic molecules in internal coordinates 

By ATTILA G. CSASZAR 

Department of Theoretical Chemistry, E6tv6s University, H-1518 Budapest 112, 
P.O. Box 32, Hungary 

and NICHOLAS C. HANDY 

Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK 

(Received 16 August 1994, revised version accepted 27 February 1995) 

Forms for the exact non-relativistic quantum mechanical vibrational (J = 0) 
kinetic energy operators for sequentially bonded (A B C D E) and 
(A,B)-C D E-type penta-atomic molecules, expressed in valence internal co- 
ordinates, are presented. As advocated earlier (Handy, N. C., 1987, Molec. Phys., 
61, 207), computer algebra has been employed during the derivation. The 
suggested use of these operators in calculations for vibrational energy levels of 
interesting penta-atomic molecules (e.g., C302, and HzCCO ) is outlined. 

1. Introduction 

During the last two decades, due partly to the emergence of efficient new 
methodologies (for recent reviews see [1-11]) and partly to the ever-increasing 
availability of computational resources, the accurate calculation of the rovibrational 
spectra of small molecules became very viable. For triatomic molecules efficient 
methods and computer programs have been developed employing different co- 
ordinate systems (e.g., normal, internal (simple valence or symmetry), Jacobi, Pekeris, 
Radau, and hyperspherical coordinates) and strategies (e.g., finite basis representation 
(FBR) [1, 2, 11], discrete variable representation (DVR) [3], semiclassical adiabatic 
switching [4] and spectral quantization [5, 9], Monte Carlo [6], and perturbative 
[7] methods). The successful application of these state-of-the-art methods to treat 
the rotational and vibrational motion of triatomics is too broad to cover here, but 
for a subjectively selected partial list of recent high-quality FBR and DVR results 
see [ 12]. 

Amongst the methodologies at one's disposal for determining rovibrational spectra 
ab initio the linear variational (sometimes called FBR) approaches have been playing 
a central role. It appears [7] that there are perhaps six central steps in most 
variational (or related nearly variational, such as DVR) calculations: (i) selection of 
a suitable coordinate system; (ii) derivation of the (exact) kinetic energy contribution 
(T) to the total molecular Hamiltonian in the coordinate system selected; (iii) 
determination of the (Born Oppenheimer) potential energy surface (VN) in the same 
coordinate system as selected for the representation of T; (iv) choice of a set of 
appropriate expansion (basis) functions for the wavefunction allowing representation 
of the Hamiltonian as a matrix; (v) evaluation of the necessary matrix elements; and 
(vi) determination of the eigenvalues and eigenvectors of interest by (numerical) 
diagonalization of the Hamiltonian matrix. 
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Although the knowledge accumulated in the last two decades provides, in general, 
guidelines for the choices one has to make in all six steps, considerable difficulties 
will usually be encountered for any particular molecular system and any particular 
choice. The difficulties associated with the other areas notwithstanding, in this 
communication attention is focused on step (ii): more explicitly, on the derivation of 
the non-relativistically exact quantum mechanical vibrational kinetic energy operator 
in non-orthogonal internal coordinates. 

The general form of T in normal coordinates was obtained by Watson [13, 14] 
quite a long time ago. However, it has since been realized [15-17] that internal 
coordinates are a considerably better choice than normal coordinates, especially if 
one tries to avoid: (a) the unfactorizability problem of Watson's rovibrational kinetic 
energy operator TVR (the inverse inertia tensor elements couple together all the 
rovibrational motions, necessitating a costly direct evaluation of multidimensional 
integrals in the case of strictly variational methods); (b) the problem of choosing a 
reference geometry (linear or nonlinear) to define the normal coordinates; and (c) 
the short convergence radius of normal coordinate expansions of the potential and 
an unnecessarily long and complicated form for the potential energy due to the 
rectilinear nature of the normal coordinates when dealing with high-energy and/or 
large-amplitude motions. Thus, derivation of the kinetic energy operator in carefully 
selected internal coordinates seems to be unavoidable. Considerable advances have 
been made along this line [18-29]. At this point, it should also be noted that (a) the 
actual form of T will be dependent always upon the choice of the internal coordinates 
and the normalization condition, suggesting that the extra effort needed to derive 
the necessary form of T should be modest so that it could be rederived and 
reprogrammed with relative ease if it became necessary, and (b) this derivation 
presented such a great challenge, for molecules larger than triatomic, that the correct 
form of Tv and ~'VR even for tetra-atomic molecules has been obtained only recently 
[20b, 21, 26, 27]. This should be kept in mind and compared with the fact that, 
following some earlier work of Sutcliffe, Chapuisat and others [1, 2, 10, 19, 20a, 23a, 
24a, 29], Handy presented in 1987 [21] a straightforward method, based on the 
application of computer algebra, for the derivation of kinetic energy operators in 
any well defined internal coordinate system for vibration rotation problems of 
molecules of arbitrary size. Derivation of the vibrational kinetic energy operator (I"v) 
is especially simple in this scheme (vide infra) as it is derived by starting with the 
simple Laplacian form of the kinetic energy operator in Cartesian coordinates 
followed by a succession of straightforward transformations. Despite the apparent 
relative ease of carrying out the necessary transformations, no communications exist 
in the literature reporting the form of the exact quantum mechanical vibrational 
kinetic energy operator (Tv) for penta-atomic or larger molecules bonded non- 
sequentially. As a special tribute to modern computer algebra programming 
languages [30] we present below the full vibrational kinetic energy operator for a 
pair of selected penta-atomic molecules in internal coordinates. 

2 Theoretical foundations 

As mentioned above, the theory behind the derivation of the exact quantum 
mechanical vibrational kinetic energy operator in internal coordinates, ~'v, is rather 
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Exact QM vibrational KE  operator 961 

simple [19, 21, 26b]. Within the framework of the Born-Oppenheimer approximation 
one starts by defining the Cartesian coordinates {x,i} (~ = xyz, i = 1, 2 . . . .  , N) of 
the N nuclei in a laboratory fixed frame of reference, for which the quantum 
mechanical kinetic energy operator T is given by 

h2NV2i h2LLxy~z ~2 

T =  - 2 ~ i  m i -  2 i mi ~ ~gx~x~/" (1) 

Choosing a set of suitable internal coordinates {qi} (i = l, 2 . . . .  ,3N - 6) for the 
molecule considered and applying the chain rule twice to execute the transformation 
cg/c~x~i ~ O/t3qj one can write the exact Y = 0 kinetic energy operator as 

~v/(_~h 2) = ~ gjk + Z hj "-- 
~qj~qk J 3qj jk i mi \c~x~i 3Xak/ 3 t~qjg3qk 

q- 2 aX~i~X~ij~' (2) J L ~ i mi cqj 

where the definitions for the contravariant metric tensor gjk, and for h j are made 
evident. (Note that a set of vibrational coordinates, a priori curvilinear, are called 
internal if they depend explicitly on the (nuclear-fixed) Cartesian coordinates of the 
atoms, are rotationally invariant (i.e., invariant under rotation of the N nuclei about 
axes fixed in space), and are complete.) As expected, calculation of gjk and h j would 
require only the knowledge of the explicit dependence of the chosen internal 
coordinates on the Cartesians (requiring usually terms already familiar from trans- 
formations among different coordinate systems in theoretical vibrational spectro- 
scopy [26c, 31-35]). Since calculation of this dependence and handling of the 
resulting complex expressions can sometimes be difficult, it seems most advantageous 
to define gjk and h j first in a set of internal coordinates for which this functional 
dependence is especially simple. Evidently, the simplest and most natural choice is a 
set of stretching-like interparticle distance coordinates. Unfortunately, the number 
N ( N -  1)/2 of interparticle distances for a general N-atomic molecule is different, 
apart from tri- and tetra-atomic molecules, from the number of independent internal 
coordinates, 3N - 6. This means that elimination of all Cartesian terms from gjk and 
h J for molecules having more than four atoms requires some additional effort, namely 
expressing the 'extraneous' interparticle distance(s) by those modes which define a 
'true' set of internal coordinates. (This procedure results in the introduction of all (or 
most) internal coordinates into gjk and h j at an early stage. This presents no difficulty 
during later algebraic manipulations as derivatives of g jk and h j are never formed, 
they appear simply as multiplicative terms of differential operators.) Working towards 
expressions containing the final set of internal coordinates requires then some 
additional transformations. It is easy to show that changing from one set of internal 
coordinates {q j} to another set of internal coordinates {q;} can be achieved by the 
use of the following expressions: 

[ ~  1 Oqj ~;qkl= [ ~  1 Oq; Oq'.,lgqjOqk 
~ti m i ~x~i ~x~i ~ ~lm m i cx:t i ~x~i ] tgq~ ?;q'., (3) 
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and 

[~  1 ~2qj " = S" [~  1 C-Ok"2 ' ~ ~kt [~i l c3q'k ~q~ ] cO! + (4) 
mi ~xrticx~xi A l_~ mi ~x~icx~iJ Cqk mi Cx=i C'X=i3 c'~qk~qJ" 

~ , ~2 /~ , ~ , Calculation of two new Jacobian tensors, cqfcqk and c qj/cqkcq~ is therefore 
necessary. Computation of Jacobians of this type is a straightforward process if 
computer algebra languages are employed once the explicit dependence of {q~} on 
{ql,} has been determined. Note that this dependence also can be obtained most 
straightforwardly if {q~} are a set of stretching coordinates. Repeated application, if 
necessary, of equations (3) and (4) produces the desired quantities gag and h r. 

It is customary to employ a normalization condition which absorbs the stretching 
part of the full transformation Jacobian into Tv [36]. This transformation, 

=  "2Ls-lj2, (5) 

where s is the stretching part of the Jacobian for the transformation from * tx=ij to 
the final set of internal coordinates {@ (simply the square products of the bond 
lengths), yields a new Hermitian form for I'v as follows: 

3 N - 6  CS 1/2 3N - 6 02 3N - 6 ~ 2S 1!2 . 
Tv/(--�89 h2)= 2 fk  _ _ +  Z hj + Z fk  

jk 6qjcqk j cqj  jk cqj  Cqk 

V 3 N - 6  . ~ 2 S -  1/2 3 N - 6  ~ S -  1/2~ 
-'[" $ 1 / 2 [  2 , ( j j k  _]._ ~" ht l (6) 

L jk cq jcqk  J cqj  d 

Forms (5) and (6) have the usual Podolsky structure [36_]. Note that since the internal 
coordinates used in this study are non-orthogonal, Tv has a considerably more 
complicated form in h j than Tv. To ease the notation, in the following ir v will always 
be written instead of Tv- 

3. Results and discussion 

Application of the procedure detailed in the previous section to obtain the 
vibrational kinetic energy operator for tri- and tetra-atomic molecules (more 
explicitly, for those molecules shown in figure 1) is not new. For checking purposes 
we rederived and present the exact 7"v'S for sequentially bonded triatomic (A B C, 
such as HzO),  sequentially bonded tetra-atomic (A-B C-D,  such as HCCH) and 
(A,B) C D-type tetra-atomic (such as H z C O  ) molecules in tables 1, 2 and 3. Tables 
4-7 contain the new operators, where the terms forming f'v are presented for the 
two penta-atomic molecules depicted in figure 2. Tables 2, 3, 5, and 7 are arranged 
in a form suggested by the contravariant metric tensor fk. (Note that all tables 
contain the full form of the respective i?v/(- lh2), i.e., off-diagonal fk  elements have 
already been multiplied by two.) This form of presentation is especially useful for 
observing the general tendencies among the operator terms. For example, it is clear 
by simple inspection of tables 1 7 that those terms which do not involve new 
coordinates going from triatomic to penta-atomic molecules of similar arrangement, 
are basically the same, as required by the equivalence of the contravariant metric 
tensor fk  and the appropriate analytic G matrix [22, 33, 37]. This fact provides a 
useful tool for checking the expressions derived for the different terms. As noted, it 
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R~ B1 R 2 

A~ 
. ,  ~ 

r 2 B2 / 0-~3// 

(a) (b) (c) 

Figure 1. Atom numbering and definition of internal coordinates for triatomic and tetra- 
atomic molecules. In (b) t is the torsion angle between planes ABC and BCD, and in 
(c) ~ is the book angle between planes ACD and BCD. 

would be possible to write all first- and second-derivative operator terms using 
specific G-matrix expressions [37] (e.g., the coefficient of o2/~FI~T 1 in table 7 is the 
same as grl, (~) of table 2 of [37]), but at this stage, especially for programming 
purposes, we think it is useful to give the full formulae. 

3.1. Use of computer algebra 

As equations (1)-(6) exemplify, evaluation of kinetic energy operators in internal 
coordinates of any kind requires a lot of straightforward but tedious algebraic 
manipulations. As the complexity of the operator to be derived increases, the certainty 
that the operator actually determined by hand is correct gradually diminishes. 
Leaving all long and difficult manipulations to the powerful hardware and software 
available today is thus very appealing. 

General purpose software enabling symbolic algebraic manipulations has been 
around for some time. From the several precursors (among them Macsyma F38], 
Reduce [39], Scratchpad [40], and Derive [41]) of modern symbolic computer 
algebra programs, Reduce was used by Handy to obtain kinetic energy operators 
for tri- and tetra-atomic molecules [21]. Since then a new generation of computer 
algebra packages enabling symbolic manipulation of considerably more compli- 
cated functions has been made commercially available. Among them probably 
Mathematica [30], Maple [42], and Axiom [43] are the most widespread and 
prominent. These software packages (a) include a highly functional programming 
language; (b) have numerous built-in functions which are easily applicable and 
extendable; and (c) allow symbolic determination and manipulation (differentiation, 
integration, expansion, simplification, etc.) of complicated functions and expressions. 

The above capabilities of modern computer algebra systems (CASs) provide the 
necessary computing environment for the determination of kinetic energy operators 
in internal coordinates. Accordingly, determination of the exact quantum mechanical 
vibrational kinetic energy operator in internal coordinates, employing a program 
written, in the present case, in Mathematica [30], can be broken down into the 
following main steps: (a) setting up the necessary auxiliary functions, which form the 
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Table 5. Second-derivative terms in the exact quantum mechanical kinetic energy operator for 
sequentially bonded penta-atomic molecules in internal coordinates {r 1, r 2, r 3, r4, 0 l ,  02,  03,  
rl, r2} (see figure 2). 
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A1 

B2 

A B B A 

D E E E 

(a) (b) 

Figure 2. Atom numbering and definition of internal coordinates for penta-atomic molecules. 
In (a) ~1 is the torsion angle between planes ABC and BCD, and z 2 is the torsion angle 
between planes BCD and CDE, while in (b) rl is the torsion angle between planes BCD 
and CDE, and z 2 is the torsion angle between planes ACD and CDE. 

basis of the general purpose CAS program developed, for subsequent use; (b) 
definition of masses, Cartesian coordinates, and 3 N -  6 interparticle distances as 
internal coordinates; (c) transformation from Cartesian coordinates to the 3N - 6 
stretching-type interparticle distances, thus forming g jk and h J in these coordinates 
via equation (2); (d) elimination, if necessary, of the Cartesians left in g jk due to the 
'extraneous'  interparticle distance(s); (e) successive transformations, via equations (3) 
and (4), from the stretching coordinates to the final set of internal coordinates after 
the explicit dependence of the new coordinates upon the old ones is provided; (f) 
inclusion of the stretching part of the Jacobian into ?'v through equation (6); and (g) 
simplification of the resulting gig and h j expressions. 

There are several stages during the calculation of the 9 jk and h J arrays where one 
relies on the capabilities of modern computer algebra languages. For  example, 
all the required Oqj/Ox~i, ~2qj/~X~i~Xetl, Oq~/c~q' k, ~2qj/Oq'kc~q~, ~S-1/2/~qj, and 
c~2s 1/2/OqjOqk Jacobian derivative tensors can be computed symbolically using 
simple built-in 'differentiate' functions. Furthermore, when the necessary matrix 
multiplications and summations appearing in the relevant equations, i.e., (2)-(4), and 
(6), are performed one can take advantage of the functions and programming 
language provided with CAS programs so that, for example, no reference is made to 
the size of the problem, resulting in a general code applicable to molecules of any 
size and complexity. One warning, however, is necessary at this point: the forms 
derived for gig and h j, obtained through the straightforward use of equations (1)-(6), 
might contain an excessive number of terms. For example, for certain derivative terms 
expressions containing a few hundred terms have been obtained. As [37] and tables 
1-7 show, however, the final expressions contain only a few terms. Thus, simplifi- 
cation of these complicated expressions is necessary. As emphasized, not only the 
derivations but also these simplifications should be done with as little human 
intervention as possible. In Mathematica, for example, judicious use of built-in 
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rable 7. Second-derivative parts in the exact quantum mechanical vibrational kinetic energy operator for 
(A,B)-C D E-like penta-atomic molecules in internal coordinates {r~, r2, r3, r4, 0~, 0 2, 0 3, z~, z2} (see 
figure 2). 
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functions like Simplify, Substitute, Expand, Together, and Collect, together with 
several explicit, user-defined trigonometric simplification rules and the occasional 
collection of terms with common denominators can effectively reduce the number of 
terms to those presented in tables 1-7. 

3.2. Choice of internal coordinates 

When choosing the internal coordinates {qi} in which the exact quantum 
mechanical vibrational kinetic energy operator is to be expressed it is necessary to 
keep in mind that: (a) practical calculations become easier and much insight into the 
physical nature of the system can be gained if one can find a set of optimal internal 
coordinates in which the system is nearly separable (note in this context that in the 
case of multidimensional quadratic Hamiltonians rectilinear normal coordinates, 
linear combinations of mass-weighted Cartesians, provide complete separation both 
in the kinetic and potential energy terms); (b) certain transformations [some or all 
of equations (1) (6)] may need to be carried out repeatedly; and (c) the choice of 
{qi} not only determines the actual form of Tv but also it in turn affects the choice 
of the basis set for the expansion of the wavefunction through occurrences of 
unavoidable singularities in the Hamiltonian /tv. It is extremely important to 
emphasize this last point, as to facilitate efficient practical calculations of vibrational 
spectra/4v should be separable and factorizable [26b]. It should also be noted that 
the use of curvilinear internal coordinates ensures that no difficulties arise at special 
nuclear arrangements (e.g., at linear configurations), 

Combined consideration of the above factors dictate the use of simple, elementary 
internal coordinates in the derivation of Tv. This means that simple, unsymmetrized 
stretching and angle bending coordinates should be used as often as possible for 
coordinates involving two and three atoms. In the case of four-atomic molecules, 
for the remaining coordinates (usually involving out-of-plane- and torsional-type 
motions) it was found advantageous to use the usual torsional coordinate for HCCH 
and HOOH [26], and the book-angle coordinate for H2CO [21]. Use of these 
internal coordinates seems to ensure both the relative ease of transformations and 
the required properties of Tv, while their dependence on simple stretch and angle 
bend coordinates can either be obtained from textbooks [33] or derived. At the same 
time, these coordinates are usually appropriate for the expansion of the potential 
energy for semi-rigid molecules [44]. For the penta-atomic molecules presented in 
this paper use of the regular torsional coordinates proved to be also desirable. For 
example, use of two torsions for the (A,B)-C-D-E-type penta-atomic molecules 
provides a symmetric kinetic energy operator (see tables 6 and 7), which means that 
application of the derived operator to symmetric molecules, such as ketene ( H z C C O  , 

of C2v symmetry), is straightforward. Note, however, that the introduction of novel 
internal coordinates might be advisable and/or unavoidable for other (especially 
larger) molecular systems. 

One particularly important advantage of special internal coordinate systems 
would be if they greatly reduced the number of terms in the exact kinetic energy 
operator. It is noted that while in the valence internal coordinates employed in this 
study the exact quantum mechanical vibrational kinetic energy operator for a 
sequentially bonded triatomic molecule contains only 15 individual terms (see tables 
1 and 2), the exact vibrational kinetic energy operator for an (A,B) C-D-E- type  
penta-atomic molecule is composed of 160 terms (tables 6 and 7), though many of 
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Exact QM vibrational KE operator 975 

them are not distinct. To reduce the number of terms in the kinetic energy expression 
has particular importance in certain numerical algorithms used to solve the rovibra- 
tional Schr6dinger equation. (For example, the Lfinczos algorithm [45] will gain 
considerable efficiency if the product of the Hamiltonian and the trial vector can be 
formed easily [12g-l.) In this respect orthogonal internal coordinate systems (e.g., 
Jacobi [46], Radau [47], and hyperspherical [48] coordinates) may have a lot to 
offer, as Tv expressed in these coordinates contains no mixed second derivatives. 
Indeed, orthogonal coodinates have been used routinely for triatomic and tetra- 
atomic systems having the required molecular arrangement. Note, however, that in 
those regions of the potential energy surface where bond making or breaking does 
not occur, and especially around equilibrium, I?y is usually more separable in valence 
internal coordinates than in orthogonal coordinates. 

3.3. Reduction in the size of the variational problem 

Although the kinetic energy operators presented in this communication would, 
in principle, allow the determination of a great number of vibrational eigenvalues 
and eigenvectors for interesting penta-atomic molecules like H2CCO, HCOCN, 
C302, HC 4, etc., it is obviously not practical to carry out FBR calculations in all 
nine dimensions due to the excessive cost of the required computations. Therefore, 
attempts to reduce the dimensionality of the variational problem are of considerable 
importance. At this point it should be noted that reduction in the size of the 
rovibrational problem of a general penta-atomic molecule has already been achieved, 
when the kinetic energy operator was restricted to be rotationless (i.e., having total 
angular momentum zero), thus reducing the complete 12-dimensional problem by 
the three rotational degrees of freedom. This reduction was achieved by effectively 
setting all angular momentum components appearing in the full exact rovibrational 
kinetic energy operator to zero. In other words, by taking the wavefunction to be 
independent of the Euler angles a projection of the full vibration rotation TvR onto 
the rotationless J = 0 state has been achieved. As required, this simple procedure 
yields a Hermitian kinetic energy operator Tv. 

One possible method for reduction of the size of the variational problem, 
documented and rationalized a long time ago within the framework of normal modes 
[33], is the adiabatic separation of vibrations of considerably differing frequencies 
[23g, 33, 49-52]. The adiabatic approach, when extended beyond the normal mode 
picture, seems to have found experimental justification in at least two important and 
complementary cases: (a) the local mode picture for X H stretching overtones [53]; 
and (b) the bender models for low-frequency motions [54 57]. Despite these apparent 
successes it must be noted that adiabatic methods will break down, or require special 
treatment, if resonances are present, and that they do not give a bound to the true 
energy. In practical applications of the adiabatic approach one usually separates the 
stretching and bending modes of vibration, as for many molecular systems this is a 
very natural separation. (As illustrated by Reinhardt and co-workers [50] there are 
not one but two adiabatic ('slow' versus 'fast') separations for stretch bend 
Hamiltonians. The traditional adiabatic bend (AB) method considers the bends to 
be adiabatic ('slow') with respect to stretchings, while the counterintuitive adiabatic 
stretch (AS) method assumes just the opposite. See, furthermore, the comments of 
Ojha and Berry [51c] concerning these methods and, in particular, flaws in the 
treatment of Reinhardt.) Such adiabatic approaches, in the context of theoretical 
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976 A.G.  Csfiszfir and N. C. Handy 

rovibrational spectroscopy, offer considerable advantages, as they allow (a) rovibra- 
tional calculations to be carried out to considerably higher energies than traditionally 
seemed practical; and (b) studies of (ro)vibrational states of molecules of medium 
size given that the number of active coordinates is kept less than about 6 or 7. Note 
also that a postulated near adiabatic approximation between certain degrees of 
freedom has been used successfully to contract multidimensional basis sets in 
rovibrational studies of tri- and tetra-atomic molecules [3, 26]. 

In practice, therefore, one way forward in the reduction of the size of the 
variational problem is to use the exact 7"v operator in all 3N -- 6 coordinates and 
to use expansion functions of the form 

p 3 N - 6  

q5 = ]~ fi(qi) 1-] f~j(qj)" (7) 
i = 1  j = p + l  

In other words, fixed forms are used for some of the internal coordinate expansion 
functions. For example, all of the stretch coordinates could be associated with fixed 
(possibly optimized SCF) harmonic or Morse-oscillator functions. In such a case the 
secular matrix would determine the bending-only spectrum, the stretching motions 
being only zero point. In the case of the sequentially bonded penta-atomic molecules, 
there would be essentially five active bending and torsion modes. Such a calculation 
is very feasible. (The bending/torsion motions of some molecules, such as C302, 
are extremely anharmonic, and the only way forward towards a complete under- 
standing of such motions will be through a solution of the secular equations for the 
problem.) Of course, extensions to the inclusions of a small number of stretching 
configurations to look after major resonances are also possible. At this stage we stress 
that the relatively large numer of terms in ?'v will not present any problem if the 
FBR method is used for the variational calculation. (For the discrete variable 
representations of complicated kinetic energy operators see [58].) By its nature, all 
matrix elements will be products of prestored one-dimensional integrals. It is also 
probable that the number of terms in the potential will also be of the same order. 
Of course, all the methodology of successive contractions [26d], which has made the 
FBR approach a success, must be employed. 

A simpler approach, which finds less favour with us but may be more practical 
is to ignore some internal coordinates completely. For example, one may use 
expansion functions which depend only upon bending and torsion coordinates. In 
this case all terms making differentiation with respect to stretching coordinates in 
the Lagrangian form of 7"v [28, 33, 59] are deleted, and bond lengths are given their 
equilibrium values. Furthermore, because no integrations are carried out in 'stretch' 
space, it is not appropriate to carry out transformation (5). In an approach such as 
this one must be careful that one has, after deletion, a Hermitian operator. It is always 
possible to write the full Tv writing products of Hermitian and anti-Hermitian 
form [26b], and therefore it must be possible to write any reduced ?'v similarly. Note 
also that in certain molecules the bending-type vibrational motions might be strongly 
coupled to the overall rotation of the molecule. In these species discarding these 
effects can be only a first step towards understanding their complete motion. 

4. Conclusion 

Distinct features of modern computer algebra systems (e.g., their highly functional 
programming language, numerous, easily applicable and extendable built-in func- 
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Exact QM vibrational KE operator 977 

tions, and their capability of performing symbolic determination and manipulation 
of complex functions and expressions) provide the necessary computing environment 
for the determination of kinetic energy operators in internal coordinates. As a 
practical application of the general-purpose CAS package developed, forms for the 
exact (within the Born-Oppenheimer  approximation) non-relativistic quantum 
mechanical vibrational (J = 0) kinetic energy operators for sequentially bonded 
(A-B C - D - E )  and (A,B)-C-D E-type penta-atomic molecules, expressed in 
valence internal coordinates are presented. Based on the equivalence of the contra- 
variant metric tensor, 9 ~k with the inverse kinetic energy matrix G~k there are obvious 
similarities to previously defined operators for tri- and tetra-atomic molecules based 
on the same elementary internal coordinates. Although the kinetic energy operators 
presented in this communication would, in principle, allow determination of a great 
number of vibrational eigenvalues and eigenvectors for interesting penta-atomic 
molecules like HzCCO , C302, HCOCN, HC4, etc., it is obviously not practical to 
carry out variational calculations in all nine dimensions due to the excessive cost of 
the required computations. Therefore it is suggested that, while retaining the full 
exact vibrational kinetic energy operator, a fixed form should be used for some of 
the internal coordinate expansion functions (e.g., for the stretch coordinates if the 
bend-only spectrum is to be calculated). Naturally, reduction in the dimension of the 
kinetic energy operator by appropriate constraints is also possible, but this approach 
finds less favour with us. 
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