# The sodium superoxide radical: $\tilde{X}^2A_2$ and $\tilde{A}^2B_2$ potential energy surfaces

# David A. Horner

Departments of Chemistry and Physics, North Central College, Naperville, IL 60566, USA

## Wesley D. Allen, Attila G. Császár

Department of Chemistry, Stanford University, Stanford, CA 94305, USA

and

# Henry F. Schaefer III

Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA

Received 23 July 1991; in final form 27 August 1991

The two lowest electronic states of NaO<sub>2</sub> have been studied using ab initio methods, including RHF SCF, CISD, Davidsoncorrected CISD, UHF SCF, UMP2-UMP4, CASSCF, and CISD based on CASSCF natural orbitals, with basis sets ranging in quality from Na(11s7p/7s5p), O(9s5p1d/5s3p1d) to Na(13s10p2d1f/7s6p2d1f),O(11s7p2d1f/6s4p2d1f), i.e. from TZ+d to TZ2P+f+R. Total and relative energies, geometries, vibrational frequencies, and dipole moments of stationary points on the  $\tilde{X}^2A_2$  and  $\tilde{A}^2B_2$  surfaces have been determined. A  $C_{2v}$  minimum is proposed for  $\tilde{X}^2A_2$  NaO<sub>2</sub> with  $r_e(O-O)=1.335$  and  $r_e(Na-O)=2.10$  Å. The analogous structure for the  $\tilde{A}^2B_2$  state is predicted to have  $r_e(O-O)=1.34$  and  $r_e(Na-O)=2.13$  Å with an adiabatic excitation energy of  $T_e=8.5$  kcal mol<sup>-1</sup>. Linear, <sup>2</sup>II NaOO, which correlates to the <sup>2</sup>A<sub>2</sub> and <sup>2</sup>B<sub>2</sub> minima via C<sub>s</sub> transition states, is predicted to be a shallow minimum lying 17 kcal mol<sup>-1</sup> above the  $\tilde{X}^2A_2$  structure but with a barrier to rearrangement of less than 1 kcal mol<sup>-1</sup>. The dissociation energy of the ground state of NaO<sub>2</sub> is deduced to be  $D_0=38$  kcal mol<sup>-1</sup>, a value substantially lower than recent experimental estimates.

#### 1. Introduction

Alkali-metal superoxide radicals (MO<sub>2</sub>) play important roles in the chemistry of the mesosphere [1,2] and the combustion of alkali metals in oxygenrich flames [3,4]. Allen and co-workers [5] have previously reported the results of a comprehensive ab initio quantum chemical study of the two lowest electronic states of LiO<sub>2</sub>, including total and relative energies, geometric structures, and spectroscopic data for stationary points on both surfaces, as well as the dissociation energy  $D_0(\text{Li}-\text{O}_2)$  of the ground state. A major portion of the investigation comprised the design of a solution to the problem of spatial symmetry breaking in the Hartree-Fock wavefunctions for alkali-metal superoxides. In this paper the theoretical approach developed for  $LiO_2$  is applied to the study of the two lowest states of  $NaO_2$ .

Matrix-isolation infrared [6], Raman [7], and ESR [8,9] spectroscopic studies have established that NaO<sub>2</sub> in its ground electronic state has an ionic  $(Na^+O_2^-)$  structure of  $C_{2v}$  symmetry, for which fundamental vibrational frequencies and approximate bond lengths have been obtained (vide infra table 1). Plane et al. [10] have determined ab initio geometries and frequencies using UHF wavefunctions and the 6-31G and 6-311G basis sets. These results could be improved by the inclusion of polarization and diffuse functions in the basis set, and symmetry breaking in the UHF wavefunction invalidates [5] the Na–O antisymmetric stretching frequencies predicted therein. Marshall et al. [11] have reported a 6-31+G\* UMP2 structure for NaO<sub>2</sub> with an O-O distance of 1.39 Å and an Na-O distance of 2.16 Å, both of which exceed the experimental estimates by  $\approx 0.06$  Å, as expected from an analysis of similar results for LiO<sub>2</sub> [5]. Much of the recent experimental and theoretical work [4,10-14] on NaO<sub>2</sub> has focused on the Na-O<sub>2</sub> dissociation energy, for which there is still much disagreement (as summarized in table VIII of ref. [12]). In the most recent report, a high-temperature flame result of 58.1(19) kcal mol<sup>-1</sup> has been given by Steinberg and Schofield [13], consistent with two independent experimental bounds of  $D_0(\text{Na-O}_2) \ge 48 \text{ kcal mol}^{-1}$  [10] and  $D_0(\text{Na-O}_2) \ge 55 \text{ kcal mol}^{-1}$  [11]. In contrast, ab initio work appurtenant to these experimental investigations has provided  $D_0(Na-O_2)$  values of 44 kcal mol<sup>-1</sup> (UMP4/6-311G//UHF/6-311G) [10] and 36 kcal mol<sup>-1</sup> (UMP2/6-31+G\*) [11]. Finally, Schlever [14] has obtained theoretical results at the 6-311+G\* QCISD(T) level which yield  $D_0$ (Na- $O_2$ ) = 33 kcal mol<sup>-1</sup>.

The highest occupied molecular orbitals of NaO<sub>2</sub> are essentially the in-plane  $(b_2)$  and out-of-plane  $(a_2)$  $\pi^*$  orbitals of the O<sub>2</sub><sup>-</sup> ion, the degeneracy of these orbitals being removed by the presence of the sodium cation. Thus, the two lowest-lying electronic states of NaO<sub>2</sub> and  $\tilde{X}^2A_2$  and  $\tilde{A}^2B_2$  with the reelectronic configurations spective  $(core)^2$  $(4b_2)^2(1a_2)^1$  and  $(core)^2(4b_2)^1(1a_2)^2$ . The <sup>2</sup>A<sub>2</sub> and  $^{2}B_{2}$  states become  $^{2}A''$  and  $^{2}A'$ , respectively, in C<sub>s</sub> symmetry, and for linear NaOO geometries they correlate to the two components of a  $C_{\infty y}$ , <sup>2</sup> $\Pi$  state. Few investigations have attempted to elucidate features of these potential energy surfaces other than the  ${}^{2}A_{2}$ minimum. In his semiemprical study of NaO<sub>2</sub>, Alexander [15] predicted that the <sup>2</sup>A" surface is quite flat with respect to changes in the Na-O-O angle near linear geometries and that the  ${}^{2}\Pi$  state lies 19 kcal  $mol^{-1}$  above the <sup>2</sup>A<sub>2</sub> minimum. As for the <sup>2</sup>B<sub>2</sub> state, Rajasekhar et al. [2] recently predicted the  ${}^{2}A_{2} \rightarrow {}^{2}B_{2}$ vertical transition energy to be 8.8 kcal mol<sup>-1</sup> at the 6-31G UHF level.

In summary, more rigorous and comprehensive theoretical results are needed to map out the general features of the potential energy surfaces of the two lowest electronic states of  $NaO_2$  and, in particular, to establish the dissociation energy of  $NaO_2$ . In this letter we report on our recent investigations toward this goal.

## 2. Theoretical methods

Most electronic energies in this study were determined using the Hartree-Fock self-consistent-field (RHF SCF) technique [16] to obtain reference wavefunctions followed by the configuration interaction singles and doubles (CISD) method [17] to treat electron correlation. The sodium and oxygen 1s-like occupied orbitals and their virtual counterparts (three occupied and three virtual orbitals for NaO<sub>2</sub>) were excluded in the CISD procedures, which otherwise included all single and double excitations in the Hartree-Fock interacting space. The sodium 2s and2p orbitals were not frozen in the CI wavefunctions, in part because Langhoff et al. [18] have found that correlating the n=2 shell of Na significantly shortens the computed bond length for the diatomic molecule NaO. In some cases, designated CISD+Q, the Davidson correction [9] was appended to the CISD energy to estimate the unlinked cluster contribution from quadruple excitations. Final results for relative energies were obtained using unrestricted Hartree-Fock (UHF) SCF reference wavefunctions [20] and Møller-Plesset perturbation theory through fourth order (UMP2, UMP3, and UMP4(SDTQ)) [21-23], the 1s core and virtual orbitals frozen as before. While spin contamination is not a major concern for the species studied here, the spin-projected counterparts to the UMPnenergies, denoted as PUMPn, are also reported [24]. In the cases labeled  $UMP\infty$ , the exact correlation energy  $(E_{corr})$  within a given one-particle basis set was estimated by extrapolating the UMP series according to the formula [25,26]

$$E_{\rm corr} = \frac{E_2 + E_3}{1 - E_4 / E_2},\tag{1}$$

where  $E_n$  represents the *n*th-order correction to the electronic energy. All UHF, UMP, and PUMP results were obtained with the GAUSSIAN88 suite of programs [27].

As discussed previously [5], single-configuration SCF wavefunctions for alkali-metal superoxides are prone to symmetry breaking. Reference wavefunctions which do not suffer from this deficiency were constructed using the complete-active-space multiconfiguration SCF method (CASSCF) [28] as coded in a version of the Cambridge Analytic Derivatives Package (CADPAC) [29] which implements the wavefunction optimization algorithm of Werner and Knowles [30,31]. The wavefunctions labeled CASSCF- $\pi$  for <sup>2</sup>A<sub>2</sub> NaO<sub>2</sub> involved three electrons in an active space comprised of four out-of-plane  $\pi$  orbitals (1a<sub>2</sub>, 2b<sub>1</sub>, 2a<sub>2</sub>, and 3b<sub>1</sub>), a procedure which was selected to solve the symmetry breaking problem with minimal complexity rather than to treat electron correlation extensively. Because the SCF reference configuration is dominant in these CASSCF- $\pi$  wavefunctions, dynamical electron correlation is incorporated conveniently via a single-reference CI treatment based on CASSCF- $\pi$  natural orbitals [5], a method denoted here as CISD- $\pi$ . Geometric structures and harmonic vibrational frequencies at the various levels of theory were found using either analytic derivative or finite difference methods [32,33]. In all cases the uncertainties in the optimum geometries and harmonic vibrational frequencies were less than  $10^{-5}$  Å and 0.1 cm<sup>-1</sup>, respectively.

Four one-particle Gaussian basis sets, designated TZ+d, TZP, TZ2P+R, and TZ2P+f+R, were employed in this study. The TZ+d basis is a Na(11s7p/7s5p) and O(9s5p1d/5s3p1d) set. The oxygen portion of this basis is identical to that used previously for LiO<sub>2</sub> [5] and is comprised of the Huzinaga-Dunning (9s5p/5s3p) set [34,35] augmented with a single set of Cartesian d-type polarization functions with exponent  $\alpha_d(0) = 0.80$  [36]. The core of the sodium basis was assembled from Huzinaga's 11s and 5p primitive sets [37] contracted in (5111111) and (311) schemes, respectively. The sodium 3p subshell is not well described by the p functions in this basis because they were optimized for the <sup>2</sup>S state of the Na atom. Hence, two sets of p functions were added with exponents  $\alpha_p(Na) = 0.104631$  and 0.030126, values optimized for the Na<sup>2</sup>P state at the RHF level. The TZP basis was constructed from the TZ+d set by appending to sodium a single set of Cartesian d-type functions with orbital exponent  $\alpha_d(Na) = 0.20$ , as optimized with the RHF method for the  ${}^{2}A_{2}$  state of NaO<sub>2</sub> at the TZ+d SCF geometry. The TZ2P+R st is a Na(13s10p2d/7s6p2d)

and O(11s7p2d/6s4p2d) basis derived from the Na(12s9p/6s5p) set of McLean and Chandler [38] and the O(10s6p/5s3p) set of Dunning [39], both of which are contractions of Huzinaga's primitives [34,37]. To each of these contracted sets, single sets of diffuse s and p functions with  $\alpha_s(O) = 0.0846$ ,  $\alpha_{\rm p}({\rm O}) = 0.0565$ ,  $\alpha_{\rm s}({\rm Na}) = 0.0101$ , and  $\alpha_{\rm p}({\rm Na})$ =0.0057 were added in an even-tempered manner, these being designated as R, or Rydberg, functions. The sets of d-type polarization functions in the TZ2P+R basis involved the exponents  $\alpha_d(O) = 1.35$ and 0.45 [40] and  $\alpha_d(Na) = 0.4$  and 0.1, the latter values arising by doubling and halving the corresponding exponent in the TZP basis [41,42]. Finally, the largest basis used in this study, TZ2P+f+R, was constructed from the TZ2P+R set by appending a set of f functions to each atom with  $\alpha_{\rm f}({\rm O}) = 1.40$  [43] and  $\alpha_{\rm f}({\rm Na}) = 0.0854$  [18]. In all cases here the sets of d-type functions involved six Cartesian Gaussian components, whereas the sets of f-type functions were comprised of the seven true spherical harmonics alone.

# 3. Results and discussion

Theoretical results for the total energy, internuclear distances, harmonic vibrational frequencies, and dipole moment of  $\tilde{X}^2A_2$  NaO<sub>2</sub> are listed in table 1. The ionic nature of NaO2 is apparent not only from the large values of the dipole moment, but also from the minuscule differences in the TZ+d and TZP results, i.e. the insensitivity of the predictions to the addition of a set of d-type polarization functions to the cationic sodium center. The data in table 1 are also consistent with the assertion that the O-O bond length in NaO<sub>2</sub> is near the 1.335 Å value proposed previously for  $LiO_2$  [5] and with the observation that the experimental fundamental frequency  $v_1$  (the O-O stretch) is nearly identical in  $LiO_2$  (1097 cm<sup>-1</sup>) [43] and NaO<sub>2</sub> (1094 cm<sup>-1</sup>) [7]. The data encapsulated in table 2 highlight these comparisons further and reveal the structural similarities between the free  $O_2^-$  ion and the superoxide moiety in the  $MO_2$ species. The trends in  $r_e(O-O)$  and the O-O stretching frequency in going from  $O_2^-$  to LiO<sub>2</sub> have been discussed fully in our previous work [5]. The one consistent variation in table 2 for LiO<sub>2</sub> vis-á-vis NaO<sub>2</sub> Table 1

| Method                    | Total energy | r <sub>e</sub> (Na-O) | $r_{e}(0-0)$ | $\omega_1(a_1)$ | $\omega_2(a_1)$ | $\omega_3(\mathbf{b}_2)$ | μ    |
|---------------------------|--------------|-----------------------|--------------|-----------------|-----------------|--------------------------|------|
| TZ+d RHF                  | -311.504032  | 2.1219                | 1.2976       | 1456            | 442             | 292 <sup>b)</sup>        | 8.64 |
| TZP RHF                   | -311.507359  | 2.1205                | 1.2973       | 1456            | 444             | 296 <sup>b)</sup>        | 8.41 |
| TZ2P+R RHF                | -311.532518  | 2.1162                | 1.2872       | 1435            | 439             | 308 <sup>b)</sup>        | 8.40 |
| $TZ + d CASSCF - \pi^{d}$ | -311.532905  | 2.1233                | 1.3086       | 1414            | 443             | 362                      | -    |
| TZ+d CISD                 | -311.982071  | 2.1394                | 1.3401       | 1281            | 434             | c)                       | 8.55 |
| TZP CISD                  | -311.987882  | 2.1362                | 1.3401       | 1280            | 437             | c)                       | 8.28 |
| TZ2P+R CISD               | -312.046727  | 2.1273                | 1.3258       | 1258            | 434             | c)                       | 8.32 |
| $TZ + d CISD - \pi^{d}$   | -311.981774  | 2.1393                | 1.3396       | 1284            | 434             | 364                      | -    |
| 6-311G UHF *)             | -            | 2.14                  | 1.34         | 1281            | 439             | 275 <sup>b)</sup>        | 8.81 |
| 6-31G UHF ")              | -            | 2.13                  | 1.35         | 1232            | 445             | 244 <sup>b)</sup>        | 6.44 |
| 6-31+G*MP2 f)             | -            | 2.16                  | 1.39         | -               | -               | -                        | -    |
| experiment <sup>s)</sup>  | -            | 2.07                  | 1.33         | 1094            | 391             | 333                      | -    |
| experiment <sup>b)</sup>  | -            | 2.1                   | 1.33         | -               | -               | -                        | -    |

| The total energy, internuclear distance | s, harmonic vibrational frequencie | s, and dipole moment of $\mathbf{\tilde{X}}^{2}$ | A <sub>2</sub> NaO <sub>2</sub> at various levels of theory *) |
|-----------------------------------------|------------------------------------|--------------------------------------------------|----------------------------------------------------------------|
|-----------------------------------------|------------------------------------|--------------------------------------------------|----------------------------------------------------------------|

\*) Units: energy in hartree, bond distances ( $r_e$ ) in Å, frequencies ( $\omega_i$ ) in cm<sup>-1</sup>, and dipole moment ( $\mu$ ) in D.

<sup>b)</sup> These values are expected to be anomalously small due to symmetry breaking phenomena. See text and ref. [5].

<sup>c)</sup> Unphysical vibrational frequency due to symmetry breaking in reference wavefunction.

<sup>d)</sup> Active space for reference wavefunction: three electrons in four orbitals (two  $a_2$  and two  $b_1$ ).

<sup>c)</sup> Refs. [10,12]. <sup>f)</sup> Ref. [11]. <sup>s)</sup> Refs. [6,7]. <sup>h)</sup> Ref. [8].

| Table 2                                                                                 |                                      |
|-----------------------------------------------------------------------------------------|--------------------------------------|
| Comparison of O–O bond lengths and bond stretching vibrational frequencies of $O_2^-$ . | iO <sub>2</sub> and NaO <sub>2</sub> |

| Method               | $O_2^-$              |         | LiO <sub>2</sub> |                 | NaO <sub>2</sub>     |                          |
|----------------------|----------------------|---------|------------------|-----------------|----------------------|--------------------------|
|                      | r <sub>e</sub> (0–0) | ω,      | $r_{e}(0-0)$     | $\omega_1(a_1)$ | r <sub>e</sub> (0–0) | $\omega_1(\mathbf{a}_1)$ |
| TZ+d RHF             | 1.2995               | 1460    | 1.2944           | 1455            | 1.2976               | 1456                     |
| $TZ+d$ CASSCF- $\pi$ | 1.3089               | 1425    | 1.3064           | 1408            | 1.3086               | 1414                     |
| TZ+d CISD            | 1.3466               | 1265    | 1.3412           | 1260            | 1.3401               | 1281                     |
| TZ+d CISD-π          | -                    | _       | 1.3405           | 1263            | 1.3396               | 1284                     |
| proposed values      | 1.341 <sup>b)</sup>  | 1089 °) | 1.335            | _               | 1.335                | -                        |

<sup>a)</sup>  $O_2^-$  and LiO<sub>2</sub> data from ref. [5]; NaO<sub>2</sub> data from this work. Units: bond lengths ( $r_e$ ) in Å and frequencies in cm<sup>-1</sup>.

<sup>b)</sup> Ref. [44]. <sup>c)</sup> See footnotes to tables 4 and 5 in ref. [5].

is the shift of  $\omega_1$  toward slightly higher values, which is at variance with previous rationalizations based on the Rittner ionic model [45] but in accord with a view of enhanced charge transfer from the  $\pi^*$  orbital of  $O_2^-$  to the metal atom M as the size of M increases [5].

The current predictions for the Na–O distance in table 1 lie in the range 2.12–2.14 Å, but these values are expected to be too large due to basis set deficiencies, as found previously for  $\text{LiO}_2$  [5]. Improved theoretical estimates for the Na–O distance can be obtained by comparing the NaO<sub>2</sub> data with the corresponding theoretical bond lengths appear-

ing in table 3 for diatomic NaO. Note that the theoretical ratio  $r_{NaO_2}/r_{NaO}$  is quite insensitive to basis set and electron correlation, a final value of 1.032 at the TZ2P+R CISD level being accepted here. The most reliable value for the true bond distance in NaO is the 2.033 Å theoretical prediction of Langhoff et al. [18] using a large atomic natural orbital basis and multireference configuration interaction wavefunctions. By multiplying our final  $r_{NaO_2}/r_{NaO}$  ratio by the bond distance of Langhoff et al., a prediction of  $r_e(Na-O) = 2.098$  Å is obtained for NaO<sub>2</sub>. Thus, we propose 2.10 Å as the Na-O distance in the sodium superoxide radical. Accordingly, the TZ+d CISD

| Method                 | Total energy | r <sub>e</sub> (Na-O) | ω <sub>e</sub> | $r_{\rm NaO2}/r_{\rm NaO}$ | $\omega_2(\text{NaO}_2)/\omega_{e}(\text{NaO})$ |
|------------------------|--------------|-----------------------|----------------|----------------------------|-------------------------------------------------|
| TZ+d RHF               | -236.666072  | 2.0461                | 515            | 1.037                      | 0.858                                           |
| TZP RHF                | -236.670192  | 2.0460                | 518            | 1.036                      | 0.857                                           |
| TZ2P+R RHF             | -236.689882  | 2.0478                | 511            | 1.033                      | 0.859                                           |
| TZ+dCISD <sup>b)</sup> | -236.955749  | 2.0620                | 500            | 1.038                      | 0.868                                           |
| TZ2P+R CISD b)         | -236.999223  | 2.0606                | 498            | 1.032                      | 0.871                                           |
| ANO MR CI °)           | -            | 2.033                 | 490            | -                          | -                                               |

Table 3 The total energy, bond length, and harmonic vibrational frequency of  $\tilde{X}^2 \Pi$  NaO at various levels of theory<sup>a</sup>)

<sup>a)</sup> Units: energy in hartree, bond lengths in Å, and frequencies in cm<sup>-1</sup>. The NaO<sub>2</sub> data used for comparison are from table 1.

<sup>b)</sup> See text, two core and two virtual SCF orbitals frozen in CISD procedure.

<sup>c)</sup> Atomic natural orbital multireference configuration interaction results taken from ref. [18]. The ANO basis may be characterized as Na(20s14p6d2f/7s6p4d2f) and O(13s9p6d4f/5s5p2d1f).

 $r_{\rm e}$ (Na–O) distance of 2.1394 Å is approximately 0.04 Å too long, an overestimation which compares favorably to the analogous error of 0.03 Å deduced for LiO<sub>2</sub> [5].

Andrews [6] has analyzed the infrared spectrum of matrix-isolated NaO<sub>2</sub> to find an approximate Na-O bond length. First, an O-O length of 1.33 Å was taken from the X-ray diffraction result of  $1.33 \pm 0.06$ Å [46], and subsequently  $r_e(Na-O) = 2.07$  Å was found using product rule calculations based on a harmonic force field analysis of the observed fundamentals. Similarly, Adrian et al. [8] have extracted the equilibrium Na-O distance from the ESR spectrum of matrix-isolated NaO2. They also assumed  $r_{e}(O-O) = 1.33$  Å and calculated Na hyperfine structure splittings for several Na-O distances, finding the best match between observed and calculated splittings for  $r_e(\text{Na-O}) = 2.1$  Å. Considering the uncertainty of these experimental estimates, good agreement is found with the structure proposed here, viz.  $r_{e}(O-O) = 1.335$  Å and  $r_{e}(Na-O) = 2.10$  Å.

The effect of basis set deficiencies in describing interionic interactions in NaO<sub>2</sub> must also be considered in the prediction of the Na–O stretching frequencies. Once again comparisons with results for diatomic NaO are advantageous; nota bene, the constancy of  $\omega_2(\text{NaO}_2)/\omega_e(\text{NaO})$  ratio in table 3. However, the  $\omega_e$  values for NaO at the TZ2P+R CISD and ANO MR CI levels differ by only 8 cm<sup>-1</sup>, and thus for NaO<sub>2</sub> the TZ2P+R CISD  $\omega_2(a_1) = 434$ cm<sup>-1</sup> prediction in table 1 is seen to be quite accurate without further corrections. Anharmonic contributions of the order of 5 cm<sup>-1</sup> and matrix shifts perhaps as large as 40 cm<sup>-1</sup> [5] are likely sources for

much of the remaining disparity with the experimental value of 391 cm<sup>-1</sup>. For  $\omega_2(b_2)$ , all values determined at the RHF and UHF levels are expected to be anomalously small and methodologically defective, as suggested in table 1, because the onset of spatial symmetry breaking in the electronic orbitals of these wavefunctions leads to an irremovable singularity in the quadratic force constant for antisymmetric Na-O stretching at nearby geometries in which the O-O distance is slightly elongated. This phenomenon has been fully analyzed in the case of  $LiO_2$  by Allen et al. [5]. In contrast, the CASSCF- $\pi$  and CISD- $\pi$  methods are designed to avert the symmetry-breaking dilemma, and the  $\omega_3$  predictions of 362 and 364 cm<sup>-1</sup>, respectively, are in good agreement with the experimental fundamental, especially if effects due to anharmonicity and matrix shifts are considered. It is thus worthwhile to report the TZ+dCISD- $\pi$  quadratic force constants of  $\tilde{X}^2A_2$  NaO<sub>2</sub> (in mdyn Å<sup>-1</sup>) as  $F_{11} = 7.759$ ,  $F_{21} = -0.078$ ,  $F_{22} = 0.826$ , and  $F_{33} = 1.098$ , relative to the internal coordinates  $S_1 = R(O-O), \quad S_2 = 2^{-1/2} [r(Na-O) + r'(Na-O)],$ and  $S_3 = 2^{-1/2} [r(\text{Na-O}) - r'(\text{Na-O})]$ . The analysis of the experimental fundamentals of matrix-isolated NaO<sub>2</sub> by Andrews [6] provided similar values for the Na-O stretching constants, in particular,  $F_{22} = 0.68$  and  $F_{33} = 0.92$  mdyn Å<sup>-1</sup>.

Theoretical data for the  $\tilde{A}^2B_2$  state are found in table 4. Compared to analogous values for the  ${}^2A_2$ state, the Na–O distance is 0.03–0.04 Å longer, the symmetric Na–O stretching frequency is reduced by 30–40 cm<sup>-1</sup>, the O–O distance is longer by less than 0.005 Å, and the O–O stretching frequency is lowered by less than 10 cm<sup>-1</sup>. Similar effects are found Table 4

| Method    | Total energy | r <sub>e</sub> (Na–O) | r <sub>t</sub> (0–0) | $\omega_1(\mathbf{a}_1)$ | $\omega_2(\mathbf{a}_1)$ | ω <sub>3</sub> (b <sub>2</sub> ) | μ    |
|-----------|--------------|-----------------------|----------------------|--------------------------|--------------------------|----------------------------------|------|
| TZ+d RHF  | -311.489800  | 2.1612                | 1.3009               | 1450                     | 407                      | 114 <sup>b)</sup>                | 8.91 |
| TZP RHF   | -311.492955  | 2.1595                | 1.3006               | 1448                     | 407                      | 126 <sup>b)</sup>                | 8.67 |
| TZ+d CISD | -311.967429  | 2.1659                | 1.3442               | 1274                     | 403                      | c)                               | 8.80 |

The total energy, internuclear distances, harmonic vibrational frequencies, and dipole moment of  $\tilde{A}^2B_2$  NaO<sub>2</sub> at various levels of theory \*)

<sup>a)</sup> Units: energy in hartree, bond distances ( $r_e$ ) in Å, frequencies ( $\omega_i$ ) in cm<sup>-1</sup>, and dipole moment ( $\mu$ ) in D.

<sup>b)</sup> As in the case of the  $\tilde{X}^2A_2$  state, these values are expected to be anomalously small due to symmetry breaking phenomena. See text and ref. [5].

<sup>c)</sup> Unphysical vibrational frequency due to symmetry breaking in reference wavefunction.

for LiO<sub>2</sub> [5]. These trends are accounted for by the decrease in the electrostatic interaction of the Na<sup>+</sup> and O<sub>2</sub><sup>-</sup> ions when the extra electron in O<sub>2</sub><sup>-</sup> moves from an in-plane  $\pi^*$  orbital (<sup>2</sup>A<sub>2</sub> state) to an out-of-plane  $\pi^*$  orbital (<sup>2</sup>B<sub>2</sub> state). In NaO<sub>2</sub>, however, the difference between the <sup>2</sup>B<sub>2</sub> and <sup>2</sup>A<sub>2</sub> metal-oxygen bond lengths is approximately half as large as in LiO<sub>2</sub>, indicative of a smaller <sup>2</sup>B<sub>2</sub>-<sup>2</sup>A<sub>2</sub> energy separation in NaO<sub>2</sub>. Based on the geometric structure recommended above for  $\tilde{X}^2A_2$  NaO<sub>2</sub> and comparisons of the data in tables 1 and 4, the final structural predictions which arise for  $\tilde{A}^2B_2$  NaO<sub>2</sub> are  $r_e(O-O) = 1.34$  Å and  $r_e(Na-O) = 2.13$  Å.

Table 5 lists theoretical values of the  $\hat{X} {}^{2}A_{2} \rightarrow \tilde{A} {}^{2}B_{2}$ adiabatic excitation energy. The highest quality result therein is 8.5 kcal mol<sup>-1</sup>, the difference in TZ2P+R CISD+Q energies evaluated at the TZ+d CISD geometries. For comparison, Rajasekhar et al.

Table 5

Energies (in kcal mol<sup>-1</sup>) of the  $^2B_2$  and  $^2\Pi$  states relative to  $\tilde{X}\,^2A_2$  NaO2.

| Method <sup>a)</sup>           | <sup>2</sup> B <sub>2</sub> | <sup>2</sup> Π |
|--------------------------------|-----------------------------|----------------|
|                                | <u>ې</u>                    |                |
| TZP RHF                        | 8.9<br>9.0                  | 9.4<br>9.4     |
| TZ2P+R RHF                     | 8.5                         | 9.3            |
| TZ+d CISD                      | 9.2                         | 16.4           |
| TZP CISD                       | -                           | 16.8           |
| TZ2P + R CISD / / TZ + d CISD  | 8.6                         | 15.7           |
| TZ2P + R CISD + Q//TZ + d CISD | 8.5                         | 16.5           |

<sup>a)</sup> The notation "method 1//method 2" indicates that method 1 was applied at the optimum geometry of method 2. Zero-point vibrational corrections are *not* included. Refer to table 1 for the absolute energies of  $\tilde{X}^2A_2 NaO_2$  at its equilibrium,  $C_{2v}$  geometry. Final predictions for the  ${}^2\Pi - {}^2A_2$  separation appear in table 8. [2] recently found a  ${}^{2}A_{2} \rightarrow {}^{2}B_{2}$  vertical excitation energy of 8.8 kcal mol $^{-1}$  at the UHF level using a significantly smaller basis set. The small differential correlation energy in the NaO<sub>2</sub> results is also characteristic of  $LiO_2$  [5] and is consistent with the ionic model of bonding between the metal ion and  $O_2^-$ . Our  ${}^{2}B_{2} - {}^{2}A_{2}$  energy splitting of  $\approx 8.5$  kcal/mol is significantly smaller than the value of  $T_c = 16.6$  kcal  $mol^{-1}$  for LiO<sub>2</sub> [5], in agreement with the results of Lindsay et al. [9,47], who measured the ESR spectra of matrix-isolated alkali-metal superoxides and concluded that the separation of the highest occupied b<sub>2</sub> and a<sub>2</sub> molecular orbitals decreases monotonically through the series LiO<sub>2</sub>-RbO<sub>2</sub>. In fact, the ESR data suggest that the  ${}^{2}B_{2}$  state is actually lower in energy than the  ${}^{2}A_{2}$  state in the case of CsO<sub>2</sub>.

Other features of the NaO<sub>2</sub>  $\tilde{X}^2A_2$  and  $\tilde{A}^2B_2$  potential energy hypersurfaces are found in tables 5-7. The  ${}^{2}A_{2}$  and  ${}^{2}B_{2}$  states correlate, via  ${}^{2}A''$  and  ${}^{2}A'$  intermediate states, respectively, to the two components of a <sup>2</sup>Π state at linear Na-O-O geometries. This  $^{2}\Pi$  state is a minimum on both surfaces at the RHF and CISD levels of theory, with Na-O and O-O bond lengths which are shorter than those in the  ${}^{2}A_{2}$  state by 0.166 and 0.025 Å, respectively, at the TZP CISD level (cf. tables 1 and 6). The analogous shifts in bond lengths for  $LiO_2$  are very similar, in particular, 0.160 and 0.026 Å [5]. Note that the contraction of the O-O distance and the increase in the O-O stretching frequency for the  ${}^{2}\Pi$  state is only recovered using correlated levels of theory, indicating a large differential correlation energy effect between the  ${}^{2}A_{2}$  and  ${}^{2}\Pi$  states. Consequently, the  ${}^{2}\Pi - {}^{2}A_{2}$  energy difference in tables 5 is very sensitive to the inclusion of electron correlation. The best result therein.

Table 6

| Method     | Total energy | r <sub>e</sub> (Na-O) | r₀(O–O) | $\omega_1(\sigma)$ | $\omega_2(\sigma)$ | $\omega_{3a}(\pi)^{b)}$ | ω <sub>3b</sub> (π) <sup>b)</sup> | μ     |
|------------|--------------|-----------------------|---------|--------------------|--------------------|-------------------------|-----------------------------------|-------|
| TZ+d RHF   | -311.489075  | 1.9585                | 1.3080  | 1330               | 450                | 77                      | 70                                | 9.69  |
| TZP RHF    | -311.492303  | 1.9546                | 1.3078  | 1327               | 452                | 92                      | 74                                | 9.51  |
| TZ2P+R RHF | -311.517698  | 1.9576                | 1,2956  | 1308               | 443                | 72                      | 60                                | 9.66  |
| TZ+d CISD  | - 311.955948 | 1.9771                | 1.3158  | 1353               | 438                | 58                      | 56                                | 10.07 |
| TZP CISD   | -311.961034  | 1.9699                | 1.3152  | -                  | -                  | -                       | _                                 | 9.86  |

The total energy, internuclear distances, harmonic vibrational frequencies, and dipole moment of <sup>2</sup>II NaO<sub>2</sub> at various levels of theory <sup>a</sup>)

<sup>a)</sup> Units: energy in hartree, bond distances  $(r_e)$  in Å, frequencies  $(\omega_i)$  in cm<sup>-1</sup>, and dipole moment  $(\mu)$  in D.

<sup>b)</sup> The degeneracy of the bending frequencies is removed due to the Renner-Teller effect [48]. Upon Na-O-O bending along the  $\omega_{3a}$  and  $\omega_{3b}$  modes, the <sup>2</sup> $\Pi$  state correlates to the  $\tilde{X}^2A_2$  and  $\tilde{A}^2B_2$  surfaces, respectively.

Table 7 Total energies, geometric structures, and vibrational energies of transition states on the  $\tilde{X}^2A''$  and  $\tilde{A}^2A'$  surfaces of NaO<sub>2</sub> at the TZ+d CISD level of theory <sup>a)</sup>

|                         | $\mathbf{\tilde{X}}^{2}\mathbf{A}^{\prime\prime}$ ( <sup>2</sup> A <sub>2</sub> ) | $\tilde{A}^{2}A^{\prime}$ ( <sup>2</sup> B <sub>2</sub> ) |
|-------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|
| energy                  | -311.955808                                                                       | -311.955598                                               |
| $r_{\rm c}({\rm Na-O})$ | 1.9997                                                                            | 2.0130                                                    |
| $r_{*}(0-0)$            | 1.3185                                                                            | 1.3225                                                    |
| $\theta$ (Na-O-O)       | 155.4                                                                             | 138.3                                                     |
| $\omega_1(a')$          | 1339                                                                              | 1322                                                      |
| $\omega_2(\mathbf{a}')$ | 432                                                                               | 445                                                       |
| $\omega_3(a')$          | 77i                                                                               | 66i                                                       |
|                         |                                                                                   |                                                           |

<sup>a)</sup> Units: energy in hartree, bond distances  $(r_e)$  in Å, bond angles  $(\theta)$  in deg, and frequencies  $(\omega_i)$  in cm<sup>-1</sup>.

16.5 kcal mol<sup>-1</sup> at the TZ2P+R CISD+Q//TZ+d CISD level of theory, is within 1 kcal mol<sup>-1</sup> of the final value proposed below.

The small vibrational frequencies of the <sup>2</sup>II bending modes,  $\approx 60$  cm<sup>-1</sup> at the TZ+d CISD level, suggest that the  ${}^{2}\Pi$  state is only a shallow minimum. This expectation is confirmed by the transition states located on the  $\tilde{X}^2 A''(^2A_2)$  and  $\tilde{A}^2 A''(^2B_2)$  surfaces at the TZ+d CISD level of theory (table 7) for Na-O-O angles of 155° and 138°, respectively. The corresponding barrier heights for the rearrangement of linear Na-O-O to a C<sub>2v</sub> structure are only 0.09 and 0.22 kcal/mol, respectively, on the  $\tilde{X}^2 A''$  and  $\tilde{A}^2 A'$ potential surfaces. Alexander's [15] semiempirical <sup>2</sup>A" surface essentially agrees with these ab initio results. In comparison, the respective TZP CISD <sup>2</sup>A" and <sup>2</sup>A' barrier heights for  $LiO_2$  are 1.2 and 2.0 kcal mol<sup>-1</sup>, the transition structures displaying Li-O-O angles of 137° and 105°.

Table 8 details final theoretical data for the dis-

sociation energy of NaO<sub>2</sub> and the  ${}^{2}\Pi - {}^{2}A_{2}$  energy separation, all results being determined with the TZ2P+f+R basis set in conjunction with Møller-Plesset perturbation theory. While these predictions are based on UHF reference wavefunctions, all spin contaminations are reasonably small (see footnote c to table 8), and the spin-projected results do not differ significantly from their unprojected counterparts. The effect of the  ${}^{2}\Pi - {}^{2}A_{2}$  differential correlation energy on the corresponding energy separation is quite apparent as  $\Delta E$  is successively computed at each order of perturbation theory. The UHF value of 10.1 kcal mol<sup>-1</sup> rises to 19.3 kcal mol<sup>-1</sup> in second order before falling off to  $17.5 \text{ kcal mol}^{-1}$  at the UMP4(SDTQ) level. The extrapolation estimate denoted as  $UMP\infty$  in table 8 engenders a final proposal of  $\Delta E = 17$  kcal mol<sup>-1</sup>. Previous data for LiO<sub>2</sub> [5] show that the  ${}^{2}\Pi - {}^{2}A_{2}$  energy separation is quite insensitive to the one-particle basis set; hence further expansion of the basis is expected to have little effect on the final  $\Delta E$  predicted for NaO<sub>2</sub>.

The dissociation energy of  $NaO_2$  is one of the central, unresolved questions pertaining to this molecule [10–14]. From a theoretical perspective the dissociation energy of an ionic species MX is best determined using the equation

$$D_0(M-X) = E(M^+ + X^-) - E(MX, r_e)$$
  
+ $\Delta$ (ZPVE) - IP(M, expt) + EA(X, expt), (2)

because differential correlation energy effects are essentially eliminated by dissociating to  $M^+ + X^-$  and then correcting the results with experimental values for the ionization potential (IP) of M and the electron affinity (EA) of X [5,49-51]. In table 8, dis-

|                    |                      |                            |                                 |                          |                 |                 |                                    | D (ALC OV P) |               |
|--------------------|----------------------|----------------------------|---------------------------------|--------------------------|-----------------|-----------------|------------------------------------|--------------|---------------|
|                    | $E(Na^+)$            | $E(0^{-})$                 | $E(0_2^-)$                      | E(NaO, 2II)              | $E(NaO_2, A_2)$ | $E(NaO_2, '11)$ | Δ <i>E</i> ( *11-*A <sub>2</sub> ) | D0(Na-U) 2   | $D_0(Na-U_2)$ |
| JHF c)             | -161.665177          | -74.794130                 | -149.650522                     | -236.694853              | -311.545475     | -311.529412     | 10.1                               | 62.3         | 34.8          |
| (PALF d)           | 1                    | -74.797775                 | - 149.659225                    | -236.698038              | -311.554002     | -311.535265     | 11.8                               | 62.0         | 34.7          |
| JMP2               | -161.785405          | -75.000687                 | -150.112837                     | -236.020422              | -312.129434     | -312.098632     | 19.3                               | 61.6         | 35.7          |
| UMP2 <sup>4)</sup> | ł                    | -75.003551                 | - 150.119065                    | -237.022717              | -312.135327     | -312.102485     | 20.6                               | 61.2         | 35.5          |
| JMP3               | -161.783856          | -75.006681                 | -150.106504                     | -237.026650              | -312.122872     | -312.096818     | 16.3                               | 62.7         | 36.5          |
| (P GMD2            | 1                    | -75.008984                 | -150.109750                     | -237.028419              | -312.125813     | -312.099020     | 16.8                               | 62.4         | 36.3          |
| JMP4 (SDTO)        | -161.786951          | -75.018105                 | -150.139743                     | -237.039997              | -312.158197     | -312.130312     | 17.5                               | 62.0         | 35.9          |
| UMP <sup>∞</sup>   | -161.786992          | -75.019124                 | -150.141828                     | -237.040834              | -312.160049     | -312.132293     | 17.4                               | 61.8         | 35.7          |
| ĩnal proposals: I  | $D_0 (Na + O_2) = 3$ | 8 kcal mol <sup>-1</sup> ; | $\Delta E(^{2}\Pi^{-2}A_{2})=1$ | 7 kcal mol <sup>-1</sup> |                 |                 |                                    |              |               |

\*) Total energies in hartree;  $\Delta E$  and  $D_0$  in kcal mol<sup>-1</sup>. Based on the TZP CISD optimum geometrics for NaO and NaO<sub>2</sub> and the experimental bond distance (table  $D_0(Na-$ 2) for  $O_2^-$ 

and gives (in kcal mol<sup>-1</sup>)  $D_0(Na-O) = D_e(NaO \rightarrow Na^+ + O^-) - 85.47$ text, which in the described  $O_2) = D_e(NaO_2 \rightarrow Na^+ + O_2^-) - 109.38.$ as 5 ġ. via <sup>b)</sup> Determined

<sup>c)</sup> Expectation values of S<sup>2</sup>: O<sup>-</sup>, 0.770; O<sub>2</sub><sup>-</sup>, 0.793; NaO, 0.762; (NaO<sup>2</sup>, 2A<sub>2</sub>), 0.788; and (NaO<sub>2</sub>, <sup>2</sup>II), 0.770.

a) Approximations based on the annihilation of the quartet component of the spin-contaminated, doublet wavefunction. See ref. [24].

sociation energies obtained in this manner for both  $\tilde{X}^2\Pi$  NaO and  $\tilde{X}^2A_2$  NaO<sub>2</sub> are reported. Pertinent experimental data are: IP(Na) = 5.138 eV [52], EA(O) = 1.462 eV [53], and  $EA(O_2) = 0.440 \text{ eV}$ [44]. The zero-point vibrational contributions,  $\Delta$ (ZPVE), to the dissociation energies are based on the experimental fundamental frequencies reported in tables 1 and 2 for NaO2 and O2, respectively, and the ANO MR CI  $\omega_e$  value for NaO in table 3. The near constancy of  $D_0(Na-O)$  and  $D_0(Na-O_2)$  is striking as the treatment of electron correlation is improved. The main errors in the UMP∞ results (61.8 and 35.7 kcal mol<sup>-1</sup> for NaO and NaO<sub>2</sub>, respectively) are thus expected to arise from remaining deficiencies in the TZ2P+f+R basis set. From more extensive theoretical investigations of the bond energies of LiO and NaO by Langhoff, Bauschlicher and Partridge [49,50] and previous work on the dissociation energy of LiO<sub>2</sub> by Allen and co-workers [5]. a  $D_0$  correction of about + 2 kcal mol<sup>-1</sup> is warranted for incompleteness of the TZ2P + f + R basis. Therefore, the data in table 8 provide  $D_0(Na-O) = 64$  kcal  $mol^{-1}$  and  $D_0(Na-O_2) = 38$  kcal  $mol^{-1}$  as final results, the former value being in excellent agreement with the most recent experimental determination of  $D_0(Na-O) = 63.6(10)$  kcal mol<sup>-1</sup> by Steinberg and Schofield [13]. However, for NaO<sub>2</sub> these same authors report a dissociation energy of 58.1(19) kcal mol<sup>-1</sup> as found from high-temperature flame studies [13], this value being substantially higher than the corresponding theoretical result determined here. In our view the theoretical value (38 kcal  $mol^{-1}$ ) cannot be more than a few kcal  $mol^{-1}$  in error based on previous experience [5,49,50] with the methods from which it arises. Therefore, it appears that the dissociation energies obtained from flame studies in the early 1980s by Jensen [3] and Hynes et al. [4] happen to be more accurate than later revisions. In this regard it is worth noting that as in the case of LiO and LiO<sub>2</sub>, the theoretical dissociation energies of NaO and NaO<sub>2</sub> are in accord with Herm and Herschbach's [54] (see also ref. [15]) approximation  $D_0(M-O_2) \approx D_0(M-O) - 1.0$  eV, lending further credence to a bond energy for NaO<sub>2</sub> near 40 kcal mol<sup>-1</sup> as a consequence of the recent experimental results [13] for  $D_0$  (Na-O). If the Herm and Herschbach estimate were to hold for the larger superoxides, the dissociation energies of KO<sub>2</sub> and RbO<sub>2</sub> would also lie near 40 kcal mol<sup>-1</sup>, as indicated by previous theoretical determinations of bond energies for KO and RbO near 65 kcal mol<sup>-1</sup> [49]. Accordingly, the experimental lower limit of 48 kcal mol<sup>-1</sup> reported by Plane et al. [12] for  $D_0(K-O_2)$  would be subject to revision toward smaller values.

#### Acknowledgement

This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Fundamental Interactions Branch, Grant DE-FG09-87ER13811. Additional work at Stanford University was supported by computational resources from the Stanford Data Center and by an unrestricted grant from Failure Analysis Associates, Inc., of San Francisco, California. We thank Professor Paul von R. Schleyer for communicating his results at an early date.

## References

- [1] C.E. Kolb and J.B. Elgin, Nature 263 (1976) 488.
- [2] B. Rajasekhar, J.M.C. Plane and L. Bartolotti, J. Phys. Chem. 93 (1989) 7399, and references therein.
- [3] D.E. Jensen, J. Chem. Soc. Faraday Trans. 178 (1982) 2835.
- [4] A.J. Hynes, M. Steinberg and K. Schofield, J. Chem. Phys. 80 (1984) 2585.
- [5] W.D. Allen, D.A. Horner, R.L. DeKock, R.B. Remington and H.F. Schaefer III, Chem. Phys. 133 (1989) 11.
- [6] L. Andrews, J. Phys. Chem. 73 (1969) 3922.
- [7] R.R. Smardzewski and L. Andrews, J. Chem. Phys. 57 (1972) 1327.
- [8] F.J. Adrian, E.J. Cochran and V.A. Bowers, J. Chem. Phys. 59 (1973) 56.
- [9] D.M. Lindsay, D.R. Herschbach and A.L. Kwiram, Chem. Phys. Letters 25 (1974) 175.
- [10] J.M.C. Plane, B. Rajasekhar and L. Bartolotti, J. Phys. Chem. 93 (1989) 3141.
- [11] P. Marshall, A.S. Narayan and A. Fontijn, J. Phys. Chem. 94 (1990) 2998.
- [12] J.M.C. Plane, B. Rajasekhar and L. Bartolotti, J. Phys. Chem. 94 (1990) 4161.
- [13] M. Steinberg and K. Schofield, J. Chem. Phys. 94 (1991) 3901.
- [14] P. von R. Schleyer, Universität Erlangen-Nürnberg, private communication (1991).
- [15] M.H. Alexander, J. Chem. Phys. 69 (1978) 3502.
- [16] C.C.J. Roothaan, Rev. Mod. Phys. 23 (1951) 69; 32 (1960) 179.

- [17] P. Saxe, D.J. Fox, H.F. Schaefer III and N.C. Handy, J. Chem. Phys. 77 (1982) 5584.
- [18] S.R. Langhoff, H. Partridge and C.W. Bauschlicher, Chem. Phys. 153 (1991) 1.
- [19] S.R. Langhoff and E.R. Davidson, Intern. J. Quantum Chem. 8 (1974) 61.
- [20] J.A. Pople and R.K Nesbet, J. Chem. Phys. 22 (1954) 571.
- [21] J.A. Pople, J.S. Binkley and R. Seeger, Intern. J. Quantum Chem. Symp. 10 (1976) 1.
- [22] R. Krishnan and J.A. Pople, Intern. J. Quantum Chem. 14 (1978) 91.
- [23] R. Krishnan, M.J. Frisch and J.A. Pople, J. Chem. Phys. 72 (1980) 4244.
- [24] H.B. Schlegel, J. Chem. Phys. 84 (1986) 4530.
- [25] J.A. Pople, M.J. Frisch, B.T. Luke and J.S. Binkley, Intern. J. Quantum Chem. Symp. 17 (1983) 307.
- [26] N.C. Handy, P.J. Knowles and K. Somasundram, Theoret. Chim. Acta 68 (1985) 87.
- [27] M.J. Frisch, M. Head-Gordon, H.B. Schlegel, K. Raghavachari, J.S. Binkley, C. Gonzalez, D.J. DeFrees, D.J. Fox, R.A. Whiteside, R. Seeger, C.F. Melius, J. Baker, R. Martin, L.R. Kahn, J.J.P. Stewart, E.M. Fluder, S. Topiol and J.A. Pople, GAUSSIAN 88 (Gaussian Inc. Pittsburgh, 1988).
- [28] B.O. Roos, in: Ab initio methods in quantum chemistry, Vol. 2, ed. K.P. Lawley (Wiley, New York, 1987) pp. 399-445.
- [29] R.D. Amos, J.E. Rice and N.C. Handy, The Cambridge Analytic Derivatives Package (1987).
- [30] P.J. Knowles and H.-J. Werner, Chem. Phys. Letters 115 (1985) 259.
- [31] H.-J. Werner and P.J. Knowles, J. Chem. Phys. 82 (1985) 5053.
- [32] P. Pulay, in: Modern theoretical chemistry, Vol. 4, ed. H.F. Schaefer III (Plenum Press, New York, 1977) p. 53;
  M. Dupuis and H.F. King, J. Chem. Phys. 68 (1978) 3998;
  J.E. Rice, R.D. Amos, N.C. Handy, T.J. Lee and H.F. Schaefer III, J. Chem. Phys. 85 (1986) 963;
  J.F. Gaw and N.C. Handy, Ann. Rept. Progr. Chem. C 81 (1984) 291.
- [33] P. Saxe, Y. Yamaguchi and H.F. Schaefer III, J. Chem. Phys. 77 (1982) 5647.
- [34] S. Huzinaga, J. Chem. Phys. 42 (1965) 1293.
- [35] T.H. Dunning, J. Chem. Phys. 53 (1970) 2823.
- [36] P.C. Hariharan and J.A. Pople, Theoret. Chim. Acta 28 (1973) 213.
- [37] S. Huzinaga, Approximate atomic functions, Vol. 2, Department of Chemistry Report (University of Alberta, Edmonton, 1971).
- [38] A.D. McLean and G.S. Chandler, J. Chem. Phys. 72 (1980) 5639.
- [39] T.H. Dunning, J. Chem. Phys. 55 (1971) 716.
- [40] W.D. Allen and H.F. Schaefer III, J. Chem. Phys. 89 (1988) 329.
- [41] J.S. Binkley and J.A. Pople, Intern. J. Quantum Chem. 9 (1975) 229.
- [42] M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys. 80 (1984) 3265.

- [43] L. Andrews, J. Chem. Phys. 50 (1969) 4288.
- [44] R.J. Celotta, R.A. Bennett, J.L. Hall, M.W. Siegel and J. Levine, Phys. Rev. A 6 (1972) 631.
- [45] L. Andrews and R.R. Smardzewski, J. Chem. Phys. 58 (1973) 2258.
- [46] H.H. Templeton and C.H. Dauben, J. Am. Chem. Soc. 72 (1950) 2251.
- [47] D.M. Lindsay, D.R. Herschbach and A.L. Kwiram, J. Phys. Chem. 87 (1983) 2113;
   D.M. Lindsay and D.A. Garland, J. Phys. Chem. 91 (1987) 6158.
- [48] G. Herzberg and E. Teller, Z. Physik. Chem. B 21 (1933) 410;

R. Renner, Z. Physik 92 (1934) 172.

- [49] S.R. Langhoff, C.W. Bauschlicher Jr. and H. Partridge, J. Chem. Phys. 84 (1986) 4474.
- [50] H. Partridge, C.W. Bauschlicher Jr. and S.R. Langhoff, Chem. Phys. Letters 109 (1984) 446.
- [51] H. Partridge, S.R. Langhoff and C.W. Bauschlicher Jr., J. Chem. Phys. 88 (1988) 6431.
- [52] C.E. Moore, Atomic energy levels, Vols. 1–3, NSRDS-NBS 35 (US Govt. Printing Office, Washington, 1971).
- [53] H. Hotop and W.C. Lineberger, J. Phys. Chem. Ref. Data 4 (1975) 568.
- [54] R.R. Herm and D.R. Herschbach, J. Chem. Phys. 52 (1970) 5783.